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A computational investigation of variable density and viscosity, miscible displacements
in horizontal Hele-Shaw cells is presented. As a first step, two-dimensional base states
are obtained by means of simulations of the Stokes equations, which are nonlinear
due to the dependence of the viscosity on the local concentration. Here, the vertical
position of the displacement front is seen to reach a quasisteady equilibrium value,
reflecting a balance between viscous and gravitational forces. These base states
allow for two instability modes: first, there is the familiar tip instability driven
by the unfavourable viscosity contrast of the displacement, which is modulated by
the presence of density variations in the gravitational field; second, a gravitational
instability occurs at the unstably stratified horizontal interface along the side of the
finger. Both of these instability modes are investigated by means of a linear stability
analysis. The gravitational mode along the side of the finger is characterized by a
wavelength of about one half to one full gap width. It becomes more unstable as the
gravity parameter increases, even though the interface is shifted closer to the wall. The
growth rate is largest far behind the finger tip, where the interface is both thicker,
and located closer to the wall, than near the finger tip. The competing influences
of interface thickness and wall proximity are clarified by means of a parametric
stability analysis. The tip instability mode represents a gravity-modulated version
of the neutrally buoyant mode. The analysis shows that in the presence of density
stratification its growth rate increases, while the dominant wavelength decreases. This
overall destabilizing effect of gravity is due to the additional terms appearing in the
stability equations, which outweigh the stabilizing effects of gravity onto the base
state.
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1. Introduction
The displacement of a more viscous fluid by a less viscous one in a Hele-Shaw

cell represents a fundamental problem that has been studied from many points of view,
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FIGURE 1. Configuration of a horizontal Hele-Shaw displacement. The lighter and less
viscous fluid 1 injected from the left displaces the denser, more viscous resident fluid 2 to
the right.

cf. the reviews by Homsy (1987) and Yortsos & Zeybek (1988). In recent years, a
number of investigations have focused on the miscible variant of this flow, in order
to assess the role of diffusion and dispersion (Taylor 1953) in displacement processes.
The unfavourable viscosity contrast usually causes these flows to be unstable (Goyal &
Meiburg 2006), although this instability is frequently modulated by the simultaneous
existence of density variations.

When the displacement direction is aligned with the direction of gravity (Wooding
1969; Lajeunesse et al. 1997), the main symmetry of the flow with regard to the centre
plane of the gap is maintained in the presence of a density difference. Nevertheless,
these density differences can lead to a substantial change in the dominant wavelength
and the associated growth rate (Lajeunesse et al. 1999; Goyal, Pichler & Meiburg
2007). Related information for the corresponding Darcy problem is provided by
Bacri, Rakotomalala & Salin (1991) and Manickam & Homsy (1993). On the other
hand, when a variable density displacement occurs in a predominantly horizontal
direction (cf. figure 1), the interplay between viscosity and density stratification can
be fundamentally different, as gravity will now destroy the up–down symmetry of the
base flow within the gap of the Hele-Shaw cell. The flow has the form of a finger of
the less viscous fluid propagating along the centre of cell, while layers of the resident,
more viscous fluid are left behind on the walls. More recently, Taghavi and coauthors
(Taghavi et al. 2009, 2010, 2011, 2012) have extended such investigations to address
the role of channel inclination and inertial forces in displacement flows. Furthermore,
several authors have addressed displacement flows in horizontal capillary tubes (Chen
& Meiburg 1996; Petitjeans & Maxworthy 1996; Vanaparthy & Meiburg 2008; Martin
et al. 2011) as well as in inclined tubes (Séon et al. 2004, 2005, 2006, 2007a,b).

