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A B S T R A C T

In this work, we study non-Newtonian fluid flow in heterogeneous porous media. We are interested in fluids
presenting a specific change in rheology: Newtonian below a certain shear rate and power law above. Since
porous media generally exhibit strong spatial heterogeneity at large geological scales, we study the interaction
between such inhomogeneity and the nonlinear rheology of the fluid. The coupling between permeability
heterogeneity and nonlinear rheology significantly affects the flow. We are particularly in the statistical
properties of the velocity field (mean, variance, correlation, etc).

Depending on the imposed mean pressure gradient, three macroscopic flow regimes are identified. For a
low or high average pressure gradient, the average flow rate increases linearly or according to a power law,
respectively. In the latter regime, we observe that the velocity field is more heterogeneous for shear-thinning
fluids than for shear-thickening fluids. This is corresponding to a channeling effect of shear-thinning fluids.

The intermediate regime corresponds to a progressive and inhomogeneous change of the local rheology.
This transient regime is then characterized in terms of pressure gradient range. The flow field is also analyzed
statistically. The spatial distribution of the regions above the rheology threshold shows interesting statistical
properties. For instance, they exhibit multiscale characteristics (fractal), similar to other critical systems
(percolation, avalanches, etc.). If the distribution of their area follows a power-law, the exponent is independent
of the disorder. This suggests a kind of ‘‘universality’’ in this problem. More surprisingly, even though some
statistical properties are independent of the parameters, an interesting abrupt rotation of the correlations is
found for a particular set of parameters. This is explained by using some symmetries of the problem.
. Introduction

Many natural or industrial fluids exhibit non-Newtonian behav-
ors, [1–3], they are thus found in many applications related to porous
r fractured media. A very important application is certainly enhanced
il recovery (EOR) (see [4]). The most standard way to recover oil is to
nject water to force the oil to move (waterflooding). The efficiency of
aterflooding is however related to the uniformity of the displacement

ront. The more uniform the front, the greater the amount of oil to
e moved. In contrast, if the preferential paths are formed, they will
ypass certain regions of the porous medium leaving the oil in place.
wo main reasons can cause this bypass. The first one comes from the
eterogeneity of the permeability field. The fluid indeed tends to flow
nto the highest permeability regions and avoid the lower permeability
nes. The second reason comes from the viscosity contrast. If the dis-
lacing fluid has a lower viscosity than the displaced one, the front can
estabilize and form fingerings as described by Saffman and Taylor [5]
r Homsy [6]. To limit this bypass effect, a solution used by the oil
ndustry is to add a polymer (e.g. Xanthan) to the displacing water

E-mail address: talon@fast.u-psud.fr.

(see [4]). Another advantage of improving the viscosity ratio lies in the
fact that it also reduces the effects of heterogeneity in the permeability
field. The main difficulty of this process is that most of the injected
polymers have a non-Newtonian rheology. This is the case for example
of Xanthan which is Newtonian at low shear rates but is shear thinning
at higher shear rates. However, as has been shown in pore networks [7]
or in fractures [8], nonlinear rheology can amplify or dampen het-
erogeneities. The objective of this paper is to further investigate the
interplay between the macroscopic inhomogeneity of a permeability
field and the flow of a nonlinear fluid. We focus particularly on the
change in behavior of the viscosity.

Another interesting application of non-Newtonian fluids is the un-
derstanding of blood flow in capillary networks. Indeed, blood, which
must be considered as a suspension, presents a non-Newtonian vis-
cosity: shear thinning or yield stress. [8,9]. Non-Newtonian fluid is
also present in the proppants used for hydraulic fracturing or the mud
produced by drilling wells [10,11]. They are also commonly used for
fracture sealing (e.g cements, polymers, etc.) [12].
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A very recurrent problem when dealing with porous media is that
of upscaling. If the equations of motion are generally well known at the
pore scale (typically ∼ 10−3 m), a particular interest is to understand the
low at much larger scales (∼ 1–103 m) This is usually done by deriving

constitutive equations for average quantities at an intermediate scale
and is illustrated by the famous Darcy’s law for Newtonian fluids,
which relates linearly the mean flow rate to the macroscopic gradient
of pressure.

At the microscopic level, Newtonian fluids obey the Stokes equation
(neglecting the inertia):

0⃗ = −∇⃗𝑝 + 𝜇𝛥𝑣, (1)

where 𝑣 is the fluid velocity, 𝑝 is the pressure and 𝜇 the viscosity.
Averaging the velocity and pressure field over a large number of pores
results in Darcy’s law [13]:

𝑢 = −𝜅
𝜇
∇⃗𝑃 , (2)

where 𝑢 is the mean velocity, ∇⃗𝑃 an averaged pressure gradient and 𝜅
the permeability of the porous medium which depends on its structure.

At the geological scale, the type of rock may however spatially
vary leading to a macroscopic heterogeneous permeability field. The
large-scale flow obeys then to the heterogeneous Darcy’s law:

𝑢 = −
𝜅(𝑟)
𝜇

∇⃗𝑃 and ∇⃗ ⋅ 𝑢 = 0. (3)

It is also worth recalling that a very similar equation is used for
olving flow in rough fractures, usually referred as the Reynolds equa-
ion [14–16]. Indeed, in a fracture with varying opening and under the
ubrication approximation (small thickness and small variation of the
pening), the flow obeys:

𝑞(𝑥, 𝑦) = −
𝜅(𝑥, 𝑦)

𝜇
∇⃗2𝐷𝑃 et ∇⃗2𝐷 ⋅ 𝑞 = 0, (4)

where the fracture is in the (𝑥, 𝑦)-plane, 𝑏(𝑥, 𝑦) represents the local
opening, 𝜅(𝑥, 𝑦) = 𝑏3(𝑥,𝑦)

12 and 𝑞(𝑥, 𝑦) = ∫ 𝑏(𝑥,𝑦)
0 𝑢 𝑑𝑧 is the flow rate. The

racture can thus be treated as a 2D porous medium. There is, however,
small caveat because the dimensions are a slightly different. In a

orous medium, Darcy’s law implies an average velocity (m ⋅ s−1) and
he permeability has the dimension of m2, whereas in a fracture, 𝑞 is

a volumetric flux per unit length (m2 ⋅ s−1) and the ‘‘permeability’’ has
the dimension of m3.

The influence of the heterogeneity of a permeability field (or frac-
ture) has also been the subject of a considerable amount of work,
starting with the work of Matheron [17], Gelhar and Axness [18]
or Dagan [19]. One can also mention the review by Renard and de
Marsily [20]. Since the fluid prefers to flow in high permeability regions
and avoid low permeability ones, the heterogeneity strongly influences
the velocity field. The central question is to understand how the per-
meability distribution affects the velocity field, in particular its average
rate and the magnitude of its heterogeneity. The latter is specifically
important for describing the transport of species (e.g., pollutants) in
the subsurface [21].

All studies mentioned above apply to Newtonian fluids. Therefore,
the following question naturally arises: how should these approaches
be modified when considering non-Newtonian fluids? Although there
exists a very large variety of non-Newtonian fluids [1,3,22], several
similar approaches are commonly used in the case where it exists a
simple relationship between shear rate 𝛾̇ =

√

1
2 tr [(∇⃗𝑣 + ∇⃗𝑣𝑇 )2] and vis-

cosity 𝜇(𝛾̇), or equivalently between 𝛾̇ and shear stress 𝜏(𝛾̇), with 𝜏(𝛾̇) =
(𝛾̇)𝛾̇. One approach [see for instance 23–27] consists in determining
n effective shear rate 𝛾̇𝑝𝑚 to derive an effective viscosity. Other ones
re to establish an effective stress [28], or an average viscosity [29].
he common feature of these approaches is that they are based on the
etermination of mean effective quantities. They can be synthesized
sing scaling arguments. Indeed, by defining a typical length scale 𝜆̃
pore size, grain diameter,

√

𝜅, etc.) and using the average flow rate
2

𝑢, a typical shear rate 𝛾̇𝑒𝑓𝑓 ∝ 𝑢∕𝜆̃ can be defined. A typical shear stress
𝜏𝑒𝑓𝑓 ∝ 𝜆̃∇𝑃 is also deduced from the pressure gradient. These quantities
an then be used in the rheological function 𝛾̇ = 𝑓 (𝜏) to derive a

generalization of Darcy’s law in the form:

𝑢 ∝ 𝑓 (∇𝑃 ), (5)

where the pre-factors must be determined (experimentally, numerically
or theoretically). It is therefore expected that the flow/pressure curve
will keep the overall shape of the rheological curve (see Fig. 1). More-
over, Shah and Yortsos [7] and Auriault [30] proposed a theoretical
approach to homogenize the flow for power law fluids in a periodic
porous media. In both cases, the derived Darcy’s law is also a power-law
which is in agreement with the effective quantities approach.

The objective of this paper is to study rheologies that exhibit a
change in behavior. Indeed, many non-Newtonian fluids, such as Xan-
than, exhibit non-linear behavior only at high shear rate (or stress). At
low shear rates, they still behave like a Newtonian fluid. To describe
this rheology, a simple model is chosen which is the ‘‘truncated rheol-
ogy’’, where the transition is sharp, at a given value of shear rate (or
shear stress):
{

𝜏 = 𝜇𝛾̇ if 𝛾̇ < 𝛾̇0
𝜏 ∝ 𝛾̇𝑛 if 𝛾̇ > 𝛾̇0

, (6)

where 𝑛 is the flow index.
Using the ‘‘mean field’’ approach, as studied numerically by [31,32]

for example, Darcy’s law can be written as follows:
{

|∇𝑃 | = 𝜇
𝜅 𝑢 if 𝑢 < 𝑢𝑐

|∇𝑃 | = 𝜇
𝜅 (

𝑢
𝑢𝑐
)𝑛−1𝑢 if 𝑢 > 𝑢𝑐 ,

(7)

where 𝜅 is the permeability and 𝑢𝑐 a velocity threshold that depends
n 𝛾̇0 and the porous structure. The prefactor in the second equation
s determined by continuity. 𝜅 and 𝑢𝑐 are thus parameters depending
n the topology of the porous medium (pore size distribution, porosity,
tc.). At macroscopic geological scales, however, the structure of porous
edia is expected to vary, resulting in a heterogeneous permeability

nd 𝑢𝑐 (𝑟) field. The main objective of this paper is therefore to study the
influence of this field inhomogeneity on the flow for a fluid presenting
a transient rheology. Another application could be also to evaluate the
use of non-Newtonian fluids to characterize the degree of heterogeneity
of a field. Indeed, as each location changes its viscosity behavior at
a different flow rate, recording the evolution of the average velocity
could potentially give indications on the permeability heterogeneity.

