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We derive the volumetric flow rate vs. pressure drop of a Bingham fluid in one-dimensional
channels of variable apertures in the lubrication approximation. A characteristic length
scale, a∗ characterizing the flow is introduced in order to distinguish between a high and
a low flow rate regime. We illustrate the calculation for channels with periodically varying
apertures. We then go on to consider apertures that are self affine. We determine how the
scaling properties of the aperture field is reflected in the effective flow equations. Finally,
a series expansion for high and low flow rates that works very well over the entire range
of flow rates is proposed. This truncated expansion allows us to predict the domain of
validity of the two expansions by comparing a∗ to the aperture distribution.
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1. INTRODUCTION
Yield-stress fluids, viz. fluids that require that the applied stress
is above a non-zero threshold—a yield stress—for flowing [1],
are found in many practical applications, such as in oil industry.
Indeed, emulsions [2], mud [3, 4], heavy oil [5], polymeric gels
such as carbopol [2] and foams [6] generate non-zero yield stress
for flowing. In an oil recovery context, such fluids are injected to
control premature production of water or gas. They do this by
reducing poor sweep efficiency due to reservoir heterogeneities
[7, 8]. Hydraulic fracturing operations—now very much a timely
topic because of the increasing importance of fracking—involve
also the flow of cross-linked polymer gels that are characterized
by a yield stress to help carry proppant particles through the frac-
tures. Common for these examples is that they occur in complex
geometries; in the first in porous media, whereas in the second,
the flow occurs inside rough cracks.

There have been a number of experimental [2, 9], numerical
[10–16] and theoretical [17, 18] studies of the flow of yield stress
fluids in porous media. One of the main objective is to derive an
generalized Darcy equation for yield stress fluids relating mean
flow rate, the pressure gradient and a critical pressure gradient.
Experimentally [2, 9, 19] they establish various laws which have
quite essentially the same structure,

�P − �Pc ∝
{

0 if �P ≤ �Pc ,

Qn if �P > �Pc ,
(1)

where Q is the total flow rate and n is the rheological expo-
nent of the Herschel-Bulkley model. In particular, n = 1 defines
the Bingham fluid. However, numerical simulations and pore-
network models [15, 17, 20] demonstrate the situation may be
much more complex that Equation (1) may be expected when
the flow occurs in non-trivial geometries. Three different flow
regimes,

Q ∝ (�P − �Pc)α , (2)

with α successively equal to 1, 2, and 1 for Bingham fluids when
�P is increased beyond �Pc, may be identified. These three
regimes are a consequence of the presence of heterogeneities in
the pore size distribution and network topology.

In the present paper, we will study the different flow regimes
in a one-dimensional (1D) rough channel. Besides offering inter-
esting insights into the complexitites of the flow of yield stress
fluids even in this seemingly simple case, it is of direct relevance in
connection with flow both in two and three-dimensional porous
media flow. Close to the yield threshold, there will be only one sin-
gle one-dimensional channel where there is flow irrespecive of the
dimensionality of the porous medium (see e.g., [11, 15, 17, 21]).

The present work relates to earlier work considering channel
flow with periodically varying aperture [22–24]. In those articles,
the authors investigated the validity of the lubrication approxi-
mation [25] which can become inconsistent with the presence of
a unyielded plug along the center of the channel.

The main purpose of this paper is to investigate how Bingham
fluids behave in one-dimensional channels with self-affine aper-
ture variations. From earlier studies of how the permeability is
affected by self-affine correlations in the aperture field [26], non-
trivial scaling is to be expected of the parameters that characterize
the flow also in this case.

A channel with a self-affine aperture field h(x) has an average
aperture

〈h(x)〉 ∝ LH , (3)

where L is the distance along the channel over which the average
is taken and H is the Hurst exponent [26]. We will later on this this
paper present a more precise definition. Fractures are typically self
affine (see e.g., [27–30]).

In the case of Newtonian flow in a channel with self-affine
aperture correlations, it was enough to analyze the scaling proper-
ties of the permeability to have a full overview of what effect such
correlations have on the flow. In the present case, it is necessary to
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expand the analytical solutions in power series. Each term in this
series shows different scaling behavior.

