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Abstract. Simulating flow of a Bingham fluid in porous media still remains a challenging task as the yield
stress may significantly alter the numerical stability and precision. We present a Lattice-Boltzmann TRT
scheme that allows the resolution of this type of flow in stochastically reconstructed porous media. LB
methods have an intrinsic error associated to the boundary conditions. Depending on the schemes this
error might be directly linked to the effective viscosity. As for non-Newtonian fluids viscosity varies in
space the error becomes inhomogeneous and very important. In contrast to that, the TRT scheme does not
present this deficiency and is therefore adequate to be used for simulations of non-Newtonian fluid flow. We
simulated Bingham fluid flow in porous media and determined a generalized Darcy equation depending on
the yield stress, the effective viscosity, the pressure drop and a characteristic length of the porous medium.
By evaluating the flow in the porous structure, we distinguished three different scaling regimes. Regime I
corresponds to the situation where fluid is flowing in only one channel. Here, the relation between flow rate
and pressure drop is given by the non-Newtonian Poiseuille law. During Regime II an increase in pressure
triggers the opening of new paths and the relation between flow rate and the difference in pressure to the
critical yield pressure becomes quadratic: q ∝ (d̃p− d̃pc)

2. Finally, Regime III corresponds to the situation
where all the fluid is flowing. In this case, q ∝ (d̃p − d̃pc).

1 Introduction

Non-Newtonian fluids have practical applications in very
different domains. Indeed, polymer mixture, paints, slur-
ries, colloidal suspensions, emulsions, foams or heavy oil
present complex rheologies. Among the large number of
different non-Newtonian fluids an important class of be-
havior is represented by the yield-stress fluids, viz. flu-
ids that require a minimum of stress to flow. Yield-stress
fluids are usually modelled as a Bingham fluid or by
the Herschel-Bulkley equation. Yield-stress fluid displace-
ments in porous media have been subject of particular
interest due to the yield-stress behavior of heavy oil [1] or
foam [2].

In the literature, most of the numerical modelling has
been made by means of the so-called “pore network”
approach [2–9]. Pore network modelling is based on a
simplified representation of the pore space by a three-
dimensional network of interconnected pores and throats.
In each throat, a relationship between flow rate and pres-
sure difference is assumed (similarly to the current-voltage
relationship in a network of resistances [3]). This method
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has the main advantage to be efficient as it only requires
the resolution of a simplified equation in each throat. How-
ever, the flow rate expression of a yield-stress fluid is a
complex nonlinear function of the pressure gradient (see
for instance eq. (11) for the uniform 2D Poiseuille flow). To
overcome this difficulty, the different approaches assumed
then a simplified flow rate relationship (linear, quadratic,
etc.). Except for the work of Balhoff and Thompson [5] the
throat geometry is usually assumed to be uniform which
could affect the effective pressure threshold. Due to this
simplification the different attempts to compare the nu-
merical model to the experimental data [10–13] were not
entirely satisfactory (see [5,7,8]). Additionally, the pres-
ence of a yield stress seems to alter significantly the stabil-
ity and the precision of the numerical modelling [9]. This
is illustrated by the fact that pore network modelling cor-
rectly reproduces the behavior of non-Newtonian fluids
without yield stress but incorrectly the behavior of yield-
stress fluids (see [7] for the two cases).

In the present article, we will present a numerical
method that can handle these difficulties. The method
is based on a Lattice Boltzmann scheme [14–19] that
allows the resolution of the (Navier-)Stokes equation at
the pore scale in complex structures. Lattice-Boltzmann
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methods have been successfully applied to solve flow of
non-Newtonian fluids without yield stress (see [20–22]).
Yet, the presence of a threshold in the stress induces nu-
merical errors and instabilities. This is due to the fact that
it is necessary to define an effective viscosity that diverges
for small shear. One possibility to cope with this problem
has been introduced by Vikhansky [23] and it is based
on an implicit Lattice-Boltzmann scheme. In the present
article, we will follow the work of [24] who suggested a
multiple-relaxation-time scheme (MRT) to simulate Bing-
ham fluids.