This article is structured as follows. Section 2 is devoted to the
presentation of the problem. Section 3 contains the numerical re-
sults, where the different flow regimes are analyzed. In particular,
the transient regime presents interesting statistical properties. Sec-
tion 4 is dedicated to discussions and conclusions. Different appendices
provide some mathematical properties of the nonlinear Darcy’s law
(perturbation expansion, symmetry) and also the numerical method
used.

2. Problem description — governing equations

To solve the flow field, a vector formulation of the non-Newtonian
Darcy’s law is required. Assuming that the medium is locally isotropic
so that the mean flow is collinear and opposite to the mean pressure
gradient, it follows:

⎧

⎪

⎨

⎪

⎩

∇⃗𝑃 = − 𝜇
𝜅(𝑟) 𝑢 if ‖𝑢‖ < 𝑢𝑐 (𝑟)

∇⃗𝑃 = − 𝜇
𝜅(𝑟)

[

‖𝑢‖
𝑢𝑐 (𝑟)

]𝑛−1
𝑢 if ‖𝑢‖ > 𝑢𝑐 (𝑟)

. (8)

In addition, the velocity field must satisfy mass conservation:

∇⃗ ⋅ 𝑢 = 0 (9)

The flow field is solved using a second order finite difference
method combined with an augmented Lagrangian approach described
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Fig. 1. Left: Relationship between shear rate and shear stress for a truncated rheology. For a shear rate lower than 𝛾0 (or a stress lower than 𝜏0), the fluid is Newtonian. Beyond
this thresholds the rheology is a power law. Right: General Darcy’s law, mean flow rate 𝑢 as function of the average gradient of pressure ∇𝑃 in porous media for the truncated
rheology using the ‘‘mean field’’ rheology approach.
Fig. 2. Schematic of the studied system. The heterogeneous domain has a size 𝐿̃× 𝑊̃ .
The flow is driven by imposing a pressure difference between 𝑥 = 0 and 𝑥 = 𝐿̃.

in the appendix. In practice, the flow rate is determined by imposing
a pressure difference 𝛥𝑃 between the inlet and the outlet (see Fig. 2).
However, it is more convenient to use the average pressure gradient
⟨∇𝑃 ⟩ = 𝛥𝑃

𝐿̃ as a control parameter, where 𝐿̃ is the length of the system
and the mean operator is defined as ⟨⋅⟩ = 1

𝑊̃ 𝐿̃ ∫ ⋅ 𝑑𝑥𝑑𝑦. The lateral
boundary conditions are assumed to be periodic. By construction, ⟨∇𝑃 ⟩
has therefore a constant direction, aligned with the 𝑥-axis.

The permeability field was chosen to be distributed according to
a log-normal distribution which has been a common model since the
work of Gelhar and Axness [18]. It has the advantage of being consis-
tent with the field data but also of allowing the mean and variance to be
varied independently. The permeability field is obtained by generating
a Gaussian field 𝛿𝑓 of zero mean and given standard deviation 𝜎𝑓 . 𝛿𝑓
has a correlation length 𝜆 [see 33, for more details]. The permeability
field is then given by:

𝜅 = exp (𝑓0 + 𝛿𝑓 ) = 𝜅0 exp (𝛿𝑓 ), (10)

where 𝜅0 = exp (𝑓0), is a parameter characterizing the average perme-
ability of the medium.

The threshold field 𝑢𝑐 is expected to depend on both 𝛾̇0 and the pore
structure. 𝛾̇0 is a characteristic of the fluid rheology and is therefore
constant. The pore structure may however vary spatially and is related
to the permeability 𝜅. A simple relationship can be established using
3

phenomenological arguments. For porous media with a typical pore size
𝑑, a scaling analysis leads to 𝜅 ∼ 𝑑2 et 𝑢𝑐 ∼ 𝛾0𝑑, which gives:

𝑢𝑐 ∼ 𝜅1∕2.

This scaling has for example been evaluated in [32]. It is important
to stress that this argument is very crude. While this scaling law is
certainly valid in the case of homothetic transformations, it is not
necessarily applicable to more complex structural changes. In other
words, this scaling law is most likely valid when changing the diameter
of a packet of monodisperse beads (or sand). But it is probably more
complicated if the nature of the medium changes radically, from a
sandpile to a porous rock for example.

As mentioned in the introduction, two-dimensional Darcy’s law
can also be used to solve the flow in heterogeneous fractures. The
scaling is then slightly different. By defining ℎ as the opening, the local
permeability leads to 𝜅 ∼ ℎ3 and 𝑢𝑐 ∼ 𝛾0ℎ2. It follows:

𝑢𝑐 ∼ 𝜅2∕3.

The field 𝑢𝑐 is thus determined from the permeability field 𝜅(𝑥, 𝑦)
by assuming a more generic scaling law of the form:

𝑢𝑐 = 𝐴𝜅𝛾 , (11)

where 𝐴 is a prefactor and 𝛾 a parameter with 𝛾 ∈ [0; 1].
Although there are many different parameters, in this study we will

focus on the disorder amplitude 𝜎𝑓 , the flow index 𝑛 and the exponent
𝛾. As discussed in Appendix C, the numerical method is particularly
efficient for specific values of 𝑛 ∈ [1∕3; 1∕2; 2∕3; 1; 3∕2; 2; 3], which are
the values used in this work. The parameters 𝐴, 𝜇 and 𝜅0 will be kept
constant with 𝐴 = 1, 𝜇 = 0.1 and 𝜅0 = 1.

Based on these parameters, a characteristic velocity 𝑢0 = 𝐴𝜅𝛾
0 and a

characteristic pressure gradient 𝑔0 = 𝜇𝑢0
𝜅0

are defined and will be used
for non-dimensionalization. Basically, 𝑢0 and 𝑔0 represent the velocity
and pressure gradient at which the system would change behavior if
the field were homogeneous (i.e 𝜎𝑓 = 0).

3. Numerical results

3.1. Simple case: Heterogeneous permeability — homogeneous critical ve-
locities

In order to describe the problem qualitatively, a simplified version is
presented here, where the permeability is heterogeneous but the critical
velocity field 𝑢𝑐 is homogeneous (i.e 𝛾 = 0).

Fig. 3 (left) shows the flow field for different average pressure
gradients ⟨∇𝑃 ⟩. For a very small pressure gradient, the flow field is
heterogeneous but all velocities are below the (single-valued) threshold
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Fig. 3. For a shear-thinning truncated rheology 𝑛 = 1∕2 in a heterogeneous permeability field, with 𝜎𝑓 = 1 with a uniform velocity threshold 𝑢𝑐 (i.e 𝛾 = 0). Left column: Velocity
field colormap for different imposed mean pressure gradients (increasing from top to bottom). The average flow direction is from top to bottom. Middle column: Corresponding
regions (in black) above the threshold. Right column: Corresponding velocity density distribution function (blue) along with the threshold velocity 𝑢𝑐 (red vertical line).
𝑢𝑐 = 𝑢0 (figure not shown). As the pressure gradient increases, the
velocity field increases as a whole. At some point, some regions reach
the threshold (Fig. 3, top). At these locations, the viscosity is changed,
which disturbs the surrounding flow field. This modification therefore
favor or disfavor the velocity in the close vicinity. Here, the fluid is
shear-thinning 𝑛 < 1, so the viscosity is locally decreased. The flow
is then increased downstream and upstream, while it is decreased on
the lateral sides. Thus, some correlations of regions that have changed
flow regime can be expected. For shear-thinning (resp. thickening), the
4

regime change should thus be correlated along the flow direction (resp.
perpendicular to it). As the pressure gradient increases, more and more
regions change their behavior until the entire domain is in the non-
Newtonian regime. We can also note how the velocity distribution is
crucially altered as it passes through the threshold value in Fig. 3 (right
column).

Fig. 4 shows the evolution of various interesting quantities. Fig. 4.a
displays the average velocity as a function of the average pressure
gradient. As expected, for low pressure, the average flow rate varies
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Fig. 4. For a shear-thinning truncated rheology 𝑛 = 1∕2 in a medium with a heterogeneous permeability field with 𝜎 = 1 with a homogeneous threshold field (𝛾 = 0). As function
of the mean pressure gradient: a: mean velocity ⟨𝑢𝑥⟩. The red dashed lines represent the power law ⟨𝑢𝑥⟩ ∝ ⟨∇𝑃 ⟩ and ⟨𝑢𝑥⟩ ∝ ⟨∇𝑃 ⟩1∕𝑛. b: mean velocity rescaled with the Newtonian
Darcy’s law. c: percentage of regions above the threshold (‖𝑢‖ > 𝑢𝑐 ). d: relative standard deviation of the velocity field 𝜎𝑢

⟨𝑢𝑥⟩
. Vertical dashed lines represent the transitions of the

flow regimes (I, II and III).
linearly with the average pressure gradient. Above a certain value, the
curve starts to slowly deviate from the linear trend to a power law
type trend. Three flow regimes are thus identified. For the first one
(regime I), the average flow rate increases linearly. At a high flow rate
(regime III), the mean flow follows a power law with exponent ⟨𝑢𝑥⟩ ∝
⟨∇𝑃 ⟩1∕𝑛. Between these two regimes, a transitional one (regime II) is
observed. This change in behavior can be magnified by plotting the
ratio ⟨𝑢𝑥⟩∕⟨∇𝑃 ⟩ for example (Fig. 4.b). Another convenient quantity to
characterize this transition is the percentage of regions in the nonlinear
regime (⟨∇𝑃 ⟩) ∈ [0, 1] (Fig. 4.c). A final very important quantity,
shown in Fig. 4.d, is the relative standard deviation of the velocity
field, 𝜎𝑢

⟨𝑢𝑥⟩
, which characterizes the heterogeneities of the flow and is

of great importance, for example, in the problem of species transport.
Here we observe that regime I and III correspond to a plateau value of
the standard deviation.