The outline of the paper is as follow. In section 2, we con-
sider flow in a one-dimensional rough channel in the lubrication
limit. We solve the flow equations analytically and find flow
rate as function of pressure difference across the length of the
channel. After identifying a length scale associated to the flow
rate, we use this length to expand in power series for small and
large values of it, our analytical solution. In section 3, we dis-
cuss briefly our solution for a channel aperture that follows a
cosine variation. In section 4, which contains the main results
of this paper, we consider the roughness to be self affine and
derive scaling relations between aperture, length of the channel
and the length scale associated with the flow rate. In compar-
ison to the Newtonian case, the scaling properties are much
more subtle in this case due to the presence of the length scale,
a∗, characterizing the flow. We use the series expansions of sec-
tion 2 to determine how each term scales. Finally, we propose
in section 5 a truncated version of the double series expansion
which reproduces the analytical solution over the entire range
of flow rates. This is very useful as it is necessary to use such
series to characterize the scaling properties of the flow equa-
tions when the aperture field is self affine. Section 6 contains our
conclusions.

2. BINGHAM FLOW IN A ROUGH CHANNEL: GENERAL
RESULTS

The Bingham yield threshold fluid [1, 31] has as constitutive
equation

γ̇xy =
{ 1

D

(
σxy − sgn(σxy)σc

)
if |σxy| > σc ,

0 if |σxy| ≤ σc ,
(4)

where γ̇xy is the shear rate, σxy is the shear stress, σc is the
shear stress yield threshold, D is the viscosity and sgn is the sign
function.

By integrating the flow equations across the channel with the
constitutive law given in Equation (4), we find for for position x
along the channel where the aperture is h = h(x) that the total
flow rate Q per unit of width is given by

Q = − h3

12D
p′
(

1 −
∣∣∣∣p′

c

p′

∣∣∣∣
)2 (

1 + 1

2

∣∣∣∣p′
c

p′

∣∣∣∣
)

, (5)

where p′ = p′(x) is the pressure gradient at x. We have also
defined a local pressure gradient threshold p′

c = p′
c(x) given by

p′
c = 2σc

h
. (6)

We have here implicitly made the assumption that h(x) varies
slowly enough so that the lubrication limit is in effect [23].

We may non-dimensionalize the flow Equation (5) by intro-
ducing a dimensionless pressure

p′ = p′

p′
c

(7)

and the inverse of the local Bingham number:

Q = DQ

2σch2
. (8)

Which quantify the balance between the viscous and yield stresses
contributions at the scale h. Equation (5) then reads

Q = − 1

12
p′
(

1 − 1

|p′|
)2 (

1 + 1

2|p′|
)

. (9)

We solve this equation with respect to p′ and find

p′ = − sgn(Q)

2

(
1 + 8|Q|) (1 + 2 cos

[
2

3
csc−1

((
1 + 8|Q|)3/2

)])
. (10)

By integrating this equation over the length of the channel, we
express the total flow rate Q as a function of the pressure drop
over the total channel length L,

�P =
∫ L

0
p′(x)dx . (11)

Hence, using Equations (7), (8), and (10) we find

�P = −
∫ L

0
dx sgn(Q)

σc

h(x)

(
1 + 4D|Q|

σch(x)2

)
(12)

[
1 + 2 cos

(
2

3
csc−1

[(
1 + 4D|Q|

σch(x)2

)3/2
])]

.

We note that |�P| → Pc as |Q| → 0 in this equation, where

Pc =
∫ L

0
dx p′

c(x) = 2σcI1(L) . (13)

We have here used Equation (6) and defined

I1(L) =
∫ L

0

dx

h(x)
. (14)

Pc is the minimum pressure drop needed so that |Q| > 0 when
|�P| > Pc. It is worthwhile to derive this threshold pressure from
direct physical arguments since the result is not obvious.