From a physical point of view, as demonstrated us-
ing the “pore-network model” approach by [3], the flow
rate curve might display different scaling regimes with the
pressure depending on the rheological parameters and the
structure of the medium. These regimes are characterized
by a power law whose exponent depends on the amount of
fluid that is flowing. The exponent is one when the fluid
is flowing in either only one chanel or in the entire do-
main. An intermediate regime, with an exponent of two,
characterizes the regime where the amount of flowing fluid
increases with the applied pressure. One should also men-
tion that in a recent paper, Sinha and Hansen [25] have
predicted this quadratic dependence with a mean field ap-
proach.

The objective of this article is then mainly twofold.
First, we will present a numerical scheme able to solve
Bingham fluid displacement in a stochastically recon-
structed porous media. Secondly, we will determine a gen-
eralized Darcy equation and investigate the different flow
regimes induced by the yield stress and the heterogeneities
of the media.

2 Equation of flow — Numerical
Implementation

2.1 Bingham fluid

The momentum equation defining Stokes flow is given by

0 = −∇P + ∇ · Π, (1)

where Π is the shear stress tensor and P the pressure.
For a Bingham fluid, the shear stress follows

Πij = 2ρν0

(
1 +

τ0

2γ̇ρν0

)
Δij , (2)

where

Δij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

is the deformation rate tensor and γ̇ =
√

2ΔijΔij is the
shear rate. u is the velocity field, τ0 is the yield stress, ν0

the kinematic Bingham viscosity and ρ the density.
An effective kinematic viscosity can thus be deter-

mined by
νeff(γ̇) = ν0 +

τ0

ργ̇
. (3)

For very low shear rates, the effective viscosity diverges
to infinity. However, in order to overcome this restriction
numerically, we use the classical regularized viscosity func-
tion as in [26,24]

νeff(γ̇) = ν0 +
τ0

ργ̇
(1 − e−mγ̇), (4)

where m is a regularization coefficient.
It is important to note that the main consequence of

such regularized function is the fact that now the viscosity
tends to a finite (large) value for low shear. Indeed, we
have

lim
γ̇→0

νeff(γ̇) = ν0 +
τ0m

ρ
. (5)

Thus, in the numerical simulations, the fluid is not strictly
“solid” but only extremely viscous. In that case, its vis-
cosity is mostly characterized by m.

2.2 Poiseuille flow

The velocity profile of a Bingham fluid driven by a (nega-
tive) pressure gradient in a two-dimensional configuration
can be easily computed. Naming x and y the gap-wise and
stream-wise direction respectively, eq. (1) becomes

∂P

∂x
=

∂

∂y
Πxy. (6)

By symmetry, the shear stress is nil in the centre. Thus,
after integration, eq. (6) leads to

Πxy = y∂xP. (7)

Equation (2) can be written as

∂ux

∂y
= 0, if |Πxy| < τ0, (8)

∂ux

∂y
=

1
ρν0

(Πxy − sign(Πxy)τ0), if |Πxy| > τ0.

Combining, eqs. (7) and (8) and assuming a negative pres-
sure gradient (∂xP < 0), the velocity field becomes

ux(y) = U0, for |y| < b

∣∣∣∣ τ0

τw

∣∣∣∣ , (9)

ux(y) = U0 −
1

2ρν0

τw

b

(
|y| − b

τ0

τw

)2

, for |y| > b

∣∣∣∣ τ0

τw

∣∣∣∣ ,

where 2b is the width of the channel. The shear at the wall
is given by τw = −b ∂xP > 0 and

U0 =
1

2ρν0
bτw

(
1 − τ0

τw

)2

. (10)

By integration, the flow rate is determined as a function
of the pressure gradient

Qth =
2b3

3ρν0

(
1

∂xP

)2 (
∂xP − τ0

b

)2 (
∂xP +

τ0

2b

)
. (11)

It is important to note that the flow condition is given
by the non-dimensional number τ0/τw = τ0/b∂xP which
compares the stress at the wall to the yield stress. This
quantity gives also the size ratio of the solid region to the
flowing one (see eq. (9)).
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2.3 TRT scheme

In this section, we will briefly describe the numerical
scheme used to solve the flow equation (for further details
see [24,27–29,19]).