In addition, the situation of unidirectional base flows with viscosity and density
differences, and the instabilities that can arise in such flows, has been investigated by a
number of authors (Govindarajan 2004; Selvam et al. 2007; d’Olce et al. 2008, 2009;
Sahu et al. 2009a,b; Selvam et al. 2009). For unidirectional flows in the absence of
density variations, the linear stability investigation by Talon & Meiburg (2011) showed
that three-layer, miscible Poiseuille flows can be unstable even in the Stokes flow
limit. In the presence of a density difference, one of the horizontal interfaces will be
gravitationally unstable, while the other one is stable. In this context, we note that
Maxworthy (2004, personal communication) has experimentally observed longitudinal
‘streaks’ superimposed on growing viscous fingers, which may indicate the presence
of a secondary instability. These streaks are aligned in the displacement direction,
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and they are separated in the spanwise direction by a distance that is several times
shorter than the wavelength of the viscous fingering instability. Similar observations of
additional flow structures were made in the parabolic flight experiments by Vedernikov
et al. (2001) and Aubertin et al. (2009), as a result of the transition from microgravity
to amplified gravity of nearly twice the normal strength. To the best of the authors’
knowledge, neither the features of the base flow in the presence of a density difference,
nor the origin of these longitudinal streaks have been addressed to date, either
theoretically or computationally. The present investigation aims to analyse this flow
configuration based on the three-dimensional Stokes equations. Towards this end, we
will first establish the nature of the two-dimensional base flow in the gap of the cell as
a function of the governing dimensionless parameters. Subsequently, we will linearize
the three-dimensional equations around this two-dimensional base state, in order to
analyse its stability characteristics.

Section 2 will define the physical problem, state the governing equations, and
provide a brief overview over the numerical methods employed. By means of Stokes
simulation results, § 3 will discuss the influence of gravitational effects on the two-
dimensional base flow in the gap. Subsequently, § 4 investigates the potential for
a gravitational instability to develop along the predominantly horizontal interfaces
of this base state. A parametric stability analysis will serve to clarify the roles of
interfacial thickness and wall proximity. Section 5 discusses the modulation of the
viscously driven tip instability by gravity. The two instability modes are compared in
terms of their respective growth rates and wavelengths in § 6, and a summary of the
findings is presented. In Part 2 (John et al. 2013), we will extend the present linear
stability investigation to nonlinear simulations, in order to address the role of density
differences in viscously unstable, miscible displacements (Oliveira & Meiburg 2011).

2. Problem formulation
2.1. Governing equations

Figure 1 displays the flow configuration in a horizontal Hele-Shaw cell of width e.
A lighter and less viscous fluid 1 is injected from the left with an average velocity
U, thereby displacing the resident, heavier and more viscous fluid 2 to the right. The
two fluids are miscible with each other in all proportions. Here z and x denote the
spanwise and main flow directions, respectively. Gravitational forces, which act in the
cross-gap −y-direction, result in the loss of symmetry with regard to the centre plane
of the Hele-Shaw cell, as they cause the lighter, injected fluid to rise upwards. Since
the no-slip condition at the upper wall causes a thin layer of the heavier, resident
fluid to remain next to the wall, a gravitationally unstable interface forms on the upper
side of the injected fluid that may give rise to a gravitational instability. The present
investigation aims to analyse this density-driven instability namely the viscously driven
instability at the finger tip, and to identify the respective parameter regimes dominated
by each of them.

We focus on situations in which density differences are small and a suitably
formed Reynolds number typically is less than O(1). The flow field then satisfies
the three-dimensional incompressible Navier–Stokes equations under the Boussinesq
approximation, along with a convection–diffusion equation for the concentration field

∇ ·u= 0, (2.1)

ρ2

(
∂u
∂t
+ u∇u

)
=−∇(p+ ρ2gy)+∇ · τ + (ρ − ρ2)g, (2.2)
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∂c

∂t
+ u ·∇c= D1c. (2.3)

Here u denotes the fluid velocity vector, while τ indicates the Newtonian stress
tensor. Here p, ρ and c refer to pressure, density and concentration of the displaced
fluid, respectively, and g represents the vector of gravitational acceleration. The
diffusion coefficient D is taken to be constant. As in previous investigations, we
assume the density–concentration and viscosity–concentration relationships are linear
and exponential, respectively,

ρ(c)= ρ1 + c1ρ, (2.4)

µ(c)= µ2 eR(c−1), (2.5)

with

1ρ = ρ2 − ρ1, (2.6)
R= ln(µ2/µ1). (2.7)

In order to non-dimensionalize the governing equations, we introduce the characteristic
scales

L∗ = e, U∗ = U, T∗ = e

U
, P∗ = µ2U

e
, τ ∗ = µ2U

e
. (2.8)

We thus obtain for the dimensionless variables ũ, p̃, ρ̃, τ̃ and c

∇ · ũ= 0, (2.9)

Re

(
∂ ũ

∂ t̃
+ ũ∇ũ

)
=−∇p̃+∇ · τ̃ − Fc̃∇ỹ, (2.10)

∂c

∂ t̃
+ ũ ·∇c= 1

Pe
1c, (2.11)

with

F = 1ρge2

µ2U
, (2.12)

Pe= Ue

D
(2.13)

Re= ρ2Ue

µ2
. (2.14)

For the sake of simplicity, the tilde symbols will be omitted from now on. The Péclet
number Pe indicates the relative magnitudes of the diffusive and convective (based on
U) time scales, while the gravity parameter F provides the ratio of buoyancy (1ρg) to
viscous (µ2U/e2) forces.