Let us pick two positions along the channel, one at x1 and the
other at x2. Here the threshold pressures are respectively p′

c1 and
p′

c2. Since this is a channel, the total flux Q is the same everywhere
along it. With reference to Figure 1, we now assume that the total
flux is Qa. Correspondingly the pressure gradient at position xa

is p′
1a and at position x2 it is p′

2a. If we lower the total flux to Qb

we respectively find corresponding lower pressure gradients p′
1b

and p′
2b at x1 and x2 respectively. We see from the figure that as

the total flux Q → 0, p′
1 reach the threshold value p′

c1Âăexactly as
p′

2 reaches p′
c2. Hence, as the total flux reaches zero all along the

channel, the local pressure gradients reach their threshold values
simultaneously. Equation (13) then follows since the total pres-
sure as Q → 0 then must be the integral over the local threshold
pressure gradients.
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FIGURE 1 | Labels “1” and “2” refer to two positions along a

one-dimensional channel. The pressure gradient thresholds are p′
c1 and

p′
c2 respectively. The total flow rate through the channel is the same at all

positions. Hence, when the total flow rate is Qa, there will be a
corresponding pressure gradient p′

1a at position 1 and a pressure gradient
p′

2b at position 2. When the total flow rate is lowered to Qb , the pressure
gradients become p′

1b and p′
2b at positions 1 and 2 respectively. From the

figure, we see that as Q → 0, the pressure gradients p′
1 and p′

2 reach their
respective thresholds, p′

c1 and p′
c2, simultaneously.

We now return to Equation (10). We may expand it for small
|Q|. We find

p′ = −sgn(Q)

[ ∞∑
k = 0

ak

(√
|Q|
)k
]

, (15)

where a0 = 1, a1 = √
8, a2 = 16/3, and a3 = 40

√
2/9.

If we keep only two terms in this series, reintroduce the
original variables and integrate along the x axis, we find

Q = − sgn(�P)

16σcDI2(L)2

{
0 if |�P| < Pc,eff ,

(|�P| − Pc,eff )2 if |�P| ≥ Pc,eff ,
(16)

where

I2(L) =
∫ L

0

dx

h(x)2
, (17)

and Pc is given by Equation (13). Hence, close to the threshold
pressure, the flux is quadratic in the excess pressure.

Let us now introduce a length scale a∗ defined as

a∗ =
√

D|Q|
2σc

= |Q|1/2h . (18)

We have used here that Q is a constant along the length of the
tube, and therefore Q varies with x. a∗ characterizes the flow
everywhere along it and is independent of x. Hence, |Q| � 1 is
equivalent to a∗ � h(x) and vice versa |Q|  1 is equivalent to
a∗  h(x) for all x.

The series expansion (15) may then be transformed into the
small-a∗ expansion

�P = −2σcsgn(Q)
∞∑

k = 0

ak(a∗)kIk + 1(L) , (19)

where we have defined

Ik(a, L) =
∫ L

0

dx

h(x)k
=
∫ L

0

dx

(a + η(x))k
, (20)

where we have split the channel aperture into two components,

h(x) = a + η(x) , (21)

where
a = min

x
h(x) , (22)

and
η(x) = h(x) − a . (23)

All the geometrical information on the channel is now found in
the integrals Ik(a, L). The information on the flow is encoded in
the length scale a∗.

In the other limit, Q  1, Equation (10) may be expanded as

p′ = −sgn(Q)

[
12|Q| + 3

2
+

∞∑
k = 2

bk

(
1

|Q|
)k
]

, (24)

where b2 = −1/288, b3 = 1/1152 and so on. We introduce the
length scale a∗ (18) in this expression and find

�P = −2σcsgn(Q)

[
12(a∗)2I3(a, L) + 3

2
I1(a, L) (25)

+
∞∑

k = 2

bk

(a∗)2k
I1−2k(a, L)

]
,

which is then a large-a∗ expansion.
With only the dominating term, proportional to (a∗)2,

included in this equation, we recover the Darcy equation with vis-
cosity ν = D. Hence, the permeability is controlled by the integral
I3(L), as has already been discussed in Balhoff et al. [26].

It is interesting to note that the term corresponding to Darcy
flow is present both in the large a∗ and the small a∗ expansions.
It needs to be present in the large-a∗ expansion even though it
is proportional to (a∗)2 since the Bingham fluid approaches the
Newtonian limit with increasing flow rate.