This example shows how permeability heterogeneity affect the flow
regime. Since regions with high permeability have higher local ve-
locity, they are more likely to reach the nonlinear viscosity regime.
However, the more general case 𝛾 ≠ 0 is more complex because the
velocity threshold is also distributed in space. Additionally, regions of
higher permeability also correspond to a higher velocity threshold. A
competition between these two effects is thus expected.

3.2. Influence of the amplitude of the field heterogeneities

Fig. 5.a displays the average flow rate as a function of the average
pressure gradient ⟨∇𝑃 ⟩ for a shear thinning fluid, 𝑛 = 1∕2, for 𝛾 =
1∕2 and for different magnitudes of heterogeneity 𝜎𝑓 . Similarly to the
homogeneous velocity threshold case, a transient behavior is observed
around ⟨𝑢𝑥⟩ ∼ 𝑢0 and ⟨∇𝑃 ⟩ ∼ 𝑔0. In Regime I, the flow rate follows
a linear behavior ⟨𝑢 ⟩ ∝ ⟨∇𝑃 ⟩, while in regime III, it follows a power
5

𝑥

law ⟨𝑢𝑥⟩ ∝ ⟨∇𝑃 ⟩1∕𝑛. The disorder then smoothes the transition while
increasing its range. For 𝜎𝑓 = 0, the transition is abrupt, while for
𝜎𝑓 high, the transition is smoother and extending over half a decade.
This effect is more apparent after normalizing the mean flow by Darcy’s
Newtonian law 𝜇⟨𝑢𝑥⟩

𝜅0∇𝑃
(Fig. 5.b).

The second effect of heterogeneity is to significantly increase the
flow rate in the high pressure gradient regime, where the flow rate is
almost doubled between 𝜎𝑓 = 0 and 𝜎𝑓 = 2. This effect will be further
detailed later as it can be predicted using a perturbation expansion
approach (Appendix A).

Fig. 5.c plots the relative standard deviation of the flow field, 𝜎𝑢𝑥
⟨𝑢𝑥⟩

,
as a function of the mean pressure gradient and for different 𝜎𝑓 . Like
previously, we observe a change of plateau when changing the flow
regime. And the values of these plateaus increase with the magnitude
of the permeability heterogeneity 𝜎𝑓 . Here again, the range of the tran-
sition between these two asymptotes depends on the heterogeneities of
the porous medium, abrupt at low 𝜎𝑓 while smoother at high 𝜎𝑓 . We
can also notice that these curves are very symmetrical. In fact, these
curves can be fitted remarkably well with a hyperbolic tangent function
(in semi-log representation).

Fig. 5.d shows the normalized standard deviation of the velocity
as a function of the applied pressure gradient, for a shear-thickening
fluid (𝑛 = 2). The most notable difference is that the heterogene-
ity of the velocity field decreases in regime III compared to regime
I. Shear-thickening fluids therefore attenuate the permeability field
heterogeneity while shear-thickening fluids enhance it.

We have seen that the normalized standard deviation is constant
in regimes I and III. It is noteworthy to mention that this is also the
case for all normalized moments of the velocity distribution (Skewness,
Kurtosis, etc.). In fact, the velocity distribution actually keeps a con-
stant shape in both regimes as observed in Fig. 6. The distribution is
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Fig. 5. For a truncated shear thinning fluids with 𝑛 = 1∕2 and 𝛾 = 1∕2: a: non-dimensional mean flow rate. b: mean flow rate normalized by the Newtonian Darcy’s regime. c:
relative standard deviation of the velocity field as function of the non-dimensional mean gradient of pressure for different amplitude of heterogeneity 𝜎𝑓 . b: Relative standard
deviation of the velocity field as function of ∇𝑃 for a shear-thickening fluid (𝑛 = 2).
Fig. 6. For a shear-thinning fluid, 𝑛 = 1∕2 and 𝛾 = 1∕2. Left: Evolution of the probability distribution function (PDF) of the velocity as function of the applied mean pressure
gradient. The vertical dashed line represents the mean threshold velocity 𝑢0. Right: normalized velocity distribution 𝜔⃗1 and 𝜔⃗𝑛, obtained respectively at ∇𝑃∕𝑔0 = 10−2 (regime I)
and ∇𝑃∕𝑔0 = 100 (regime III).
only shifted when the mean pressure gradient varies. As a result, the
field 𝑢∕⟨𝑢𝑥⟩ is constant independently of the amplitude of the applied
pressure gradient in both regimes. We can therefore define a constant
vector field: 𝜔⃗𝑚(𝑥, 𝑦) = 𝑢𝑃𝐿,𝑚(𝑥, 𝑦)∕⟨𝑢𝑃𝐿,𝑚𝑥 ⟩, where 𝑢𝑃𝐿,𝑚 is the velocity
field of a power-law fluid with flow index 𝑚 (𝑚 = 1 in regime I and
𝑚 = 𝑛 in regime III).

3.3. Statistical properties of regime I and III

The flow field in regimes I and III is governed by the equation of a
power-law fluid. For such fluid, it is however possible to determine the
mean flux and standard deviation of the velocity using a perturbation
expansion approach. The principle is to extend the work of [18] on
Newtonian fluids to power law fluids. It consists in expanding the
permeability, pressure and velocity field around the mean value and in
assuming that the deviation terms are small for sufficiently small 𝜎𝑓 .
The complete calculation is provided in Appendix A for a governing
6

equation of the form: −∇⃗𝑃 = 𝑐(𝑟)‖𝑢‖𝑛−1𝑢, where we define 𝑟 = (𝑥, 𝑦)
for the sake of conciseness. In the case of the truncated rheology,
we have 𝑐(𝑟) = 𝜇

𝜅(𝑟)𝑢𝑛−1𝑐
. Because 𝜅 and 𝑢𝑐 are distributed according

to a log-normal distribution, it is also the case for 𝑐(𝑟) with: 𝜎log 𝑐 =
(1 + 𝛾(𝑛 − 1))𝜎𝑓 . It follows:

𝜎2𝑢𝑥
⟨𝑢𝑥⟩2

= [1 + 𝛾(𝑛 − 1)]2 𝜎2𝑓
1 + 2

√

𝑛

2(1 +
√

𝑛)2𝑛3∕2
, (12)

and

−
⟨𝑢𝑥⟩

𝐷0⟨∇𝑃 ⟩𝛼
= 1 + 𝜎2𝑓 [𝛼 + 𝛾(1 − 𝛼)]2

√

𝛼 − 1

2(
√

𝛼 + 𝛼)
(13)

with 𝛼 = 1∕𝑛 and 𝐷0 = 𝜇−𝛼𝜅𝛼+𝛾(1−𝛼)
0 𝐴1−𝛼 .

These results confirm qualitatively the previous observations that
lower 𝑛 increase the mean flow rate and the flow heterogeneity. As
observed in pore network model [7], shear-thinning fluids are indeed
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Fig. 7. For a shear thinning fluid 𝑛 = 1∕2 and 𝛾 = 1∕2. Left: mean velocity versus the amplitude of the heterogeneity 𝜎𝑓 at low applied pressure drop ∇𝑃∕𝑔0 = 1𝑒 − 2 (blue) and
high pressure drop ∇𝑃∕𝑔0 = 100 (red). Right: relative standard deviation as function of 𝜎𝑓 . Circles represent the simulations and the dashed line is the perturbation expansion
prediction Eqs. (12) and (13).
more channelized and thus more heterogeneous. The limit 𝑛 → 0 is
interesting because it corresponds to a pure plastic flow (viscoplastic
fluid without viscosity). The flow field is then expected to converge to
a single flow path as for the Bingham fluid in the large Bingham number
limit [33]. However, the expansion of the perturbations predicts a
divergence of the standard deviation of the velocity at 𝑛 = 0. Since
the calculations assume small perturbations for each field, they are
expected to fail for a sufficiently small value of 𝑛. On the other hand,
increasing 𝑛 decreases the average velocity and the heterogeneity of the
flow. The expansion approach should thus be better.

Fig. 7 compares the numerical mean and standard deviation of the
flow field for a sufficiently small (resp. large) applied pressure gradient
⟨∇𝑃 ⟩∕𝑔0 = 0.01 (resp. ⟨∇𝑃 ⟩∕𝑔0 = 100) against the predictions of
Eqs. (12) and (13). Both figures show a very good agreement between
the analytical predictions and the simulations, even for a heterogeneity
amplitude as high as 𝜎𝑓 ∼ 2, which is quite significant for a lognormal
distribution. An expansion of order 2 seems thus sufficient to predict
both the mean flux and standard deviation of the flow field in regimes
I and III.

3.4. Pressure range of regime II

We now discuss the range of the transient regime II. Fig. 8 represents
different phase diagrams of the system as a function of the mean
pressure gradient while varying 𝜎𝑓 , 𝛾 or 𝑛. The crosses represent the
system in the intermediate regime whereas the dots represent the
system in regime I or III.

Fig. 8.a displays the evolution of the transient regime as a function
of 𝜎𝑓 . This figure mainly confirms the previous observation that the
range increases significantly with 𝜎𝑓 because the velocity field is more
heterogeneous. Considering that the plot is on a logarithmic scale, the
growth is in fact very significant as the range increases faster than a
power-law.

Fig. 8.b shows the variation of the pressure range of regime II as
a function of the rheological index 𝑛. The transition range becomes
narrower with increasing 𝑛. This result is contradictory to the previous
observation that shear thickening fluids have lower velocity hetero-
geneity than shear thinning ones. It can also be noted that the lower
pressure limit is not really affected by the value of 𝑛.

