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Geometry of optimal path hierarchies
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Abstract – We investigate the hierarchy of optimal paths in a disordered landscape, based on
the best path, the second best path and so on in terms of an energy. By plotting each path at
a height according to its energy above some zero level, a landscape appears. This landscape is
self-affine and controlled by two Hurst exponents: the one controlling the height fluctuations is
1/3 and the one controlling the fluctuations of the equipotential lines in the landscape is 2/3.
These two exponents correspond to the exponents controlling energy and shape fluctations in the
directed polymer problem. We furthermore find that the density of spanning optimal paths scale
as the length of the paths to −2/3 and the histogram of energy differences between consecutive
paths scale as a power law in the difference size with exponent −2.5.

Copyright c© EPLA, 2013

Introduction. – The optimal path between two points
in a disordered landscape lies at the heart of a large num-
ber of problems in physics and technology. Internet rout-
ing [1], sensor networks [2], or more generally complex
networks [3–5], are important areas where optimal paths
are essential even though the “landscape” in this case is a
complex network. Surface growth phenomena [6] that are
describable by the Kardar-Parisi-Zhang equation [7], but
also the simpler Eden growth phenomenon, may be related
to the optimal path problem [8]. In both cases, the optimal
path problems appears in a form equivalent to the directed
polymer problem [9,10]. This problem consists in explor-
ing the configurations of a polymer that binds locally to
a static but disordered substrate in such a way that it
contains no back bends. At zero temperature, this is an
optimal path problem. It has been known for a long time
that the statistics of such polymers —or optimal paths—
reflects an underlying ultrametric structure [11,12]. The
directed polymer problem shows up in a number of differ-
ent physical problems such as in plasticity [13], in tracer
transport in porous media [14] and in non-Newtonian fluid
flow in porous media [15,16].

We consider a two-dimensional landscape. To each
point �r = (x, y) in this landscape, we assign a posi-
tive number —an “energy”— t(�r ). For the time being,

we assume that t(�r ) is a spatially uncorrelated noise.
We imagine a path P through this landscape �r(l) ∈ P,
parametrized by its length l from the starting point, such
that �r(0) = �ri and �r(L) = �rf , where �ri and �rf are the
start and end points of the path, respectively. We then
define the optimal path between �ri and �rf as

T1 = min
�r∈P

∫ L

0

t(�r(l)) dl, (1)

where the minimization is taken over all possible paths.
The value T1 is the “energy” of the optimal path. The
optimal path will contain no loops and if the disorder is
not too strong, it will have no back bends: it will be di-
rected [17]. If we average over an ensemble of landscapes,
we find that the fluctuations in T , ΔT = 〈(T − 〈T 〉)2〉1/2

scale as
ΔT ∼ Lω, (2)

and the fluctuations of the optimal path Δx when the two
end points �ri and �rf have been placed along the y-axis a
distance L apart,

Δx ∼ Lν . (3)

We have that ω = 1/3 and ν = 2/3 [9,10]. These two
exponents are manifestations of the ultrametricity of the
optimal paths.
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Fig. 1: Three optimal paths —the best, the second best and
the third best— are shown. They are characterized by the
energies T1, T2 and T3 with the ordering T1 < T2 < T3.

Recently, there has been an interest in going beyond the
optimal path and ask about the second best path, third
best path and so on. This was investigated by Andrade
et al. [18]. They identified a hierarchy of optimal paths by
the following algorithm: identify the largest t-value along
the optimal path. Change the value of this t to such a large
value that the optimal path is no longer optimal. A new
path will become optimal. Repeat this. This will produce
a hierarchy of optimal paths which has very interesting
scaling properties. However, this hierarchy is intimately
connected with the maximum value along the optimal path
and the hierarchy that is produced reflects the procedure.

The pathscape. – In this letter we will consider a
different hierarchy of optimal paths. Without changing
any values of t, we identify the path that has the smallest
value of T , defined in eq. (1), the path that has the second
smallest value of T associated with it etc. We number
the paths T1 < T2 < T3 < · · · . We identify the optimal
path by considering every point �r in the landscape and
identify the optimal path with the prescribed start and
end point which passes through �r. We may then associate
the corresponding T value to each point �r, where T is the
value of the energy of the optimal path passing through
that point. We show in fig. 1 an example of how the
three first paths of such a hierarchy may look. Each path
starts at the lower edge and ends at the upper edge of the
landscape. In the example, there is overlap between the
T1 and T2 paths whereas T3 is independent.

In fig. 2 we have identified the optimal paths through
each node in a square lattice starting at the lower edge
and ending at the upper edge. Each node is color coded
according to the value of the energy T of the optimal path
passing through it: darker color means lower value of T
whereas lighter color means higher value of T . We will
refer to this landscape of paths as a pathscape. In the
following we describe the algorithm that produced it.