Keeping the two leading terms and reverting to the original
variables gives the equation

Q = − sgn(�P)

12DI3(a, L)

{
0 if |�P| < Pc,eff ,

(|�P| − Pc,eff ) if |�P| ≥ Pc,eff ,
(26)

where

Pc,eff = 3

2
Pc , (27)
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where Pc is the threshold pressure. Hence, the fluid behaves as
a linear fluid, but with an effective pressure threshold that must
be overcome for flow to occur. The effective threshold is larger
than the real flow threshold Pc as one would expect. Equation (26)
is the approximation used e.g., by Roux and Herrmann [17] in
their study of Bingham fluids in disordered networks. Since the
effective pressure threshold, Equation (27) is proportional to the
real threshold, it is still given by Equation (14). This justifies the
approach of Roux and Herrmann [17].

3. PERIODIC APERTURE VARIATIONS
Both expansion (19) and (25) are applicable for any aperture dis-
tribution, as long as the lubrication approximation remains valid.
As example, following Frigaard et al. [23, 24] who considered an
aperture varying according to a cosine function. We may then
calculate Ik(a, L) analytically. We consider k = 1, 2, and 3.

Considering the aperture

h(x) = a + η(x) = a + b + b cos

(
2πNx

L

)
with x ∈ [0, L] ,

(28)
where b is the amplitude of the aperture variation and N is the
number of wavelengths in all. We then have

I1 = L√
a(a + 2b)

,

I2 = L(a + b)

[a(a + 2b)]3/2
, (29)

and I3 = L
(
2a2 + 4ab + 3b2

)
2 [a(a + 2b)]5/2

.

Hence, the threshold pressure is then

Pc = 2σc
L√

a(a + 2b)
, (30)

and the two limit expansions (19) and (25) to leading order are

�P � −sgn(Q)(2σcI1 + 4I2

√
σcD

√|Q|) for Q → 0 (31)

�P � −sgn(Q)(12DI3|Q| + 3σcI1) for Q → ∞ . (32)

4. SELF-AFFINE APERTURES
A large number of studies report that the roughness of fracture
surfaces show self-affine correlation [27–30]. We consider here
the flow in a channel with aperture h(x) with a self-affine proper-
ties. This means that the aperture is characterized by a two point
function p2(h2 − h1, x2 − x1) giving the probability density that
if h(x1) = h1 then h(x2) = h2. Self affinity is the scaling property

λHp2
(
λH(h2 − h1), λ(x2 − x1)

) = p2 (h2 − h1, x2 − x1). (33)

Normally, we have that 0 < H < 1.
In an earlier study [26], we considered the flow of a newto-

nian fluid in a channel where the aperture field obeyes the scaling
relation (33). After identifying a length scale a characterizing the

aperture opening (to be defined below), the permeability K relat-
ing flow rate Q to pressure difference along the channel, �P, scales
as K ∼ aκ . For small a, κ = 3, for intermediate a, κ = 3 − 1/H
and for large a, κ = 3. The question we pose here is: how does
the the self affinity of the aperture field influence the equation
relating Q and �P for a Bingham fluid.

The channel aperture is split into two components, h(x) =
a + η(x), where the minimum aperture is a = minx h(x) and
η(x) is self affine characterized by a Hurst exponent H. Since we
are in the lubrication limit, we may reshuffle the aperture field
η(x) → η[ξ ] = η(x(ξ)) where we have used an ordering transfor-
mation such that η(ξ1) ≤ η(ξ2) if ξ1 < ξ2. The averaged ordered
sequence obeys the scaling law [26]

η[ξ ] = ξH , (34)

where we have set a prefactor equal to unity.
The fundamental integrals (20) that control the transport

equations may then be written

Ik(a, L) =
∫ L

0

dx

h(x)k
=
∫ L

0

dξ

(a + ξH)k
(35)

= L

a
(a + LH)1−k

2F1

(
1, 1 + 1

H
− k; 1 + 1

H
,−LH

a

)
,

where 2F1 is the Gaussian hypergeometric function.
First we assume k > 0 in (35). For large a  LH , the integral

is proportional to La−k.
For intermediate to small values of a � LH , we may rewrite

the integral

Ik(a, L) = a1/H − k
∫ L/a1/H

0

dξ

(1 + ξH)k
. (36)

Depending on whether kH is smaller than or larger than one, the
integral will be dominated by the upper or lower integration limit.
Hence, if kH < 1, the integral behaves as

∫ L/a1/H

0

dξ

ξ kH
∝
(

L

a1/H

)1 − kH

= L1 − kHa−1/H + k . (37)