As a matter of principle, the basic idea of the Lattice-
Boltzmann method is to discretize the velocity distribu-
tion function of particles on a grid. To this goal, we intro-
duce the population fq as the density of particles moving
with the velocity cq. The algorithm is mainly a succession
of two steps. The first is the propagation step (eq. (12)),
where we move the density on the grid according to its ve-
locity. The second is the collision step (eq. (13)), where we
redistribute populations meeting at the same node using
a collision operator that depends on the local macroscopic
quantities (pressure, velocity, etc.).

We used here a two-dimensional equation with a nine
population distribution (D2Q9) scheme. The nodes of the
grid are related by the velocity vectors cq, q = 1, . . . , 9
and c0 ≡ 0. We assume that the first 4 vectors cq are op-
posite to the second set of 4 vectors defined as cq̄ = −cq.
We then operate with the symmetric {f+

q = (fq + fq̄)/2}
and the anti-symmetric {f−

q = (fq − fq̄)/2} components,
q = 1, . . . , 4. We set f+

0 = f0 and f−
0 = 0 for immo-

bile population. The two-relaxation-times (TRT) update
is performed with the prescribed equilibrium distribution
{e±q } and two collision eigenvalues s± ∈]0, 2[, s+ for all
symmetric and s− for all anti-symmetric non-equilibrium
components, {n+

q } and {n−
q }, respectively. Thus, we ob-

tain

f0(r, t + 1) = [f0(1−s+) + s+e0](r, t),

fq(r + cq, t + 1) = f̃q(r, t), (12)

with

f̃q(r, t) = [fq−s+n+
q −s−n−

q ](r, t) , q = 1, . . . , 4,

f̃q̄(r, t) = [fq̄−s+n+
q +s−n−

q ](r, t) , q = 1, . . . , 4 , (13)

where

n±
q = (f±

q − e±q ) , when cq̄ = −cq , q = 1, . . . , 4. (14)

Computing the linear collision operator we have ac-
counted that the symmetric components are the same for
two opposite populations, and hence f+

q = f+
q̄ , n+

q = n+
q̄ ,

while the anti-symmetric components have the opposite
signs, and hence f−

q = −f−
q̄ , n−

q = −n−
q̄ .

The fluid dynamics are obtained by prescribing the
equilibrium functions e±q . The latter require the computa-
tion of two quantities: the local mass

ρ =
9∑

q=0

fq = f0 + 2
4∑

q=1

f+
q , (15)

and local momentum

j =
9∑

q=1

fqcq = 2
4∑

q=1

f−
q cq. (16)

Equilibrium functions then become

e+
q = c2

st
�
qρ , e−q = t�q(j · cq) , e0 = ρ − 2

4∑
q=1

e+
q , (17)

where the weights {t�q} take the value t�q = {tI, tII} =
{ 1

3 , 1
9} for respectively the first and second (diagonal)

neighbour link in the D2Q9 model.
This TRT scheme models solutions to Stokes equations

(in lattice units) by

∂tρ + ∇ · j = 0 , ∂tj + ∇P = νeffΔj, (18)

where the kinematic viscosity is given by νeff = 1
3 ( 1

s+ − 1
2 ),

the pressure P by P = c2
sρ and the macroscopic momen-

tum by u = j/ρ0, where ρ0 is a constant and taken as the
initial mass average of the fluid (routinely, ρ0 equals 1).

The sound velocity cs is set to
√

1
3 . In the TRT scheme,

the second eigenvalue s− is a free parameter (we recall
that s− ∈]0, 2[).

As discussed in detail in [28,30,19], LBM methods
(BGK, MRT,. . . ) may have an intrinsic error associated
to the bounce-back boundary condition. This error is
linked to the viscosity parameter ν, as long as the re-
lation between the odd and even relaxation parameter
Λ = ( 1

s+ − 1
2 )( 1

s− − 1
2 ) is not kept constant. For Newtonian

fluids, this error leads to a dependence of the permeabil-
ity with the viscosity (see also [31]) whereas in the TRT
scheme νj is strictly independent of ν, as it should for
Stokes flow.