The influence of 𝛾 is also not intuitive (Fig. 8.c) because the pressure
range exhibits a non-monotonic behavior. The pressure range initially
decreases with 𝛾 but increases again above a certain value of 𝛾.

The reason behind the last two observations is that the transition
depends not only on the velocity distribution but also on the dis-
tribution of 𝑢𝑐 (𝑟). The connection between both distributions is not
obvious because regions of higher velocity are more likely to have
higher permeability, and thus a higher threshold. One way to highlight
this phenomenon is to estimate the limits of regime II by exploiting the
invariance of the velocity field in regimes I and III.
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Starting at a very low flow rate, all regions are in the Newtonian
regime and thus ‖𝑢(𝑟)‖ = ⟨𝑢𝑥⟩‖𝜔⃗1(𝑟)‖. When increasing the average flow
rate, the first location that changes its rheology occurs where ‖𝑢(𝑟)‖ =
𝑢𝑐 (𝑟). It follows the condition of this first occurrence: max ⟨𝑢𝑥⟩ ‖𝜔⃗1(𝑟)‖

𝑢𝑐 (𝑟)
= 1.

This means that the change of regime will start at the average velocity
⟨𝑢𝑥⟩ = 𝑢1 satisfying:

1
𝑢1

= max
‖𝜔⃗1(𝑟)‖
𝑢𝑐 (𝑟)

. (14)

Similarly, starting with a high pressure gradient, all regions are
in the power-law regime and 𝑢(𝑟)∕⟨𝑢𝑥⟩ = 𝜔⃗𝑛(𝑟) is constant. While
decreasing ⟨𝑢𝑥⟩, the first point changing its behavior occurs when ⟨𝑢𝑥⟩ =
𝑢2, with:

1
𝑢2

= min
‖𝜔⃗𝑛(𝑟)‖
𝑢𝑐 (𝑟)

. (15)

Assuming that at order zero ∇𝑃1 ≃ 𝜇
𝜅0
𝑢1 and ∇𝑃2 ≃ 𝜇𝜅0−1−𝛾(𝑛−1)

𝐴1−𝑛𝑢𝑛2, it leads to an estimation for the pressure bounds of the transient
regime:
Lower bound:

∇𝑃1 =
𝜇

𝜅0 max ‖𝜔⃗1(𝑟)‖
𝑢𝑐 (𝑟)

(16)

Upper bound:

∇𝑃2 =
𝜇𝜅0−1−𝛾(𝑛−1)𝐴1−𝑛
(

min ‖𝜔⃗𝑛(𝑟)‖
𝑢𝑐 (𝑟)

)𝑛 . (17)

These two boundary estimates have been plotted in Fig. 8 and show
good correspondence with the numerical simulations. This shows also
that the relevant quantity is in fact the extension of ‖𝜔⃗𝑚(𝑟)‖

𝑢𝑐 (𝑟)
(with 𝑚 = 1

or 𝑛) which does not necessarily follow the extension of the velocity
field 𝜔⃗𝑚. This is confirmed in Fig. 9 which represents the evolution of
the standard deviation of ‖𝜔⃗𝑛(𝑟)‖ (the normalized velocity in regime III)
and the standard deviation of ‖𝜔⃗𝑛(𝑟)‖

𝑢𝑐 (𝑟)
as function of 𝛾. For low 𝛾 values,

both quantities decrease with 𝛾. However ‖𝜔⃗𝑛(𝑟)‖
𝑢𝑐 (𝑟)

is non-monotonic and
becomes increasing above a certain value of 𝛾. This fact explains then
the non-monotonic evolution observed in Fig. 8.b.

3.5. Statistical properties of the flow field in the transient regime II

The flow field in the transient regime has interesting statistical
properties. One way to apprehend it, is to notice a similarity with
the problem of percolation. Indeed, as shown in Fig. 3, when ⟨𝑢𝑥⟩
is increased, more and more regions satisfy the criterion ‖𝑢‖ > 𝑢𝑐 .
Connected regions satisfying this criterion allows to define clusters,
which become larger and more numerous as the pressure gradient
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Fig. 8. Regime diagram of the system as function of different parameters. Crosses represent systems in regime II while the dots are the system in either regime I or III. The
intermediate flow regime is defined as  ∈ [10−5 , 1 − 10−5]. Top left: diagram for different applied pressure gradient and amplitude of heterogeneity 𝜎𝑓 , the other parameters are
(𝑛, 𝛾) = (1∕2, 1∕2). Top right: diagram for different applied pressure gradient and flow index 𝑛, with (𝑛, 𝜎) = (1∕2, 1). Bottom: diagram for different applied pressure gradient and
parameter 𝛾. The red and blue dashed line represent respectively the bounds predicted by Eqs. (16) and (17).
Fig. 9. Standard deviation of the field 𝜔⃗𝑛 (𝑟)
𝑢𝑐 (𝑟)

(orange) and 𝜔⃗𝑛(𝑟) (blue) obtain from the
simulations as function of 𝛾 with (𝜎; 𝑛) = (1, 0.5).

increases. If the field ‖𝑢‖∕⟨𝑢𝑥⟩ = ‖𝜔⃗(𝑟)‖ were constant, the transition
would occur at
‖𝜔⃗(𝑟)‖
𝑢𝑐 (𝑟)

= 1
⟨𝑢𝑥⟩

,

which would correspond to a percolation problem. Similar behaviors
are therefore expected, such as cluster fractality and the presence of
criticality. However, it is important to recall that the problem is not
strictly equivalent to percolation because the field 𝑢

⟨𝑢𝑥⟩
is not constant

in the transient regime. In particular, the change in viscosity introduces
correlations in the velocity field and thus changes the shape of the
clusters.

Here, the clusters are identified using a Hoshen–Kopelman algo-
rithm [34]. Their shape are then characterized by their total size 𝑆 and
the two dimensions of the bounding rectangle that contains it: 𝐿 along
the flow direction and 𝑊 transversely to it.
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3.5.1. Size distribution
Fig. 10.a displays the size distribution 𝑃 (𝑆) for different mean

pressure gradient and for the parameters 𝑛 = 1∕2 and 𝜎 = 1. For any
applied pressure, the distribution follows a decaying power law over
a wide range of sizes. However, a large-scale cutoff, 𝑆0, is found that
varies with the pressure gradient. The plotting of the variation of 𝑆0 as a
function of pressure (Fig. 10.b) shows that 𝑆0 diverges at a certain value
of the average pressure gradient ⟨∇𝑃 ⟩ = ∇𝑃𝑐 according to a power law:

𝑆0 ∝ |∇𝑃 − ∇𝑃𝑐 |
−𝜈𝑆 . (18)

Combining both observations, it follows the scaling law for the size
distribution:

𝑝(𝑆) ∝ 𝑆−𝜏𝑆 𝑓 ( 𝑆
𝑆0

), (19)

which is confirmed by the good overlap of the distributions rescaled
according to Eqs. (18) and (19) plotted in Fig. 10.c.

This scaling law is thus similar to the one found in other prob-
lems with a critical transition such as percolation [35], avalanches
(e.g [36,37]) or yield-stress fluid in porous media [33,38]. The sizes are
distributed on many scales up to a size limit. And this size limit diverges
as the control parameter, ⟨∇𝑃 ⟩, approaches a critical value ⟨∇𝑃 ⟩ =
∇𝑃𝑐 . The system then exhibits an infinitely broad range of scales (e.g.
fractal). This scaling law is characterized by the two exponents 𝜏𝑆 and
𝜈𝑆 .

A similar scaling law could also be observed for the length 𝐿 of the
clusters:

𝑝(𝑆) ∝ 𝑆−𝜏𝐿𝑓 ( 𝐿
𝐿0

) with 𝐿0 ∝ |⟨∇𝑃 ⟩ − ∇𝑃𝑐 |
−𝜈𝐿 , (20)

allowing to also identify the exponents 𝜏𝐿 and 𝜈𝐿.
For each set of parameters (𝜎𝑓 , 𝛾, 𝑛) this scaling law is observed

leading to the determination of the exponents 𝜏 , 𝜏 , 𝜈 and 𝜈 .
𝑆 𝐿 𝑆 𝐿
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Fig. 10. Left: Probability distribution function of the cluster size for different applied pressure drops using the parameters (𝑛, 𝛾, 𝜎𝑒) = (1∕2, 1∕2, 1). Dashed black line represents the
fitted power-law exponent. Right: Size of the largest cluster 𝑆0 versus the pressure gradient. The dotted vertical line represents ∇𝑃𝑐 . Inset: 𝑆0 as a function of ⟨∇𝑃 ⟩ − ∇𝑃𝑐 on a
logarithmic scale, the line represents the fitted power law. Bottom: Size probability distribution function for different pressure gradients normalized according to Eqs. (18) and
(19).
Tables 1–3 report these exponents according to the different sets of
parameters. The most remarkable result is the fact that 𝜏𝑆 seems to
be indeed independent of the parameters. This is a characteristic found
in many critical systems, where some exponents are independent of the
details of the disorder distribution. Such behavior is often referred to
as ‘‘universal’’ as, for example, the exponents 𝜏 and 𝜈 in the percolation
or avalanches of an elastic line in a random medium [39]. The results
obtained here seem to suggest a universal behavior for the exponent
𝜏𝑆 . The observed value 𝜏𝑆 = 1.65 ± 0.05 is however very different from
the standard percolation problem (𝜏𝑝𝑒𝑟𝑐 = 2.05), which indicates that it
would be of a different universality class.

The trend is less clear with the exponent 𝜈𝑆 , which seems to vary
with the rheological index 𝑛 and also the heterogeneities 𝜎𝑓 . However,
it should be noted that the determination of the exponent 𝜈𝑆 is gener-
ally more prone to errors because it requires the determination of ∇𝑃𝑐 ,
which is also subject to uncertainties. The error can be estimated at
about 10%. It is then difficult to conclude on the universality of this
exponent.