This leads to
Ik(a, L) = L1−kHa0 . (38)

On the other hand, if kH > 1, the integral will be dominated
by the lower limit, and it does not depend on L nor a. We may
summarize this,

Ik(a, L) ∝ Lmax (1−kH,0)

amax (kH−1,0)/H
=
{

L1 − kHa0 if kH < 1 ,

L0a1/H − k if kH > 1 .
(39)

When a becomes so small that the region around the bottle
neck (where the aperture is a) dominates, integral (36) must be
discretized [26],

Ik(a, L) =
L/�∑
j = 0

�

(a + �HjH)k
, (40)
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where � is the discretization. For a << (�/L)H , this integral
becomes dominated by the j = 0 term and we have

Ik(a, L) ∝ �

ak
. (41)

We may summarize this discussion through the equation

Ik(a, L) ∝

⎧⎪⎨
⎪⎩

�

ak if a � �H ,

Lmax (1 − kH,0)

amax (kH − 1,0)/H if �H � a � LH ,
L
ak if LH � a.

(42)

The behavior of Ik(a, L) for negative k is simpler. We only have
two cases to consider: a  LH and a � LH . We find

Ik(a, L) ∝
{

a1/HL−kH if a � LH ,

a−kL if LH � a .
(43)

We test in Figure 2 the scaling in Equation (42).
In the three upper panels, we show Ik(a, L) with k = 1, 2, and 3
for H = 0.2 and H = 0.8. For H = 0.2, kH is always less than
1, the second regime is thus independent of a and the top curves
of Figure 2 for H = 0.2 (dotted lines) show a flat middle section.
For H = 0.8, we have kH < 1 only for k = 1 whereas for k = 2
and 3, we have kH > 1, the two curves for H = 0.8 and k = 2
and 3 should not, thus, show a flat middle section; this is actually
what is observed in Figure 2. In the lower three panels we show
the rescaled integrals akH−1Ik(a, L) for k = 1, 2, and 3. Equation
(42) then predicts that the middle sections of the two curves cor-
responding to H = 0.8 k = 2 and 3 (values for which kH > 1)
should be flat whereas those for H = 0.2 and (H = 0.8, k = 1)
should not (in those cases we have kH < 1).

We now return to the series expansions of the relation between
pressure drop �P and flow rate Q. We have introduced the
length scale a∗ in Equation (18) and the expansion for small flow
rates—hence, small a∗—is given in Equation (19). Combining
this expression with the assumption that �H � a � LH , we find

�P = −2σcsgn(Q)

⎡
⎣[(1 − H)/H]∑

k = 0

ak(a∗)kL1 − (k + 1)H (44)

+
∞∑

[(1 − h)/H] + 1

ak
(a∗)k

a(k + 1) − 1/H

⎤
⎦ ,

where [·] is the floor function. Hence, for 1/2 < H < 1, only the
k = 0 term scales with L. For 1/3 < H < 1/2, the k = 0 and k =
1 terms scale with L.

The k = 0 term in (44) is the threshold pressure. We therefore
have that

Pc ∝ 2σc

⎧⎨
⎩

�
a if a � �/LH ,

L1−H if �/LH � a � LH ,
L
a if LH � a .

(45)

The first regime corresponds to the situation where the yield stress
is controlled by the minimal aperture region. In that case, the

pressure gradient is dominated by the pressure drop over this par-
ticular region of the length �. The second threshold corresponds
to the limit where yield stress is controlled the full length of the
rough channel; in that case the typical aperture is related the self-
affine nature of aperture and scales with the length of the channel
like LH . The third asymptotic regime is a channel of length L with
parallel walls separate by a distance a. Let us now consider the
large |Q|—the large a∗—expansion. By combining Equation (25)
with the scaling of Ik(a, L), we find

�P = −2σcsgn(Q)

[
12(a∗)2

a3 − 1/H
+ 3

2
L1 − H (46)

+
∞∑

k = 2

bk

(a∗)2k
a1/HL(2k − 1)H

]
,

as long as H > 1/3.
The scaling seen in this section is subtle. The difficulty lies in

the presence of the length scale a∗. This length scale is not present
when the flow is Newtonian. In that case, the expression for the
pressure drop vs. flow rate is 1

�P = −μ Q I3(a, L) = −μ Q

⎧⎪⎨
⎪⎩

�
a3 if a � �H ,

Lmax (1 − 3H,0)

amax (3H−1,0)/H if �H � a � LH ,
L
a3 if LH � a ,

(47)
where μ the viscosity. Hence, there are three scaling regimes in
this case [26].