For non-Newtonian fluids, this effect is even more dras-
tic as the effective viscosity strongly varies in space (see
below), making the error inhomogeneous. Additionally, we
report that there is a stability problem with the standard
BGK scheme. For that reason, we will hereafter use Λ as
control parameter rather than s−.

To simulate non-Newtonian fluid flow one needs to in-
troduce an effective viscosity νeff that varies with the local
shear rate γ̇. An interesting feature of the LBE scheme is
the fact that the local deformation rate tensor is simply
obtained from the non-equilibrium distribution (see [24])

Δij =
1

2ρ0
(∇j + (∇j)T )

= −s+ 3
2ρ0

9∑
1

n+
q cqicqj

= −s+ 3
ρ0

4∑
1

n+
q cqicqj . (19)

The algorithm is implemented as follows. Initially, the
fluid has a homogeneous effective viscosity νeff . We apply
a pressure drop ΔP between the inlet and outlet. At each
time step, the local shear rate is computed using eq. (19)
to update the local effective viscosity using eq. (4). The
iteration is pursued until convergence of the flow field is
reached (which typically takes around 105-109 time steps).
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Fig. 1. Numerical velocity field (normalized by the theoreti-
cal velocity at the centre U0) inside a two-dimensional chanel
compared to the theoretical prediction (eq. (9)). The numer-
ical parameters are b = 8 δx, m = 109, Λ = 0.2, ν0 = 0.001,
τ0 = 10−5, τ0/τw = 0.5.

For the lattice-Boltzmann scheme, typically used val-
ues are Λ = 0.2, ν0 = 10−3, τ0/ρ � 10−5 and m = 109,
which allow to have several orders of magnitude between
the viscosity of the “solid” and the fluid. In the following,
units of the presented quantities are expressed in terms of
the lattice grid unit and iteration time step.

The correspondance between the numerical and exper-
imental data requires the determination of a characteristic
length (l∗ = λ, b or

√
K), a characteristic pressure p∗ = τ0

and a characteristic velocity v∗ = l∗p∗/ρν0 (based on the
dynamic viscosity). The correspondance for any distance,
pressure or velocity are then obtained by

xexp =
l∗exp

l∗num

xnum, (20)

Pexp =
p∗exp

p∗num

Pnum, (21)

qexp =
v∗
exp

v∗
num

qnum. (22)

2.4 Validation

In order to validate the scheme, we will present the re-
sults of the flow simulation performed in a Poiseuille con-
figuration as described in sect. 2.2. Figure 1 displays the
theoretical velocity profile as well as the numerical one.
The following parameters were used: b = 8, ν0 = 10−3,
m = 109, Λ = 0.2 and τ0/τw = 0.5. We remark here that
despite the coarse grid used (given by the points in the
figure), the numerical profile is in good accordance with
the theoretical prediction. Moreover, it is also important
to compare the flow for different size ratio of the sheared
and unsheared regions. Figure 2 (left) displays the flow
rate Q normalized by the theoretical one (eq. (11)) as a
function of the unsheared width bτ0/τw. We can see a good
agreement for bτ0/τw < 6. However, a significant discrep-
ancy can be observed, when the unsheared zone reaches
the wall. As it can be seen in fig. 2 (right), the discrepancy

is relative and due to the fact that the theoretical flow rate
tends to zero (see eq. (10)) wheras the numerical one can
not as the numerical viscosity tends not to infinity but to
a large finite value. It should be noted that this discrep-
ancy can be reduced by increasing the numerical value m.
However, for too high values of m, numerical instabilities
have been observed. Moreover, on this figure, we show that
ν0Q is independent of the numerical parameter ν0.

Figure 3 displays the relative error of the flow rate vis
à vis of the discretization b. As expected, the numerical
results become more accurate when the number of grid
points is increased.

Finally, we evaluated the influence of Λ on the velocity
profile. To this goal, Λ was varied in the intervall Λ ∈
[0.1, 0.4] with the resolution b = 4. We found a maximal
error of Q/Qth of 2%. Thus, the influence of the value of
Λ on the results of the present simulations is negligible.