As a result of employing the larger viscosity in rendering the governing equations
dimensionless, the Schmidt number Sc = ν/D of typical fluid combinations ranges
from O(104) to O(106). Hence, even for the largest Péclet numbers of O(103)

investigated below, a suitably defined Reynolds number is of O(0.1) or less. As is
demonstrated in Part 2 (John et al. 2013), for such small values of the Reynolds
number, the two-dimensional bases states are nearly indistinguishable from their
Stokes flow counterparts. For this reason, we employ Stokes flow base states
throughout the linear stability investigation. However, in order not to miss any
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potential inertially driven instability modes, we keep the inertial terms in the linear
stability equations.

2.2. Numerical implementation
The numerical implementation follows our previous investigations (Goyal & Meiburg
2004, 2006; Goyal et al. 2007), and the reader is referred to these references
for detailed information on the solution methodology and convergence checks. In
summary, nonlinear simulations of the two-dimensional Stokes equations in the fourth-
order streamfunction formulation are employed to obtain the convectively dominated,
quasisteady base state in the (x, y)-plane. A typical domain size is [−6, 6]×[−0.5, 0.5],
with a mesh size of 1701× 231.

A linear stability analysis of this base state is then performed with regard
to spanwise perturbations along the front, and both spanwise and streamwise
perturbations along the upper interface. Towards this end, the Stokes equations are
linearized around the base state, and subsequently discretized to give a generalized
numerical eigenvalue problem. The goal is to determine the eigenvalue

σ = f (α, β,Pe,R,F) (2.15)

representing the growth rate of the perturbation, along with the associated
eigenfunctions. The viscosity ratio R, the Péclet number Pe, and the gravity number
F all influence the base state separately, and so all three of these dimensionless
parameters enter the dispersion relation separately. Here α and β refer to the
streamwise and spanwise perturbation wavenumbers, respectively.

The simultaneous presence of gravitational and viscous instabilities, possibly in
different regions of the flow field, renders the present situation somewhat more
complex as compared with the earlier investigations mentioned above. There, the
instability was always limited to the region around the moving tip of the displacement
front, even for variable density displacements in vertical Hele-Shaw cells (Goyal et al.
2007). Hence, for the linear stability analysis it was sufficient to consider a limited
region around the tip, in a reference frame moving with the quasisteady tip velocity,
and to assume that the perturbation eigenfunctions would die out away from the tip. In
the present situation, on the other hand, we still expect the viscous instability mode to
be limited to the tip region, while the gravitational mode can occur anywhere along
the upper interface. In this context it is important to realize that the trailing sections of
this interface are not advancing with the same quasisteady velocity as the tip, so that
their stability properties cannot be investigated in this moving reference frame. Hence,
we have to analyse the tip region and the upper interface separately. Additional details
will be provided below.

We now proceed to establish and characterize the two-dimensional, quasisteady base
states, whose linear stability properties will subsequently be evaluated. Owing to their
inherent complexity, these base flows cannot be determined analytically or described in
the form of similarity solutions, so that we need to generate them via nonlinear, two-
dimensional simulations. This approach had previously been employed successfully by
Goyal et al. (2007). Here it is important to note that the base flow contains the effects
of diffusion, so that it will never become truly steady. However, as we will see, a
quasisteady state is established for an extended period of time. In order to conduct the
linear stability analysis, we then assume that the time scale on which the base state
changes is larger than that which governs the growth of the instability. The validity of
this assumption will be established a posteriori in Part 2 of this investigation, where
we compare the growth rates obtained from present linear stability analysis with those
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FIGURE 2. Concentration contours c = 0.1, 0.5 and 0.9 and some velocity vectors at t = 4.1,
for two-dimensional displacements with R = 2.5 and Pe = 2000. The value of the gravity
parameter is: (a) F = 0, (b) F = 40, (c) F = 60 and (d) F = 80. As F increases, the injected,
lighter fluid is shifted towards the top of the cell, while the tip propagation velocity of the
displacement front increases.

observed in the early stages of fully three-dimensional simulations. This comparison
shows that the instability growth during the early stages is captured reasonably well by
the linear analysis to be described below.