3.5.2. Cluster’s shape
The shape of the clusters can be characterized by the aspect ratio

𝐿∕𝑊 . Fig. 11.a shows the width 𝑊 of each cluster as a function of
their length 𝐿 for two different sets of parameters. A power-law type
relationship is then observed:

⟨𝑊 ⟩𝐿 ∝ 𝐿𝜁 , (21)

which is a characteristic of the self-affine fractal structure typically
found in anisotropic critical systems (e.g. avalanches, directed perco-
lation, front propagations, etc.). It characterizes the fact that, although
many different cluster sizes are present, the aspect ratio is not the same
at each scale. If 𝜁 < 1, larger clusters are more elongated than the
smaller ones as represented in Fig. 12.a. For 𝜁 > 1 bigger clusters are
more elongated in the direction transverse to the flow (Fig. 12.b).
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Because clusters are not compact, viz. they may contain holes,
another interesting quantity to analyze is the surface area (𝑆) as a
function of the enclosing box size 𝑊𝐿, as shown in Fig. 11.b. Here,
again the relationship observed is a power-law:

𝑆 ∝ (𝐿𝑊 )𝛽 ,

which is also a characteristic of a fractal structure.
The measured exponents for different sets of parameters, 𝜎, 𝑛 and 𝛾,

are displayed in Tables 1–3. The exponent of size 𝛽 seems to be almost
constant, within the error bar, for any parameter value: 𝛽 ≃ 0.77±0.05.
This exponent seems to be universal. More surprising is the evolution of
𝜁 which takes only two values: either 𝜁 ≃ 0.85 ± 0.05 or 𝜁 ≃ 1.15 ± 0.05
depending on the parameters. The two cases shown in Fig. 12 are in
fact the only two observable exponents. In this figure, the two cases
appear to be very similar, as if they were rotated by 90◦. In fact, such
rotational symmetry can be proven when the rheological parameter 𝑛 is
modified. As detailed in the Appendix B, rotation by 90◦ of the velocity
field and pressure field gradient is equivalent to solving the flow with
inverse rheology (i.e 𝑛 → 1∕𝑛).

We can therefore expect that, by reversing 𝑛 → 1∕𝑛, the shape of
the clusters remains the same but rotated by 90◦. This corresponds to
the inversion of the roles of 𝑊 and 𝐿. It thus leads to the relation:

𝜁 (𝑛) = 1
𝜁 (1∕𝑛)

,

which seems to be satisfied by the numerical observations. The value
𝜁 (𝑛 = 1) ≃ 1 appears therefore as a marginal value. It remains quite
remarkable that this exponent is constant for any 𝑛 exponent of shear
thinning (or shear thickening).

More unexpected is the similar change when 𝛾 is varied ( Table 3).
The value 𝜁 is constant until a certain value 𝛾 ∼ 0.6, where it switches
to its inverse value. Some remarks can be made to interpret this
switch. First, this change in correlation confirms the fact that the spatial
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Table 1
Measured exponents for different amplitude of
heterogeneity 𝜎𝑓 with (𝑛, 𝛾) = (0.5, 0.5).

𝜎𝑓 0.5 1.0 2.0

𝜏𝑆 1.65 1.65 1.67
𝜈𝑆 3.0 3.25 3.2
𝜈𝐿 1.8 1.8 1.75
𝜁 0.85 0.85 0.85
𝛽 0.77 0.77 0.77

Table 2
Measured exponents for different amplitude of rheological index 𝑛 with (𝜎𝑓 , 𝛾) = (1, 0.5)

𝑛 1∕3 0.5 2∕3 1 2 3

𝜏𝑆 1.65 1.65 1.65 1.65 1.65 1.65
𝜈𝑆 3.3 3.25 3.5 3.6 3.7 3.9
𝜈𝐿 1.95 1.8 1.8 1.8 1.9 1.9
𝜁 0.83 0.85 0.85 0.95 1.15 1.17
𝛽 0.77 0.77 0.8 0.8 0.78 0.78

Table 3
Measured exponents for different 𝛾 with (𝑛, 𝜎𝑓 ) = (0.5, 1).

𝛾 0 1∕4 1∕2 2∕3 3∕4 1

𝜏𝑆 1.65 1.65 1.65 1.65 1.65 1.65
𝜈𝑆 3.35 3.3 3.25 3.15 3.3 3.4
𝜈𝐿 2.1 2.1 1.8 1.9 1.9 1.9
𝜁 0.85 0.85 0.85 1.15 1.15 1.13
𝛽 0.77 0.77 0.77 0.77 0.77 0.7

correlation of the velocity field, correlated in the direction of flow, does
not necessarily follow the correlation of the field 𝑢(𝑟)∕𝑢𝑐 (𝑟). Moreover,
the value of 𝛾 at which the change occurs, seems to correspond to the
non-monotonic change observed in Fig. 9.a. To understand this change,
it is useful to consider the two extreme cases 𝛾 = 0 and 𝛾 = 1.

Before, it should be noted that in the non-linear Darcy’s law Eq. (8),
the criterion ‖𝑢‖ > 𝑢𝑐 (𝑟) also corresponds to a criterion for local
pressure gradient ‖∇⃗𝑃 (𝑟)‖ > 𝑔𝑐 (𝑟), with 𝑢𝑐 = 𝐴𝜅𝛾 and 𝑔𝑐 = 𝜇𝐴𝜅𝛾−1.

For 𝛾 = 0, 𝑢𝑐 is a constant: the cluster, defined by ‖𝑢‖ > 𝑢𝑐 , are
expected to follow the correlation of the velocity field. The cluster
should then be more elongated in the streamwise direction. For 𝛾 =
1, the situation is different because 𝑢𝑐 (𝑟) is now a random variable,
but 𝑔𝑐 is a constant field. The clusters, equivalently corresponding to
‖∇⃗𝑃 (𝑟)‖ > 𝑔𝑐 , should then have a similar direction of correlation as
∇⃗𝑃 . In general, the pressure gradient tends to be correlated in the
direction transverse to the flow.1 The clusters are then expected to
have a correlation direction transverse to the flow. Depending on the 𝛾
values, the shape of the cluster is then the result of a balance between
these two opposite effects.

If the cluster elongation changes with 𝛾, it is still quite surprising
that the correlation exponent 𝜁 is constant and only switches from one
value to another. This suggests that the exponent is also universal but
the principal direction of correlation is determined by the value of 𝛾.

4. Conclusion

In this paper, we have studied the flow in macroscopic heteroge-
neous porous media with nonlinear rheology exhibiting a change in
behavior such as truncated rheology. The influence of heterogeneities
in permeability and velocity threshold fields was considered.

By varying the mean pressure gradient, three flow regimes are
observed. At low pressure gradient, the whole system is in the constant
viscosity regime. The total flow rate then increases linearly with the
mean pressure gradient. At a high pressure gradient, when the entire

1 This can be seen in Appendix from the 90◦ rotation symmetry or the
xpansion perturbation
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system is in the nonlinear viscosity regime, the total flow rate increases
non-linearly with the same exponent. Transiently, the different regions
of the medium change their viscous regime inhomogeneously with the
mean pressure gradient, which induces a progressive change of the
mean flow.

The first and last regime are relatively easier to analyze since they
obey to the equation of a power-law fluid. This allow for instance a
good prediction using a perturbation expansion approach.

The intermediate regime is more complex. Qualitatively, the pres-
sure range of this regime is expected to be related to the width of
the velocity distribution in regime I and III and thus to the amplitude
of the permeability heterogeneities. For a wider velocity distribution,
the transition starts at a lower average velocity and ends at a higher
velocity. Such behavior could be used to quantify the heterogeneities of
a field for example. While this trend was indeed observed, the results
showed that it is more complicated to make quantitative predictions.
Indeed, a very important aspect of the problem is the relationship
between velocity, permeability and local threshold. In this paper, a
power-law dependency between the permeability and the threshold has
been assumed. The exponent 𝛾 modifies drastically the correlation of
the clusters.

The reason behind this observation is that different mechanisms are
at work. First, regions with high permeability have a higher velocity
field but also a higher velocity threshold. If the velocity threshold varies
weakly with permeability, the correlation follows that of the velocity
field, in the direction of flow. Conversely, if the velocity threshold
varies strongly with permeability (i.e. high 𝛾), the transition may not
correspond to the highest velocities regions. But at the same time,
a similar reasoning can be made by considering the pressure field
gradient: low permeability regions are more likely to have a higher
pressure gradient but also a higher pressure threshold. The correlations
could therefore be dominated by the pressure gradient field, transverse
to the flow direction. The competition between these two effects is thus
balanced by the 𝛾 exponent.

The relationship between the permeability and the two thresholds
seems then to be very important. Here, a power law has been assumed
but it is important to point out that in practice, the relationship is
probably more complicated.

A remark can be made. In the literature, a very common approach is
to model a porous medium or a fracture by a bundle of tubes or parallel
layers [40–43]. This facilitates the analysis of the influence of hetero-
geneity and leads to a good qualitative understanding of the problem.
In these models, the flow field is by construction infinitely correlated in
the streamwise direction, whereas the pressure gradient is uncorrelated
in the crossflow direction. These models are thus expected to be unable
to capture behaviors associated with the change in correlation. These
models should therefore be taken with caution when applied to a 2D
or 3D medium.

The statistical properties of the flow field in the transient regime
also appeared very rich. Indeed, in this regime, regions above their
threshold define clusters that exhibit fractal and critical properties.
An important result is that some of the exponents (size distribution,
shape exponents) do not vary with the parameters and the amplitude
of the heterogeneity, which tends to suggest the presence of universal
behaviors. Another interesting feature is that the shape exponent 𝜁 is
onstant but only switches to its inverse depending on the value of 𝛾
nd 𝑛.