2.5 Porous media generation

We used the spectral method proposed in [19,32] to gen-
erate the porous medium. To this goal, we first generate
a matrix W (r) of white random noise. After multiplying
its Fourier transform (Z(r)) with a Gaussian function we
obtain:

Z ′(k) = αZ(k)e
− |k|2

k2
0 . (23)

A fast inverse Fourier transform f(r) = FT−1(Z ′(k))
leads then to a Gaussian distributed noise correlated with
a Gaussian correlation function

FT (f · f∗) = α2e
−2

|k|2

k2
0 .

This leads to the autocorrelation function

f ∗ f(x) ∝ e−
k2
0
8 |r|2 = e−

1
2 (π|r|

2λ )2

, (24)

where λs = π/k0. The prefactor α is set, without loss in
generality, to have a standard deviation equal to one. The
solid lattices are then deduced by a level-set with a given
value, f0: S = {r|f(r) < f0}. The porosity φ is related
to the cumulative distribution function, P (f), which is by
construction an error function centered around 0 with a
standard deviation of 1

f0 = P−1(φ).

We note that this method is not restricted to 2D and
has also the advantage of generating periodic media which
allow to apply periodic lateral boundary conditions.

The porous media is then characterized by its size
(Lx×Lx), correlation length (λ) and porosity (φ). A pres-
sure drop ΔP is then applied to the boundaries in order
to drive the fluid. After a transient time (between 106 and
109δt), a steady velocity field u(r) is reached, from which
we compute the volume average flow rate

q =
1
V

∫
u(r)dr. (25)
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Fig. 2. Left: numerical flow rate Q normalized by the theoretical flowrate Qth as a function of the unsheared width for two
different viscosities. Right: numerical flow rate (symbols) and theoretical (line) multiplied by ν0 as a function of the unsheared
width bτ0/τw. The parameters are the same as in fig. 1.
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Fig. 3. Relative error for the flow rate Q/Qth as function of
the grid width 2b for different unsheared width ratio τ0/τw.
The parameters are the same as in fig. 1.

3 Results and discussion

3.1 Flow rate curve

In this section we investigate the dependence of the av-
erage flow rate q on the characteristics of the porous
medium, the yield stress and the pressure drop in order
to determine a generalized Darcy equation.

Figure 4 displays the average flow rate q as a func-
tion of the applied pressure drop ΔP for a given value of
the yield τ0 = 10−6 and different porosities. The trend is
quite similar for all porosities. It can be seen that a min-
imal pressure drop ΔPc is required for the fluid to flow.
Beyond this threshold, the flow rate seems to increase lin-
early with the applied pressure. This trend is qualitatively
in agreement with the experimental and numerical works
of [10,11,13], where it has been proposed that the flow
rate behaves like

q ∝ k/μeff(∇P − ∇Pc)n, (26)
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5
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−3
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q

ΔP

Fig. 4. Average flow rate q as a function of the applied pressure
drop ΔP for different porosities. For each random generation,
the same seed has been used. The statistical properties are then
similar. The numerical parameters are Lx = 512 δx, λ = 6 δx,
m = 109, Λ = 0.2 and ν0 = 10−3.

where n is the Herschel-Bulkley exponent and k the New-
tonian permeability. In particular, for Bingham fluids
(n = 1), this law predicts that at high pressure drop,
one should obtain Darcy’s law, explaining the fact that
the slope increases with the porosity. We also note that
porosity is affecting the pressure threshold.

On fig. 5, different velocity fields are represented as a
function of the pressure drop ΔP . Close to the thresh-
old ΔPc fluid is flowing in only few paths. For a pressure
difference higher by several orders of magnitude, one can
clearly observe that all the fluid in the medium is now
flowing, corresponding to Darcy’s regime.