3. Two-dimensional Stokes flow simulations
The two-dimensional Stokes flow simulations in the x, y-plane are initiated with a

Poiseuille flow velocity profile and an error function concentration field

c(x, y, t = 0)= 1
2
+ 1

2
erf
(x

δ

)
, (3.1)

where δ = 0.1. As in our earlier investigation of neutrally buoyant displacements
(Goyal & Meiburg 2006), the quasisteady flow features and their linear stability
properties are independent of δ over a wide range of values. Moreover, the
experiments by Aubertin et al. (2009) show that the viscous fingering instability occurs
only after the formation of the two-dimensional base state, so that the initial interface
thickness δ does not influence the properties of the instabilities under consideration.

Figure 2 shows the displacement front (also referred to as ‘finger’) for various
values of the gravitational parameter F, at identical times and for constant values of
R and Pe. As expected, for larger F-values the injected, lighter fluid is increasingly
shifted towards the top of the cell. Nevertheless, even for large F viscous forces
push the tip of the front towards the cell centre, thus resulting in a bending of the
displacement front similar to the observations of Petitjeans & Maxworthy (1996) for
displacements in capillary tubes.

This shape of the displacement front is reflected in the configuration of the
streamlines. Figure 3 displays the streamlines for R = 2.5, F = 80 and Pe = 2000,
both in the laboratory reference frame (figure 3a) and in the reference frame moving
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FIGURE 3. Streamlines for the quasisteady base state with R = 2.5, F = 80 and Pe = 2000.
(a) Streamlines in the laboratory frame of reference. (b) Streamlines in the tip region, in the
reference frame moving with the tip velocity.
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FIGURE 4. Velocity (a) and y-location (b) of the tip as functions of time for different F-
values, at R = 2.5 and Pe = 2000. With increasing F, the tip propagates faster, and it is
located closer to the upper wall.

with the tip (figure 3b). Here we define the tip as the farthest downstream position
of the c = 0.5 contour, located at (xtip(t), ytip(t)). The streamlines in the laboratory
frame of reference indicate that, within the injected fluid, there is an upward velocity
component. Their closer spacing furthermore reflects the fact that within the finger
the streamwise velocity is larger than in the corresponding Poiseuille flow regions
upstream and downstream of the front. In the moving reference frame, we recognize
that the stagnation point near the finger tip has been shifted towards the upper side of
the finger by the gravitational forces, and that a small recirculation region has formed
in the bottom half of the tip. A more detailed discussion of the long-time evolution of
the base state properties can be found in Part 2 (John et al. 2013).

Figure 4 displays the evolution of the tip velocity utip = dxtip(t)/dt and its y-position
ytip as functions of time. For small F, the velocity approaches a steady state after
a brief transient, consistent with earlier numerical and experimental observations for
F = 0 (Chen & Meiburg 1996; Petitjeans & Maxworthy 1996; Rakotomalala, Salin
& Watzky 1997a,b; Goyal & Meiburg 2006). As F increases, the transient phase
required to establish a quasisteady tip velocity lengthens, until it eventually takes so
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long that diffusive effects become noticeable. At this point, a quasisteady tip velocity
is no longer observed, although it is interesting that for all F-values the tip velocity
eventually converges towards very similar values.

The movement of the tip is governed by the balance of gravitational and viscous
forces. While the gravitational forces tend to displace the tip upwards, the viscous
forces favour a symmetric flow and, hence, force the tip back towards the centre of
the gap. Imagine for a moment that at time t = 0, when the interface is vertical, there
is no net displacement, so that the flow is driven by density differences only. In this
case, the light fluid would rise to the top and form a finger that propagates rightward
just below the upper wall. Conversely, the heavy fluid would sink downward and form
a left propagating finger along the bottom wall. This mechanism (which corresponds
to a viscous lock exchange gravity current, cf. Härtel, Meiburg & Necker (2000))
dominates the very early stages of the flow, so that the tip of the emerging finger
initially is far above the centre of the gap. However, soon viscous forces become
significant and force the finger tip downward towards the centre of the gap. Hence, the
competition between gravitational and viscous forces is responsible for the downward
motion of the finger tip during the early phase.