This statistical feature is thus very reminiscent to related problems
such as percolation [35] and yield stress fluid in porous media [33]. The
flow structure of yield stress fluid is, however, quite different because
below the threshold there is no flow. Regions above the threshold are
then necessarily channel paths connecting the inlet to the outlet. The
exponents are thus expected to be different. For yield stress fluid, it
was found 𝜏𝑆 ≃ 1.15 and 𝜁 ≃ 0.75. The size distribution exponent
𝜏𝑆 is different while the roughness exponent is similar to the present

case. As discussed previously, a slightly closer problem could be the
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Fig. 11. Left: Width (𝑊 ) of clusters according to their length (𝐿). Right: surface of the cluster 𝑆 according to the bounding size 𝑊𝐿. Blue: (𝑛, 𝛾, 𝜎𝑓 ) = (0.5, 0.75, 1) and green:
(𝑛, 𝛾, 𝜎𝑓 ) = (0.5, 0.25, 1). The red circles correspond respectively to the average 𝑊 for a given 𝐿 (left) and the average 𝑆 for a given 𝐿𝑊 (right). The red lines correspond to the
power-law fit.
Fig. 12. Regions above the threshold 𝑢 > 𝑢𝑐 (in black) for two different sets of parameters and close to the critical point. The mean flow direction is from top to bottom. Left:
(𝑛, 𝛾, 𝜎𝑓 ) = (0.5, 0.25, 1) and right: (𝑛, 𝛾, 𝜎𝑓 ) = (0.5, 0.75, 1). The 𝛾 parameter drastically affects the orientation of the correlation from the direction of the flow to perpendicular to it.
percolation (directed or not), but the correlation of the velocity field
evolves with the applied gradient of pressure. The observed exponent
are indeed different: 𝜏𝑆 ≃ 2.1 for percolation and 𝜏𝑆 ≃ 1.26 for
directed percolation. The present case seems to be intermediate and if
the exponents are ‘‘universal’’ they fall in a different universality class.

There are many interesting directions to pursue this work. One
important question is how to generalize it to the 3D permeability field.
Although rotational symmetry is no longer applicable in 3D, there
remains the important fact that the velocity field is correlated along
the stream direction while the pressure gradient is correlated in both
transverse directions. Thus, a change in correlation should still be
expected depending on 𝛾. Critical behaviors should also probably be
observed but with different exponents. Another interesting study would
be to investigate the problem of species transport in such a system.
Indeed, the dispersion of a tracer depends on the heterogeneity of the
velocity field and its correlation. It is therefore expected to observe a
change in behavior due to the change in rheology. Furthermore, since
the molecular diffusion coefficient is generally related to the viscosity
of the fluid, it is expected to be different when the viscosity is below or
above the threshold. Finally, another direction of investigation could
be other porous media problems with similar behaviors. For example,
the problems of two-phase flow [44–47], emulsion driven in a porous
medium [48] or erosion of a granular bed [49], present a similar
critical behavior with the appearance of preferential flow paths as a
function of flow rate. These problems have in common the property that
at a certain critical velocity, the local flow conditions are drastically
11
modified, because the bubbles are mobilized or because the grains
rearrange themselves. It would therefore be very interesting to study
the similarities and differences between these problems.
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Appendix A. Perturbation expansion for a power-law rheology

In Section 3, Fig. 5, we have seen that in regimes I and III, the
moments of the velocity distribution (mean, standard deviation, etc.)
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are constant. In these regimes, the flow is governed by Darcy’s law for a
power law fluid in a heterogeneous medium. In this case, the mean and
standard deviation can be determined using a perturbative approach.
Following the work of Gelhar and Axness [18] for Newtonian fluids, the
principle is to expand the solution around the mean value and assuming
sufficiently small perturbations (i.e 𝜎 small).

The flow field is assumed to be solution of a power-law rheology in
eterogeneous porous media in the form:

− ∇⃗𝑃 = 𝑐(𝑟)‖𝑢‖𝑛−1𝑢, (A.1)

with the free divergence:

∇ ⋅ 𝑢 = 0. (A.2)

The field 𝑐(𝑟) is assumed to be distributed according to a log-normal.
The principle is to decompose each field 𝑢, 𝑃 , and 𝑐(𝑟) into a mean part
nd the spatially fluctuating part

𝑢(𝑟) = 𝑈𝑒𝑥 + 𝛿𝑢(𝑟), (A.3)
∇⃗𝑃 (𝑟) = 𝐺𝑒𝑥 + ∇⃗𝛿𝑝(𝑟), (A.4)

𝑐(𝑟) = 𝐶0 + 𝛿𝐶(𝑟). (A.5)

To simplify the notations, we introduce 𝐺 = ⟨∇𝑃 ⟩ and 𝑈 = ⟨𝑢𝑥⟩. The
mean flow is assumed to be along the 𝑒𝑥 axis.

It is more convenient to use the 𝑔 field defined by:

𝑐(𝑟) = exp (𝑔̄ + 𝛿𝑔) = 𝐶0 exp(𝛿𝑔).

Expanding up to the second order, one have:

𝑐 = 𝐶0(1 + 𝛿𝑔 + 1
2
𝛿𝑔2)

𝑢‖𝑛−1 = ‖𝑈𝑒𝑥 + 𝛿𝑢‖𝑛−1

= 𝑈𝑛−1 + (𝑛 − 1)𝑈𝑛−2𝛿𝑢𝑥 +
𝑛 − 1
2

𝑈𝑛−3(𝛿𝑢 ⋅ 𝛿𝑢)

+
(𝑛 − 1)(𝑛 − 3)

2
𝑈𝑛−3𝛿𝑢2𝑥.

Expanding and taking the spatial average ⟨⋅⟩ of Eq. (A.1), all the
first order terms vanish by definition. It yields:

−𝐺𝑒𝑥 = 𝐶0𝑈
𝑛𝑒𝑥 +

1
2
𝐶0⟨𝛿𝑔

2
⟩𝑈𝑛𝑒𝑥 + 𝐶0

𝑛 − 1
2

𝑈𝑛−2
⟨𝛿𝑢 ⋅ 𝛿𝑢⟩𝑒𝑥

+
(𝑛 − 1)(𝑛 − 3)

2
𝑈𝑛−2

⟨𝛿𝑢2⟩ + 𝐶0𝑈
𝑛−1

⟨𝛿𝑔 𝛿𝑢⟩

+𝐶0(𝑛 − 1)𝑈𝑛−1
⟨𝛿𝑔 𝛿𝑢𝑥⟩ 𝑒𝑥 + 𝐶0(𝑛 − 1)𝑈𝑛−2

⟨𝛿𝑢𝑥 𝛿𝑢⟩.

Along the 𝑒𝑥 axis, it follows:

− 𝐺
𝐶0𝑈𝑛 = 1+1

2
⟨𝛿𝑔2⟩+𝑛 1

𝑈
⟨𝛿𝑔 𝛿𝑢𝑥⟩+

𝑛(𝑛 − 1)
2

1
𝑈2

⟨𝛿𝑢𝑥𝛿𝑢𝑥⟩+
𝑛 − 1
2

1
𝑈2

⟨𝛿𝑢2𝑦⟩.

(A.6)

This expression relates the mean gradient 𝐺 = ⟨∇𝑃 ⟩ to the mean
elocity of the flow 𝑈 = ⟨𝑢𝑥⟩, if we know the different cross-correlation
erms of the spatially fluctuating fields, which are determined next.

The first order of Eq. (A.1) gives:

∇⃗𝛿𝑝 = 𝐶0𝑈
𝑛𝛿𝑔 𝑒𝑥 + 𝐶0(𝑛 − 1)𝑈𝑛−1𝛿𝑢𝑥𝑒𝑥 + 𝐶0𝑈

𝑛−1𝛿𝑢. (A.7)

hus,
1

𝐶0𝑈𝑛−1
∇⃗𝛿𝑝 = 𝑈𝛿𝑔𝑒𝑥 + (𝑛 − 1)𝛿𝑢𝑥𝑒𝑥 + 𝛿𝑢. (A.8)

Taking the curl leads to:

= 𝜕𝑥(𝛿𝑢𝑦) − 𝜕𝑦(𝑈𝛿𝑔 + 𝑛𝛿𝑢𝑥). (A.9)

It is now more convenient to write this equation in Fourier space.
efining ̂⃗𝑢(𝑘𝑥, 𝑘𝑦) and 𝑔̂(𝑘𝑥, 𝑘𝑦), respectively the Fourier transform of 𝛿𝑢

and 𝛿𝑔, gives:

𝑖𝑘 𝑢̂ − 𝑖𝑘 (𝑈𝑔̂ + 𝑛𝑢̂ ) = 0. (A.10)
12

𝑥 𝑦 𝑦 𝑥
Using the free divergence in Fourier space:

𝑘𝑥𝑢̂𝑥 + 𝑘𝑦𝑢̂𝑦 = 0, (A.11)

it follows the relationship between the fluctuation of 𝛿𝑢 and 𝛿𝑔, in
Fourier space:

̂𝑥 = −
𝑘2𝑦

𝑛𝑘2𝑦 + 𝑘2𝑥
𝑔̂ (A.12)

𝑢̂𝑦 =
𝑘𝑦𝑘𝑥

𝑛𝑘2𝑦 + 𝑘2𝑥
𝑔̂.