5. A TRUNCATED SERIES EXPANSION
We present in this section a truncation of the series expansions
of the flow equation, which nevertheless retains very close to the
exact expression over the entire range of aperture opening a. This
series is considerably simpler than the exact solution.

We combine the two expansions (19) and (25) by splitting up
the integrals Ik(a, L), defined in Equation (20),

Ik(a, L) = Ik(< a∗, L) + Ik(> a∗, L) (48)

=
∫

h(x) < a∗
dx

h(x)k
+
∫

h(x) > a∗
dx

h(x)k
.

We combine the expansions (19) and (25) and get

�P = −2σcsgn(Q)

[ ∞∑
k = 0

ak(a∗)kIk + 1(> a∗, L)

+12(a∗)2I3(< a∗, L) + 3

2
I1(< a∗, L) (49)

+
∞∑

k = 2

bk

(a∗)2k
I1 − 2k(< a∗, L)

]
.

1In [26], the case when H < 1/3 was not discussed in connection with
Equation (42) for k = 3.
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FIGURE 2 | Top: Numerical computation of integrals Ik (a, L) defined in

Equation (20) for two different Hurst exponents (plain line: H = 0.8,

dashed line: H = 0.2). The size is L = 219 and the integral has been
sample averaged over twenty realizations. The regime of interest, where
non-trivial scaling will occur, is in the region of intermediate values of a. As

the figure runs over 11 orders of magnitude in a, this region may seem
narrow in the figures. Bottom: The integrals have been rescaled by
akH−1Ik (a, L) in order to bring out the scaling regions more clearly. The
region where we see scaling according to Equation (42) now appears
horizontal. We have chosen H = 0.8.

We truncate the series at second order, finding

�P = −2σcsgn(Q)

[
a0I1(> a∗, L)a1(a∗)I2(> a∗, L)

+ a2(a∗)2I3(> a∗, L) + 12(a∗)2I3(< a∗, L) (50)

+ 3

2
I1(< a∗, L)

]

= −sgn(Q)Pc − sgn(Q)
[

4
√

DσcI2(> a∗, L)|Q|1/2

+ 16

3
DI3(> a∗, L) + 12D|Q|I3(< a∗, L) (51)

+ σcI1(< a∗, L)
]

,

where we have used I1(< a∗, L) + I1(> a∗, L) = I1.
In Figure 3, we plot this approximation and compare it to the

exact solution.
The agreement with the analytical summation is very good for

any opening and any Hurst coefficient. The reason for this good
match can be understood as follows. At very low flow rate, if a∗
is smaller than any openings, we have then Ik(< a∗, L) = 0 and
Ik(> a∗, L) = Ik(a, L). The combined expression is exactly equal
to the expansion of Equation (44). As Q, one start to reach the
point where a∗ = a (denoted as an horizontal line in Figure 3)
which corresponds to the situation where the smallest element
of the sum Ik(> a∗, L) is removed but added in Ik(< a∗). From
there, all the integrals Ik(> a∗, L) (respectively Ik(< a∗, L)) are
decreasing (respectively increasing) with Q until a∗ reaches the
maximum opening. For this case, one then have Ik(> a∗, L) = 0
and Ik(< a∗, L) = Ik(a, L) and we recover the limiting case of
Equation (46). The combined approximation allows us thus to
match the two asymptotic limits of Equation (44) and (46).

This good agreement between the approximation and the exact
solution let us to deduce sufficient condition of validity for the
two expansions. Namely:

If a∗ < min(h) ⇒ �P � −sgn(Q)

(
2σcI1(a, L)

+ 4I2(a, L)
√

σcD|Q| + 16

3
I3(a, L)DQ

)
(52)

If a∗ > max (h) ⇒ �P � −sgn(Q) (3σcI1(a, L)

+ 12DI3(a, L)|Q|) . (53)

The validity of the regime reflects thus the heterogeneities of the
aperture, particularly the two extremal values.