The distribution of t we consider in the following is
p(t) = t−2 where t > 1. There are no spatial correlations.
This is the natural yield threshold distribution found, e.g.,
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Fig. 2: (Color online) A complete pathscape showing the op-
timal path passing through each link in the 1024 × 512 size
lattice by a color code: darker color corresponds to lower value
of T and lighter color to higher value.

in connection with flow of non-Newtonian fluids in porous
media, see [16].

Identifying the pathscape. We generalize the iterative
algorithm proposed in ref. [17] to identify optimal paths on
a lattice. Each link �ri,j linking neighboring nodes �ri and
�rj for all i and j is assigned a threshold ti,j . We assign to
each node �ri a variable Vi. Initially, we set this variable to
zero for all nodes to be updated. These are the nodes that
constitute the interior of the region of interest. On the
boundary of the region, the nodes are not updated. The
updating proceeds as follows. If j(i) are the addresses of
the links adjacent to node �ri, we update the node

Vi → Vi = min
j(i)

(
ti,j(i) + Vj(i)

)
. (4)

After N updates, the value Vi will contain the sum of
the tresholds along the optimal path originating in �ri of
length N . There are no restrictions on the shape of this
optimal path. It may well curl up on itself, thus forming
a “tadpole” configuration.

We now consider the boundary of the region in which
the optimal paths are situated. The nodes that form the
edges of the network constitute the boundary. We now
single out one node, �r0, on the boundary and demand that
we identify the optimal paths starting from any internal
node and ending at this particular boundary node. To do
this, we set the value V�r0 = 0 and the value of all other
boundary nodes to a very large value M . We then iterate
the internal nodes according to (4) until the value of Vi for
all internal nodes no longer changes. Then Vi contains the
sum Ti,0, defined in eq. (1), between internal node �ri and
boundary node �r0. Let us now choose another internal
node �rj , which is neighbor to the previously considered
internal node �ri, and boundary node �r1. We repeat the
recipe above, and identify the optimal path starting at
any internal node �rj and ending at the boundary at �r1,
Tj,1. We also calculate Ti,1 and Tj,0. This allows us to
calculate the energy of the optimal path that starts at
boundary node �r0, ends at boundary node �r1 and passes
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Fig. 3: Averaged wavelet coefficients 〈w(l)〉 measured orthog-
onal to the flow direction (◦) and parallel to the flow direction
(�) as a function of the length scale l. The straight lines both
have slopes equal to 5/6, making the surfaces self-affine with
the Hurst exponent H = 1/3 in both directions. The figure is
based on one sample of size 1024 × 512.

by node �ri by the expression

T0,i,1 = min
j(i)

(
T0,i + ti,j(i) + Tj(i),1, T0,j(i) + tj(i),i + Ti,1

)
.

(5)
which is the optimal path starting at �r0, ending at �r1 and
passing by �ri.

We now set the V -value associated with each node on
the lower edge on the lattice to zero while setting the
V -value associated with each node on the upper edge
to M . By iterating the algorithm as described above will
then determine the energy of the optimal path starting at
any internal node i and ending somewhere on the lower
edge. By repeating this calculation but with the V -values
switched between the upper and lower edges, we find the
optimal paths starting at any internal node and ending at
the upper edge. These two sets of energies may now be
combined as prescribed in eq. (5) to identify the hierarchy
of all optimal paths starting at the lower edge and end-
ing at the upper edge. By assigning to each optimal path
its energy and plotting them at the corresponding height
above the zero level, an optimal pathscape appears. This
is shown in fig. 2, which is based on a square lattice where
the lower edge forms the set {�r0} and the upper boundary
forms the set {�r1}. The two other edges are identified with
each other, making the system periodic in this direction.
The threshold values t�R were chosen from a flat distribu-
tion on the unit interval. The distance between the lower
and upper edges of the lattice is L = 1024 and the width
of the lattice is W = 512.

The “pathscape” of fig. 2 contains the hierarchy of opti-
mal paths in this system. There is a minimum path which
is the optimal path between the upper and lower edges.
But, there is also the second best path, the third best path
etc. as illustrated in fig. 1.

Geometry of the pathscape. The hierarchy of opti-
mal paths, shown as a “pathscape” in fig. 2, has many
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Fig. 4: The spanning paths in a 1024 × 512 system.
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Fig. 5: Number of spanning paths Npath as a function of sys-
tem length L, while keeping W fixed and equal to 2048. The
number of samples were as follows: L = 32: 2000, L = 64:
1000, L = 128: 500, L = 256: 250, L = 512: 125 and
L = 1024: 63. The straight line corresponds to the power
law Npath ∼ L−2/3.