From these expressions, it is possible to determine the different cross
correlation terms using Parseval’s formula:

∬ 𝐹 𝐻 𝑑𝑥𝑑𝑦 = ∬ 𝐹 𝐻̂∗ 𝑑𝑘𝑥𝑑𝑘𝑦,

for any field 𝐹 (𝑟) and 𝐻(𝑟).
Thus,

𝐼1 = 1
𝑈2

⟨𝛿𝑢𝑥𝛿𝑢𝑥⟩ = ∬ 𝑢̂𝑥𝑢̂
∗
𝑥 𝑑𝑘𝑥𝑑𝑘𝑦

= ∬
𝑘4𝑦

(𝑛𝑘2𝑥 + 𝑘2𝑦)2
𝑔̂𝑔̂∗ 𝑑𝑘𝑥𝑑𝑘𝑦 (A.13)

𝐼2 = 1
𝑈
⟨𝛿𝑢𝑥𝛿𝑔⟩ = ∬ 𝑢̂𝑥𝑔̂

∗ 𝑑𝑘𝑥𝑑𝑘𝑦

= −∬
𝑘2𝑦

𝑛𝑘2𝑥 + 𝑘2𝑦
𝑔̂𝑔̂∗ 𝑑𝑘𝑥𝑑𝑘𝑦 (A.14)

𝐼3 = 1
𝑈2

⟨𝛿𝑢𝑦𝛿𝑢𝑦⟩ = ∬ 𝑢̂𝑦𝑢̂
∗
𝑦 𝑑𝑘𝑥𝑑𝑘𝑦

= ∬
𝑘2𝑦 𝑘

2
𝑥

(𝑛𝑘2𝑥 + 𝑘2𝑦)2
𝑔̂𝑔̂∗ 𝑑𝑘𝑥𝑑𝑘𝑦. (A.15)

These equations are very general and should apply to any field
distribution and correlation 𝑐(𝑟), provided that the amplitude of the
heterogeneities is small enough.

Using now the particular distribution field 𝑔(𝑟) with

𝑔̂𝑔̂∗ = 𝐵2𝑒
−2

𝑘2𝑥+𝑘
2
𝑦

𝑘20 , (A.16)

where 𝐵 is a normalization prefactor determined by 𝜎𝑔 =
√

⟨𝛿𝑔2⟩.
The different correlation functions can be derived after some ma-

nipulation:

𝐼1(𝑛) =
𝜎2𝑔
2𝜋 ∫

2𝜋

0

sin4 𝜃
(𝑛 cos2 𝜃 + sin2 𝜃)2

𝑑𝜃 = 1
2
𝜎2𝑔

1 + 2
√

𝑛

(1 +
√

𝑛)2𝑛3∕2
(A.17)

𝐼2(𝑛) = −
𝜎2𝑔
2𝜋 ∫

2𝜋

0

sin2 𝜃
𝑛 cos2 𝜃 + sin2 𝜃

𝑑𝜃 = −𝜎2𝑔
1

√

𝑛 + 𝑛
(A.18)

𝐼3(𝑛) =
𝜎2𝑔
2𝜋 ∫

2𝜋

0

sin2 𝜃 cos2 𝜃
(𝑛 cos2 𝜃 + sin2 𝜃)2

𝑑𝜃 = 𝜎2𝑔
1

2(1 +
√

𝑛)2
√

𝑛
. (A.19)

It is important to note here that these results are independent of
the correlation length 𝜆 and the shape of the correlation function. This
is due to the fact that the correlation function is isotropic, so that the
integrals eqs. ((A.17)–(A.19) can be split into a function depending only
on ‖𝑘‖ multiplied by another depending only on the angular coordinate
.2

The first correlation term, Eq. (A.17), is the standard deviation of
the velocity field which quantifies the heterogeneity of the velocity
field:
𝜎2𝑢𝑥
𝑈2

= 𝜎2𝑔
1 + 2

√

𝑛

2(1 +
√

𝑛)2𝑛3∕2
. (A.20)

2 The integral over |𝑘| is equal to 𝜎2∕(2𝜋).
𝑔
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These expressions can be used in Eq. (A.6) to determine the mean
pressure gradient 𝐺 by imposing the mean flow rate 𝑈 :

− 𝐺
𝐶0𝑈𝑛 = 1 + 𝜎2𝑔

√

𝑛 − 1

2(
√

𝑛 + 𝑛)
(A.21)

A similar procedure could be used to express the mean flow rate 𝑈
s function of the imposed gradient of pressure 𝐺. The full calculation
s left to the reader. The basic idea is to write the constitutive equation
n the form 𝑢 = −𝐷‖∇⃗𝑃‖𝛼−1∇⃗𝑃 , with 𝛼 = 1∕𝑛 and 𝐷 = 𝐶−𝛼 . This results
o3:

𝑈
𝐷0𝐺𝛼 = 1 + 𝜎2𝑔𝛼

2

√

𝛼 − 1

2(
√

𝛼 + 𝛼)
(A.22)

with 𝐷0 = 𝐶−𝛼
0 .

Surprisingly, this expression is very similar to Eq. (A.21). This
similarity in fact originates from a symmetry property of 2D flow fields
where the role of pressure and velocity can be switched. This will be
demonstrated and discussed below.

Appendix B. Symmetry by a 90◦ rotation

This argument originates from Matheron in a two-dimensional flow
field for the Newtonian Darcy law [17]. It can however be generalized
to non-Newtonian fluids. This symmetry is also applicable to the 2D
pore network model [50,51]. As previously, a generic non-linear Darcy
equation is assumed:

∇⃗ ⋅ 𝑢 = 0, (B.1)

and

𝑢 = −
𝑓 (‖∇⃗𝑃‖)

‖∇⃗𝑃‖
∇⃗𝑃 (B.2)

or

∇⃗𝑃 = −
𝑔(‖𝑢‖)
‖𝑢‖

𝑢. (B.3)

The idea consists in rotating the two fields 𝑢 and ∇⃗𝑃 by 90◦. In a
oordinate system (𝑥, 𝑦, 𝑧), where the flow takes place in the plane (𝑥, 𝑦),
his rotation is performed by making the cross product with the vector
𝑒𝑧:

𝑒𝑧 × ∇⃗𝑃 = −
𝑔(‖𝑢‖)
‖𝑢‖

(𝑒𝑧 × 𝑢). (B.4)

Defining the rotated fields 𝑞 = 𝑒𝑧 × ∇⃗𝑃 and 𝑍⃗ = 𝑒𝑧 × 𝑢, it can be shown
that ∇⃗ ⋅ 𝑞 = 0 and ∇⃗ × 𝑍⃗ = 0⃗. This means that 𝑞 is a flux vector and 𝑍⃗
derives from a potential field 𝑍⃗ = ∇⃗𝛹 . The two new fields satisfy:

𝑞 = −𝑔(‖𝑢‖) ∇⃗𝛹
‖∇⃗𝛹‖

. (B.5)

Since 𝑔(‖𝑢‖) = ‖∇⃗𝑃‖, it follows ‖∇⃗𝛹‖ = 𝑔−1(‖𝑞‖). Yielding to:

∇⃗𝛹 = −𝑔−1(‖𝑞‖)
𝑞

‖𝑞‖
. (B.6)

As a result, the rotated fields 𝑞 and ∇⃗𝛹 satisfy a non-Newtonian Darcy’s
equation but with a rheology inverse to the original one. In particular,
solving a shear-thinning fluid in one direction is then equivalent to
solving a shear thickening in the other direction.

Considering the truncated model:

⎧

⎪

⎨

⎪

⎩

∇⃗𝑃 = − 𝜇
𝜅 𝑢 if ‖𝑢‖ < 𝑢𝑐

∇⃗𝑃 = − 𝜇
𝜅

[

‖𝑢‖
𝑢𝑐

]𝑛−1
𝑢 if ‖𝑢‖ > 𝑢𝑐

, (B.7)

3 Another main difference is that, in the first order expansion, the divergent
as to be taken instead of the curl to eliminate the velocity and then relating
he fluctuation in pressure as function of the fluctuation in 𝐶.
13
is thus equivalent to:

⎧

⎪

⎨

⎪

⎩

∇⃗𝛹 = − 𝜅
𝜇 𝑞 if ‖𝑞‖ < 𝑞𝑐

∇⃗𝛹 = − 𝜅
𝜇

[

‖𝑞‖
𝑞𝑐

]1∕𝑛−1
𝑞 if ‖𝑞‖ > 𝑞𝑐

, (B.8)

with 𝑞𝑐 = 𝜇 𝑢𝑐
𝜅 . Using the relation 𝑢𝑐 = 𝐴𝜅𝛾 , the parameters have thus

changed to:

𝑛̃ → 1∕𝑛

𝜇̃ → 1∕𝜇

𝜅̃ → 1∕𝜅

𝛾̃ → −𝛾 + 1

𝐴̃ → 𝜇𝐴.

It is remarkable that for the most natural value 𝛾 = 1∕2 in porous
media, this coefficient is invariant with this transformation. It should
also be noted that the inverse of a lognormal distribution remains
lognormal with 𝑓0 → −𝑓0 and the same 𝜎𝑓 . It follow that the study can
be limited to shear thinning fluids (𝑛 < 1) without loss of generality.

Appendix C. Numerical method

Augmented Lagrangian method

This Augmented Lagrangian method has been introduced to solve
non-Newtonian Stokes equation and has been used by many authors
(see for instance [52,53]). In this paper the method was adapted to
solve the non-linear Darcy’s equation:

∇⃗𝑃 = −𝑔(‖𝑢‖) 𝑢
‖𝑢‖

, (C.1)

∇⃗ ⋅ 𝑢 = 0.

As for boundary conditions, pressure is imposed at the inlet and outlet,
𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 respectively. Periodic conditions are assumed at the lateral
sides (in the 𝑦−direction). As described above, the solution of such
system of equations is equivalent to finding, among all admissible
velocity fields the minimum of the functional:

𝛷[𝑢] = ∫ 𝐺(‖𝑢‖)𝑑𝑥𝑑𝑦 − 𝑃𝑖𝑛 ∫𝑖𝑛
𝑢𝑥𝑑𝑦 + 𝑃𝑜𝑢𝑡 ∫𝑜𝑢𝑡

𝑢𝑥𝑑𝑦, (C.2)

with

𝐺(‖𝑢‖) = ∫

‖𝑢‖

0
𝑔(𝑣)𝑑𝑣.