6. CONCLUSION
In this work, we have investigated the flow rate in a 1D rough
channel for any aperture distribution. We have, however, paid
particular attention to the case of aperture fields that are self
affine, which is e.g., the case when the aperture field is given by
the channel being a fracture.

Our first result is given in Equation (12). This gives the total
flow rate Q as a function of pressure difference �P across the
length of the channel. Whatever the geometry of the channel,
close to the pressure threshold Pc, the flow rate scales like (�P −
Pc)2 with a prefactor function of the fluid and aperture properties.

We have introduced a characteristic length scale a∗ =
√

DQ
2σc

where

the square root scaling is a direct consequence of the square varia-
tion of the flow rate with the pressure. The length scales a∗ allows
an expansion in series of the two limit cases, the low (a∗ < a) and
high (a∗ > a) flow rates regimes where a is the minimal aper-
ture. At large flow rate (large a∗), the flow rate scales linearly as
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FIGURE 3 | Flow rate Q as function of the applied pressure drop �P − Pc

for different Hurst coefficient H and different openings a. The other
parameters are D = 1/12, σc = 1, L = 219. Black plain line represent
numerical integration of the exact expression of Equation (12). Dashed lines
represents the asymptotic regimes for Q � 1 defined by Equation (44) (thick
line: second order for thin line for first order) and for Q  1 defined by

Equation (46) (first order). Open circles represent the combined asymptotic
approximation Equation (50). The horizontal line, represents the flow rate at
which a∗ = a, which represents the first decrease (resp. increase) of
Ik (< a∗, L) (resp. Ik (> a∗, L). This flow rate corresponds also to the maximal
error between the exact and approximated solution. This errors is
respectively (from top-left to bottom-right): 10, 2, 12, and 5%.

(�P − 3
2 Pc), with an apparent critical pressure 3

2 Pc larger than
the actual one Pc.

With this length scale, we combine the series expansions and
truncate them in a way that leads to high accuracy. The sum of the
two contributions is found to provide a good approximation for
the exact solution given by Equation (12) in the case of self-affine
channels.

One of the main consequences of this results is the fact that,
in principle, one should expect four different flowing regimes
in porous media. Presently, only three flowing regimes have
been observed numerically (see [15]). The first one, in the limit
�P ∼ Pc, is linear ( i.e., Q ∼ (�P − Pc)) and corresponds the
flow channelization along one channel. Here we have demon-
strate that, in addition to this regime, one should observed
another quadratic regime where Q ∼ (�P − Pc)2. As a conse-
quence, by increasing the pressure, one should observes regimes
in the following sequence: quadratic (one channel), linear (one

channel), quadratic (with an increase of channels) and linear
(when all channels are open).

It is important to recall that this work is only valid under the
lubrication limit. Lubrication approximations have been inves-
tigated extensively for Newtonian fluids in confined geometries
(e.g., [32, 33]). For visco-plastic fluids, the limit of lubrication has
also been investigated by various authors in different geometries
(see [34] for film flows, [22–24, 35] for confined geometries and
[36, 37] for experiments). In this case, the lubrication hypothe-
sis becomes very restrictive essentially due to rigidity of the plug
regions. As discussed above (and in details by Frigaard and Ryan
[23]), because of the aperture variations and the mass conserva-
tion, lubrication approximation leads to variations of the plug
velocity. However, such variations are forbidden in the case of
ideal visco-plastic fluids which prevent any extensional deforma-
tions. Consequently, one expects deviations from the lubrication
hypothesis as the amplitude of the variations becomes important.
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As for flow in channels with self-affine aperture fields, we do
not find a simple scaling law for the equivalent of the perme-
ability as was the case for newtonian fluids [26]. Rather, we find
the each term in the series expansions of the flow equation scales
with its own scaling exponent in the aperture opening a. By com-
bining these results with the truncated series given in section 5,
it is tractable how the flow equations evolve with varying a in
this case.

Future work will be dedicated to the investigation of the
validity conditions of our analytical expressions. We have not con-
sidered two and three-dimensional channels. As for the case of
Newtonian flow, this is much more complex than the present case.
However, as was remarked in the Introduction, at small pressure
gradients, the flow will be confined to single channels, i.e., the
precise situation considered in the present paper.
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