In order to be able to quantify the degree of steadiness of the base state, we employ
as a criterion

1
utip

∣∣∣∣dutip

dt

∣∣∣∣< 0.01. (3.2)

If this criterion is satisfied, we refer to the base state as quasisteady. Clearly, the
allowable value of the tip deceleration represents a somewhat arbitrary parameter
in the above criterion. In determining this value, we decided to err on the safe
side, i.e. to impose a relatively strict criterion, in order to obtain as ‘clean’ a base
state as possible. It may take a considerable time before the base flow achieves
this level of quasisteadiness, and perturbations can, of course, already grow before
this state is fully reached. Depending on the initial perturbation level of a three-
dimensional simulation or an experiment, it could even be that perturbations will grow
to substantial amplitudes before the quasisteady state is fully reached. The experiments
by Aubertin et al. (2009), however, indicate that the instability usually arises after the
quasisteady base state has been reached, thus validating the present approach.

For moderate values of F, the vertical tip location ytip also reaches a quasisteady
equilibrium value (figure 4b), which confirms that the upward gravitational force
acting on the finger is balanced by a corresponding downward viscous force.
Interestingly, in spite of its closer proximity to the wall, the transient tip propagation
velocity increases with F.

Figure 5 shows the dependence of the tip velocity and its y-position on F, for
different viscosity ratios. The tip velocity is seen to increase with F for all values of R.
Beyond a certain value of F, a quasisteady state is no longer reached. Consistent with
earlier observations for F = 0, utip increases with R for all values of F.

In terms of the present dimensionless variables, the data for the y-location of the tip
as function of F are seen to collapse for all values of R, cf. figure 5(b). This suggests
that only the larger of the two viscosities enters into the equilibrium of gravitational
and viscous forces that determines the tip location.

The dependence of utip and ytip on the Péclet number is shown in figure 6.
Consistent with earlier observations for neutrally buoyant displacements, the tip
velocity increases with the Péclet number, before levelling off for high Pe-values. The
Pe-value at which this levelling off takes place increases with F. For small Pe-values,
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FIGURE 5. Velocity (a) and y-location (b) of the tip as functions of the gravitational
parameter F, for different viscosity ratios and Pe = 2000. Open symbols correspond to
simulations where a quasisteady state was not achieved. The curves for the tip location
are seen to collapse, which indicates that the equilibrium tip location is not affected by the
viscosity ratio.
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FIGURE 6. Velocity (a) and y-location (b) of the tip as functions of the Péclet number, for
different gravity parameters and R = 2.5. Open symbols correspond to simulations for which
a quasisteady state was not achieved. The tip velocity increases with Pe before levelling off,
while the tip location is largely independent of Pe.

the tip velocity is largely independent of F. The vertical tip location depends only
weakly on Pe.

4. Gravitational instability mode
In this section, we investigate the existence of a Rayleigh–Taylor mode at the

predominantly horizontal, unstably stratified interface between the two fluids. As
mentioned above, there is no single reference frame in which the entire interface
is quasisteady, so that we have to analyse different sections of the interface separately.
This is facilitated by the nearly unidirectional flow along most of the interface, which
allows us to assume a locally one-dimensional base state, as sketched in figure 7.

Rayleigh–Taylor instability between miscible fluids in Hele-Shaw cells has
previously been analysed (Fernandez et al. 2002; Graf, Meiburg & Härtel 2002;
Martin, Rakotomalala & Salin 2002; Goyal & Meiburg 2004), although in those
earlier investigations the Hele-Shaw apparatus was oriented vertically. The present,
horizontal configuration differs from a vertical cell in important aspects. Here, the
unstable fluid layer extends infinitely in the horizontal direction, while it is bounded
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FIGURE 7. Along the unstable, predominantly horizontal interface separating the two fluids,
the flow is nearly unidirectional, so that we can assume a locally one-dimensional base state
that depends only on the y-direction.

by walls above and below. In the vertical cell, on the other hand, the fluid layer is
bounded by sidewalls, while it extends infinitely in the direction of gravity. For the
horizontal configuration, we expect the walls above and below to have a stabilizing
effect, especially for large F-values, when the unstable interface is located near one
of the walls. Thus, we may expect a competition between two opposing effects: on
the one hand, a large gravitational parameter should amplify the Rayleigh–Taylor
instability mode. On the other hand, for large F the interface is brought closer to
the wall, which should have a stabilizing effect. A further important difference with
previous work concerns the existence of a base flow velocity in the present case. A
Rayleigh–Taylor instability can develop either in the streamwise (‘α-mode’) or the
spanwise (‘β-mode’) direction. We expect that streamwise and spanwise perturbations
will be affected differently by the base flow velocity, and it is not obvious a priori
which mode will dominate in a given parameter regime. This issue will be clarified
through the linear stability analysis to be discussed below.