Figure 6 (left) displays the flow curves as a function
of the pressure drop for different values of the yield stress
τ0 (including the Newtonian case τ0 = 0) and a given
porosity φ = 0.75. As expected, for large enough pres-
sure drop, all curves collapse on the Newtonian one, given
by the standard Darcy’s law. The threshold pressure is
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Fig. 5. Flow field example inside the porous media (solid sites are darker) for different applied pressure drop ΔP . The numerical
parameters are φ = 0.75, Lx = 1024 δx, λ = 6 δx, m = 109, Λ = 0.2, ν0 = 10−3 and τ0 = 10−5.
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Fig. 6. Left: average flow rate q as a function of the applied pressure drop ΔP for different yield stress τ0 plotted on a log-log
scale as a function of the pressure drop. Right: dimensionless flow rate ρν0 ∗ q/λτ0 as a function of the dimensionless parameter
d̃p = λΔP/(τ0Lx).

characterized by the large increase of q (depending on τ0).
It is important at this point to underline that below the
threshold the flow rate is not strictly zero as expected.
This effect is of course a numerical artefact due to the
fact that the fluid is never really sheared but has a very
large viscosity (of the order of mτ0/ρ). We also note that
in this regime, the relationship between flow and pressure
drop is linear, which can be understood as being a Darcy’s
law with high viscosity.

In order to determine the dependence of q on the char-
acteristic dimensions of the porous medium, we first non-
dimensionalize the pressure-flow rate curve. Indeed, from
the result of the channel flow (sect. 2.2), it is natural to
compare the pressure gradient to the yield stress and the
caracteristic length λ. We thus introduce the dimensiona-
less parameter

d̃p =
λΔP

τ0Lx
. (27)

We have plotted on fig. 6 (right), the dimensionless
flow rate d̃q = ρν0q/λτ0 as a function of d̃p. As can be seen
all curves collapse in the flowing region. Consequently, the

flow rate can be written as a function of d̃p, it becomes

q =
λτ0

ρν0
F

(
λΔP

τ0Lx

)
. (28)

The reason why the flow rate is proportional to λτ0 can be
explained as follows. Indeed, expecting the flow behaving
as a Newtonian fluid for very large pressure drop implies
that

lim
d̃p→+∞

F(d̃p) ∝ d̃p.

In this limit, one should retrieve the standard Darcy’s law,
which is independent of τ0 and proportional to the square
of the characteristic length λ (KDarcy ∝ λ2). We thus have:

lim
d̃p→+∞

q =
KDarcyΔP

ρν0Lx
=

KDarcyτ0

λρν0
d̃p ∝ τ0λ

2d̃p.

We note also that the inverse of our dimensionless
flow rate could also define a Bingham number Bi−1 = d̃q
(based on the volume averaged velocity and the correla-
tion length λ).
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Taking into account the pressure threshold, one can
then write the flow rate curve in the following form:

q =
KDarcyτ0

λρν0
H

(
λΔP

τ0Lx
− d̃pc

)
, (29)

with lim
x→∞

H(x) = x + O(x).

3.2 Pressure threshold-critical length

In order to finalize the generalized Darcy equation
(eq. (29)), we determine in the next step the critical pres-
sure threshold d̃pc and relate it to a critical length λc, a ge-
ometrical characteristic of the generated porous medium.

Different methods to determine the critical pressure
threshold exist. Unfortunately, none of them is exact and
they imply some errors. The easiest method one could
imagine is to decrease the flow rate or the applied pressure
until the flow is stopped. This method is however difficult
to achieve experimentally and numerically. Indeed, exper-
imental set-ups are usually bond to a minimal flow rate
or pressure that limits the range in which the flow rate-
pressure curve can be determined (see [33] for instance).
In the present numerical case, the difficulty results from
the fact that the flow rate never drops to zero, due to
the finite viscosity constraint. The most commonly used
method is then to fit the flow rate-pressure curve and in-
terpolate it to the zero flow rate. The main disadvantage
is then that one needs to assume a general form of the
curve such as eq. (26). Here, we benefit from the fact that
we know the velocity field to determine when the velocity
increases significantly in the media.

For routine determination of d̃pc, the most precise way
is based on the fact that, when the fluid is entirely “solid”,
it has a fixed known viscosity ν0 + τ0m/ρ. Thus, in the
“non-flowing” regime, since the flow behaves as a New-
tonian fluid, the quantity νu(r)/∇P is independent of
the pressure gradient. Therefore, we first evaluate in the
Newtonian case the quantity:

ωNewt
max = max

r

(
ν0u(r)
∇P

)
.