interesting properties. Given the “pathscape” of opti-
mal paths, the two exponents ω and ν defined in eqs. (2)
and (3) may be given a geometrical interpretation. In
fig. 3, we have made cuts through the pathscape in the
x- and in the y-direction, measuring T along it. We have
then wavelet transformed the functions using the DAUB-4
wavelet basis [19] and averaged over the absolute value of
the ensuing wavelet coefficients. The figure shows the av-
erage wavelets as a function of the scale l. If the signal that
has been wavelet transformed is self-affine with the Hurst
exponent H, the wavelet coefficients 〈W (l)〉 ∼ lH+1/2 [20].
We find that H + 1/2 = 5/6 fits the data excellently both
for the curves along the x- and the y-directions. This
makes H = 1/3. It is then very natural to intepret the ex-
ponent ω, defined in eq. (2), as being the Hurst exponent
of the pathscape, ω = H = 1/3. The second exponent,
ν = 2/3, is the Hurst exponent of equipotential curves in
the “pathscape”1.

1Hence, the “slit island” relation of Mandelbrot [21,22] that re-
lates the Hurst exponent H of a landscape to the fractal dimension
of the equipotential curves df does not work here as it would predict
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Fig. 6: (a) The ordered sequence of optimal path energies T . A given point along this curve shows the number of links that
have T or less as threshold. (b) A detail of (a). The steps are clearly visible and their size Δ is defined. The data are based on
one sample of size 512 × 512.
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Fig. 7: (a) The cumulative probability P (T ) of the energies of the optimal paths of fig. 6. The broken curve shows [1 +
erf(0.111[T − 725.5])]/2. (b) 1 − P (T ) vs. T . The broken straight line is 0.87T−1. Such an asymptotic law is expected from
the distribution of the t values that we have used.

We now single out the spanning paths in the “path-
scape” which are those opimal paths that form local min-
ima in T , see fig. 4. In fig. 1, the paths labeled T1 and T3

are spanning paths, the one labeled T2 is not. Since the
Hurst exponent of these paths is ν = 2/3, their density,
Npaths must scale as

Npaths ∼ L−ν . (6)

In fig. 5, we plot Npaths against L. Equation (6) is obeyed.
We now consider the distribution of energies T in the

“pathscape.” We show the ordered sequence of T -values
in fig. 6(a). That is, a given point along this curve shows
the number of links n that have a value T or less associ-
ated with them. The particular shape of this curve reflects
the distribution of t-values used and is not universal. In
fig. 7(a), we have replotted and rescaled these data so
that they now are represented as a cumulative probabil-
ity; P (T ) is the probability to find a path with energy less
than or equal to T . On top of this curve, we have plot-
ted the function [1 + erf(0.111[T − 725.5])]/2. This shows
that the probability distribution of energies is Gaussian

df = 4/3. The equipotential curves have df = 1. The reason for
this is the anisotropy of the “pathscape.”
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Fig. 8: Histogram N(Δ) over the number of links Δ that simul-
taneously hit their optimal path thresholds. The straight line
has a slope equal to −2.5. The figure is based on 100 samples
of size 1024 × 512.

for values of T a little beyond the median. However, for
large values of T the distribution changes character. In
fig. 7(b), we show that P (T ) = 1 − 0.87T−1 fit the data
well: the distribution of energies is Gaussian —as expected
for self-affine surfaces— but with a fat tail. This fat tail
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reflects the distribution of local energies, p(t) = t−2 on the
unit interval, that was used and is not a universal feature.

In fig. 6(b), we show a closeup of the curve. It consists
of a series of horizontal steps. A step at value T shows how
many links that belong to an optimal path with that given
T -value. In fig. 8 we show a histogram of the steps. They
follow the power law N(Δ) ∼ Δ−τ . The value τ = 5/2 fits
the data very well. This is the value that is expected for
an uncorrelated random walk process with a diminishing
bias, see [23,24]. It is surprising to see the same value in
this system which is highly correlated.

Conclusion. – We have studied in this letter the ge-
ometry of the pathscape formed by the hierarchy of opti-
mal paths by identifying the optimal path passing through
each point in the disordered landscape. The pathscape is
a self-affine surface with a Hurst exponent H = 1/3 but
with a strong anisotropy in the amplitudes. This allows us
to interpret the two exponent ω and ν (eqs. (2) and (3)),
controling the fluctuations of the energy and shape of the
optimal paths, respectively, as the Hurst exponents de-
scribing the pathscape height fluctuations and equipoten-
tial line fluctuations, respectively. We have found that
the density of optimal paths that span the system scales
with the length of paths to minus the Hurst exponent,
eq. (6). We have furthermore investigated the structure
of the sequence of optimal paths in the hierarchy, finding
that the histogram of distances between energies scales as
the distance to the power minus 2.5.

We have chosen a wide distribution of t-values for
our numerical study. As demonstrated by Hansen and
Kertesz [17], the directed polymer universality class is very
stable; it takes an extreme disorder to move away from this
problem. As long as the optimal path, characterized by T1

is in the directed polymer universality class, the pathscape
will have the structure that we have presented here.
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