The main idea of the augmented Lagrangian method is to introduce
a secondary field 𝑣 in order to decouple the nonlinear problem 𝐺(‖𝑢‖)
from the flow equation. The equality 𝑢 = 𝑣 is then guaranteed by the
introduction of a Lagrangian vector field 𝜉. An extra term 𝛼

2 (𝑢 − 𝑣)2 is
also added to enhance the convergence, where 𝛼 is a small parameter.
Another Lagrangian field 𝜒 is introduced to impose the free divergence,
the problem can thus be recast into a saddle point determination:

min
𝑢,𝑣

max
𝜒,𝜉

𝛹 [𝑢, 𝑣, 𝜉, 𝜒], (C.3)

with

𝛹 [𝑢, 𝑣, 𝜉, 𝜒] = ∫

[

𝐺(‖𝑢‖) + 𝜉 ⋅ (𝑣 − 𝑢) + 𝛼
2
(𝑢 − 𝑣)2 − 𝜒∇⃗ ⋅ 𝑣

]

𝑑𝑥𝑑𝑦 (C.4)

−𝑃𝑖𝑛 ∫𝑖𝑛
𝑣𝑥𝑑𝑦 + 𝑃𝑜𝑢𝑡 ∫𝑜𝑢𝑡

𝑣𝑥𝑑𝑦. (C.5)

If we now differentiate this functional, we obtain:

∀𝛿𝑣, 𝛿𝛹
𝛿𝑣

⋅ 𝛿𝑣 = ∫

[

𝜉 + 𝛼𝑣 − 𝛼𝑢
]

⋅ 𝛿𝑣 − ∫ 𝜒∇⃗𝛿𝑣 𝑑𝑥𝑑𝑦

− 𝑃𝑖𝑛 𝛿𝑣𝑥𝑑𝑦 + 𝑃𝑜𝑢𝑡 𝛿𝑣𝑥𝑑𝑦,
(C.6)
∫𝑖𝑛 ∫𝑜𝑢𝑡
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∀𝛿𝜒, 𝛿𝛹
𝛿𝜒

𝛿𝜒 = −∫ 𝛿𝜒 ∇⃗𝑣 𝑑𝑥𝑑𝑦 (C.7)

𝛿𝑢, 𝛿𝛹
𝛿𝑢

⋅ 𝛿𝑢 = ∫

[

𝑔(‖𝑢‖) 𝑢
‖𝑢‖

− 𝜉 + 𝛼𝑢 − 𝛼𝑣
]

⋅ 𝛿𝑢 𝑑𝑥𝑑𝑦 (C.8)

∀𝛿𝜉, 𝛿𝛹
𝛿𝜉

⋅ 𝛿𝜉 = ∫ (𝑣 − 𝑢) ⋅ 𝛿𝜉𝑑𝑥𝑑𝑦. (C.9)

This set of equations is quite cumbersome. However, the main
dvantage of this approach lies in the fact that, for a given 𝑢 and 𝜉,
inding the saddle point for 𝑢 and 𝜒 Eqs. (C.6)–(C.7), is equivalent to
olving:

⃗ = − 1
𝛼
(∇⃗𝜒 + 𝜉) + 𝑢 (C.10)

⃗ ⋅ 𝑣 = 0, (C.11)

ith the boundary conditions 𝜒 = 𝑃𝑖𝑛 and 𝜒 = 𝑃𝑜𝑢𝑡. This is a classical
inear Darcy equation with a source term, which can therefore be
olved using classical methods. Here, a second order finite difference
ethod has been used. It is important to note that in this equation the
ermeability is homogeneous and constant, which allows a very fast
olution at each step.

For the given field 𝑣, 𝜒 and 𝜉, the minimization of 𝛹 with respect
o 𝑢, is equivalent to solve:

𝑔(‖𝑢‖)
‖𝑢‖

+ 𝛼)𝑢 = 𝜉 + 𝛼𝑣, (C.12)

which represents an implicit problem. This can be solve numerically or
analytically. With our particular function 𝑔(‖𝑢‖), an analytical solution
can be found for some exponents 𝑛 = 1∕3, 1∕2, 2∕3, 1, 3∕2, 2, 3. Solutions
are given in a following section.

After defining initial fields 𝑢0, 𝑣0, 𝜉0 and 𝜒0, the algorithm is
decomposed in the following step:

1. Solve 𝑣𝑛+1 and 𝜒𝑛+1 with the Darcy’s equation:

𝑣𝑛+1 = − 1
𝛼
(∇⃗𝜒𝑛+1 + 𝜉𝑛) + 𝑢𝑛 (C.13)

∇⃗ ⋅ 𝑣𝑛+1 = 0, (C.14)

Here, these equations are solved using a second order finite
difference method.

2. Determine 𝑢𝑛+1, by solving

(
𝑔(‖𝑢𝑛+1‖)
‖𝑢𝑛+1‖

+ 𝛼)𝑢𝑛+1 = 𝜉𝑛 + 𝛼𝑣𝑛+1, (C.15)

3. Advancing 𝜉 toward the gradient Eq. (C.9):

𝜉𝑛+1 = 𝜉𝑛 + (𝑣𝑛+1 − 𝑢𝑛+1)𝑑𝜉, (C.16)

where 𝑑𝜉 is a small parameter, taken equal to 𝛼 for simplicity.

alidation

This section presents the validation of the numerical method, in
articular, the influence of the mesh size. In this problem, the main
haracteristic length is the field correlation length 𝜆 which determines
he amplitude of the velocity and pressure gradients. The numerical
esolution is then related to 𝑁 , the number of mesh nodes per length
. In this paper, all the simulations were performed with 𝑁 = 5 and a
otal system size 1024 × 1024.

Fig. C.13.a displays the mean flow rate as function of ∇𝑃 , for
ifferent 𝑁 . Although the difference between high and low resolution
s not noticeable in this figure, a relative error between low and higher
esolution can be defined:

elative error =
⟨𝑢𝑥⟩𝑁=5 − ⟨𝑢𝑥⟩𝑁=20

(C.17)
14

⟨𝑢𝑥⟩𝑁=20
Fig. C.13.b represents the evolution of this error as a function of
∇𝑃 . The error depends on the flow regime and is, surprisingly, more
mportant in the linear regime than in the non-linear one. The max-
mum error, however, does never exceed 1%. Fig. C.13.c shows the
onvergence of this error as function of the mesh resolution 𝑁 and
ifferent ∇𝑃 . The convergence rate is then slightly faster than 𝑁−2,
hich is in agreement with the second order finite difference scheme
sed.

olutions of Eq. (C.12)

For the given fields 𝑣 and 𝜉, the algorithm requires to find 𝑢
atisfying:

𝑔(‖𝑢‖)
‖𝑢‖

+ 𝛼)𝑢 = 𝜉 + 𝛼𝑣 ≡ 𝐵⃗, (C.18)

with
{

𝑔(‖𝑢‖) = 𝜇
𝜅 ‖𝑢‖ if ‖𝑢‖ < 𝑢𝑐

𝑔(‖𝑢‖) = 𝜇
𝜅

[

‖𝑢‖𝑛

𝑢𝑛−1𝑐

]

if ‖𝑢‖ > 𝑢𝑐
(C.19)

It must be noted that 𝑢 and 𝐵⃗ are collinear and with the same
orientation because the left term in Eq. (C.18) is positive. It is thus
sufficient to determine the norm of ‖𝑢‖ = 𝑢. The equations then
become:
{

( 𝜇𝜅 + 𝛼)𝑢 = 𝐵 if 𝐵 < ( 𝜇𝜅 + 𝛼)𝑢𝑐
𝐴𝑢𝑛 + 𝛼𝑢 = 𝐵 if 𝐵 > ( 𝜇𝜅 + 𝛼)𝑢𝑐

, (C.20)

here 𝐴 = 𝜇
𝜅𝑢𝑛−1𝑐

.
If the first equation is trivial, the second one has an analytical

solution only for specific value of 𝑛. We give here the ones used in this
work.

• 𝑛 = 1
3 :

𝑢 = −
3
√

2
3𝐴

3

𝛥
+ 𝛥

181∕3𝛼3
+ 𝐵

𝛼
,

with

𝛥 =
(
√

3
√

4𝐴9𝛼9 + 27𝐴6𝛼10𝐵2 − 9𝐴3𝛼5𝐵
)1∕3

.

• 𝑛 = 1
2 :

𝑢 =

(

−𝐴 +
√

𝐴2 + 4𝛼𝐵
2𝐴

)2

.

• 𝑛 = 2
3 :

if 𝐵 < 4𝐴3

27𝛼2
,

𝑢 = 1
𝛼3

[

−(𝐴3 − 3𝛼2𝐵)

+ 2𝐴3∕2
√

𝐴3 − 6𝛼2𝐵 cos (𝜙∕3)
]

, with

𝜙 = arg
[

−2𝐴6 + 18𝐴3𝛼2𝐵 − 27𝛼4𝐵2

+ 𝑖3
√

3𝛼3
√

4𝐴3𝐵3 − 27𝛼2𝐵4
]

.

if 𝐵 > 4𝐴3

27𝛼2
,

𝑢 = 1
3𝛼3

[

−(𝐴3 − 3𝛼2𝐵) − 21∕3(−𝐴6 + 6𝐴3𝛼2𝐵) 1
𝛥

+ 𝛥
21∕3

]

, with

𝛥 = −2𝐴6 + 18𝐴3𝛼2𝐵 − 27𝛼4𝐵2

+3
√

3𝛼3
√

−4𝐴3𝐵3 + 27𝛼2𝐵4.
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Fig. C.13. (a): Mean velocity as function of the mean gradient of pressure for different mesh resolutions. The parameters are 𝑛 = 1∕2, 𝛾 = 1∕2 and 𝜎𝑓 = 1. (b): relative error
between 𝑁 = 5 and 𝑁 = 20 as function of ∇𝑃 . (c): relative error, with the reference to 𝑁 = 20, as a function of 𝑁 and for different ∇𝑃 . The red dashed line corresponds to the
power law 𝑁−2.
• 𝑛 = 2:

𝑢 = −𝛼 +
√

𝛼2 + 4𝐴𝐵
2𝐴

.

• 𝑛 = 3:

𝑢 = 𝛥
181∕3𝐴

−
3
√

2
3𝛼

𝛥
,

with

𝛥 =
(

9𝐴2𝐵 +
√

3
√

27𝐴4𝐵2 + 4𝐴3𝛼3
)1∕3

.
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