We can then estimate the flowing region by determining
at which pressure

u(r)
∇P

> 1.1
1

ν0 + τ0m/ρ
ωNewt

max .

The coefficient 1.1 is an ad hoc coefficient. One can also
quantify the averaged flowing regions by:

O(d̃pc) =
〈

u(r)
∇P

> 1.1
1

ν0 + τ0m/ρ
ωNewt

max

〉
.

Figure 9 displays the evolution of O(d̃p). The critical pres-
sure d̃pc is then determined by the first significant jump
of this quantity.

In order to determine the critical length λc from d̃pc

we follow the argument of [3] and [6] for a pore network
model, suggesting that the critical pressure has a simple
geometrical meaning. Indeed, the critical pressure can be
determined by finding the path which minimizes the sum
of the pressure threshold ΔP = min(

∑
δpc), where δpc de-

notes the critical pressure of the links. In our context, the
argument can be understood as follows. As we have seen
in fig. 5, close to the pressure threshold, only one single
chanel path remains flowing. This path can be approxi-
mated by a channel with variable opening b(s). Assuming
the lubrication approximation, one can then compute the
flow rate along this channel using eq. (11)

Q =
2b(s)3

3ρν0

(
1

∇P

)2 (
∇P − τ0

b(s)

)2 (
∇P +

τ0

2b(s)

)
.

(30)
When Q tends to zero, because of mass conservation, it
implies that the quantity ∇P − τ0

b(s) tends to zero all along
the channel. The pressure gradient is thus known every-
where. Since the pressure drop is the integration of the
gradient, we have then ΔPc =

∫
τ0/b(s)ds. Consequently,

the critical pressure drop can be computed by finding the
path that minimizes the quantity:

ΔPc = τ0 min
C

∫
1

b(s)
ds, (31)

where C denotes all the flow paths that connect the inlet
to the outlet.

From the critical pressure drop, one can then define a
critical length as

λc = τ0
Lx

ΔPc
=

λ

d̃pc

. (32)

This length represents thus the harmonic mean of the
opening along the minimum path λc =(1/Lx

∫
b−1(s)ds)−1

which is related to the “directed polymer problem” [34,
35].

Figure 7 displays the evolution of λc as a function of
the porosity of the medium (and different realization).
From the argument used previously, it is expected that
the critical length increases with the porosity. Indeed, with
the stochastic procedure used, the distance between solid
regions increases necessarily with the porosity.

To summarize, eq. (29) can thus be rewritten as

q =
KDarcyτ0

λρν0
G

(
λΔP

τ0Lx
− λ

λc(φ)

)
, (33)

with lim
x→∞

H(x) = x + O(x).
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3.3 Flow rate regimes

In this section, we thoroughly analyse the flow rate above
the critical pressure d̃pc. Below d̃pc the theoretical flow
rate is zero. The numerical flow rate follows Darcy’s law
with a very high viscosity as we have already seen before.

On fig. 8, we have plotted the flow rate as a func-
tion of the distance to the critical pressure d̃p − d̃pc.
One can clearly observe three scaling regimes given by
q ∝ (d̃p − d̃pc)β . For small pressure differences β equals
one (Regime I), then for a higher pressure difference we
state β = 2 (Regime II), then by increasing the pressure β
is equal to one again (Regime III). Remarkably, these three
regimes are identical to those observed by Roux and Her-
mann [3] in a very idealized system. Indeed, they have used
a regular resistance network model with uniformly dis-
tributed pressure thresholds. They have assumed an affine
relationship between the voltage and the current, which

is clearly not the case in the present work. Additionally,
they noted that the exponent α = 2 is independent of the
threshold distribution. However, Roux and Hermann have
also reported that this scaling regime changes by modify-
ing the current-voltage relationship (linear to quadratic).
It is therefore quite remarkable that we find a similar scal-
ing despite the fact that we have a different geometry and
a very different flow rate-pressure difference relationship
inside each throat.

One should then recall the interpretation of Roux and
Hermann for those three regimes.

Regime I corresponds to a single channel flow curve.
Indeed, as we have already observed, just above the critical
pressure only one single flow path is open. This implies
that, for increasing pressure, as long as we do not open
new pathes, one should then expect the flow rate to follow
eq. (30). In the case of Roux et al., this relationship was
affine, leading to the exponent one. In the present case, the
single channel should have two exponents. At very small
pressure, one should have a quadratic behavior followed
by a linear one. We think that the quadratic behavior is
not seen due to numerical precisions since it involves very
low flow rates. Moreover, the fact, that we do observe the
linear behavior suggests that the first channel reaches its
linear regime before new channels are opened in the media.

Regime II corresponds to the regime where an increase
of pressure triggers an opening of new paths as depicted by
fig. 5. The heuristic argument proposed by Roux and Her-
mann is the following. Assuming that in this regime, an
infinitesimal increase of pressure dP leads to a proportion-
ally increase of the number of new channels: dN ∝ dP . A
linear relationship between the flow rate and the pressure
leads then to an exponent of two. Here also, the argument
crucially depends on the linear flow rate curve assump-
tion. It is thus remarkable that in the present work, we
observe precisely the same coefficient. Additionally this
result is consistent with the analytical result of Sinha and
Hansen [25] which obtain a quadratic dependence using a
mean field approach.

As expected, Regime III corresponds to the case where
all the fluid is flowing and has a quasi-Newtonian behavior.
In this case one retrieves the standard Darcy’s law.

A qualitative confirmation of this argument can be ob-
served on fig. 9, where we have plotted the ratio of opened
fluid (O) as a function of the distance to the critical pres-
sure d̃p− d̃pc. Regime I corresponds to a constant value of
O(d̃p−d̃pc). Regime II starts simultaneously with a signif-
icant increase of O and Regime III begins once O(d̃p−d̃pc)
reaches a plateau. Interestingly, we note that in Regime II,
the curve is not completely smooth but displays at some
point a step-like evolution that characterizes the opening
of new channels (for instance at d̃p − d̃pc � 8 · 10−2 on
fig. 9). We also remark that new channels do not neces-
sarily connect the opposite borders of the porous medium,
they might also branch from prexisiting ones. As the pres-
sure increases, channels become more difficult to define. It
therefore complicates the estimation of the increase of the
number of open channels.
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4 Conclusion

In this work, we have used a Lattice-Boltzmann scheme
able to solve yield-stress fluid flow in porous media. We
have analysed the different flow structures inside the me-
dia. Three different scaling regimes could be distinguished.
Regime I that corresponds to the situation where fluid is
flowing in only one channel. Here, the relation between
flow rate and pressure drop is given by the non-Newtonian
Poiseuille law. During Regime II an increase in pressure
triggers the opening of new paths and the relation be-
tween flow rate and the difference in pressure to the criti-
cal yield pressure becomes quadratic: q ∝ (d̃p− d̃pc)2. Fi-
nally, Regime III corresponds to the situation where all the
fluid is sheared. In this case, we obtained q ∝ (d̃p − d̃pc).
It is interesting to note that most of the generalizations of
Darcy’s law that have been proposed (see eq. (26)) from
experimental or numerical studies correspond only to the
last regime.

In a recent article, Sinha and Hansen [25] proposed an
analogy between two phase flow with the Bingham flow
problem in porous media. The basic idea is that immis-
cible bubbles require a minimal pressure drop in order
to go through pore throats. This threshold depends on
the throat radius and the local saturation. Using a mean
field approach, they derived analytically a quadratic de-
pendence of the flow rate on the pressure. In recent sim-
ulation of blob dynamics in the same stochastic porous
media, Yiotis et al. [32] demonstrated numerically such
a scaling regime, which confirms the pertinence of this
analogy. Further work will be dedicated to the study of
two-phase flow or other rheological laws and boundary
conditions (the effect of wall slippage particularly) in or-
der to test the robustness of those regimes.

The authors would like to thank Alex Hansen and Irina
Ginzburg for usefull discussions, the “Agence National de la
Recherche” for financial support of the project LaboCothep
ANR-12-MONU-0011 and the CCR of UPMC for computa-
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