4.1. Linearization
To perform the local linear stability analysis of the gravitational mode at the
streamwise location x0, the governing equations (2.9)–(2.11) are linearized around
the y-dependent base state. We assume locally unidirectional flow in the x-direction
and expand the flow variables as

u(x, y, z, t)= ū(x0, y)+ u′(x, y, z, t) (4.1)

v(x, y, z, t)= v′(x, y, z, t) (4.2)

w(x, y, z, t)= w′(x, y, z, t), (4.3)

p(x, y, z, t)= p̄(x0, y)+ p′(x, y, z, t), (4.4)

c(x, y, z, t)= c̄(x0, y)+ c′(x, y, z, t). (4.5)

We assume then a normal mode decomposition in the streamwise (α-mode) or
spanwise (β-mode) direction of the form

p′

w′

u′

v′

c′

=


P̂(y)
Ŵ(y)
Û(y)
V̂(y)

Ĉ(y)

 ei(αx+βz−ωt). (4.6)
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We thus obtain a generalized eigenvalue problem

Aφ =−ωBφ, (4.7)

where the operators A, B and the vector φ are defined as

A=



0 iβI iαI ∂y 0

−iβI M1 0 iβReR(c̄−1) ∂ c̄

∂y
I 0

−iαI 0 M2 M3 M4

−∂y 0 0 M5 M6

0 0 0 −∂ c̄

∂y
I M7


, (4.8a)

B=



0 0 0 0 0
0 iRe 0 0 0
0 0 iRe 0 0
0 0 0 iRe 0
0 0 0 0 i


and φ =


P̂
Ŵ
Û
V̂

Ĉ

 , (4.8b)

with

M1 =
[
(−β2 − α2)eR(c̄−1) − iReūα

]
I + ReR(c̄−1) ∂ c̄

∂y
∂y + eR(c̄−1)∂yy, (4.9a)

M2 =
[
(−β2 − α2)eR(c̄−1) − iReūα

]
I + ReR(c̄−1) ∂ c̄

∂y
∂y + eR(c̄−1)∂yy, (4.9b)

M3 =
[

iαReR(c̄−1) − Re
∂ ū

∂y

]
I, (4.9c)

M4 = eR(c̄−1)

[(
R2 ∂ ū

∂y

∂ c̄

∂y
+ R

∂2ū

∂y2

)
I + R

∂ ū

∂y
∂y

]
, (4.9d)

M5 =
[
(−β2 − α2)eR(c̄−1) − iReūα

]
I + 2ReR(c̄−1) ∂ c̄

∂y
∂y + eR(c̄−1)∂yy, (4.9e)

M6 =
[

iαeR(c̄−1) ∂ ū

∂y
R− F

]
I (4.9f )

M7 = 1
Pe
(−α2 − β2)I − iαūI + 1

Pe
∂yy, (4.9g)

where I , ∂y and ∂yy represent the identity matrix and the first and second derivative
operators, respectively. Solving this eigenvalue problem leads to the growth rate σ

as a function of the streamwise location x0 and the streamwise wavenumber α or
the spanwise wavenumber β. Here σ α(x0) and σ β(x0) will denote the streamwise and
spanwise local dispersion relations, respectively.

We note that, while the α-mode is affected by the streamwise base flow velocity
profile, for α = 0 the base velocity profile ū(x) and its derivative do not enter into
the stability equations, so that the β-mode reduces to the classical Rayleigh–Taylor
instability. We furthermore comment that F and Pe appear as a product, which has
the form of a Rayleigh number Ra = FPe = 1ρge3/µ2D. However, since these two
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FIGURE 8. (a) Concentration base state from the direct numerical simulation for F = 60,
R = 2.5, Pe = 2000 and time t = 4.1. (b) The yu and yd position of the c = 0.5 concentration
contour as function of the streamwise x-location. (c) Interface thickness δu and δd of the upper
and lower interface, respectively.

parameters individually influence the base state, they need to be considered separately.
Since inertia is known to destabilize viscous shear flow, we will investigate the
influence of the Reynolds number on the two instability modes (figure 18). However,
unless mentioned explicitly, the results presented below will be for Re= 0.

In the next section, we present results of the local stability analysis. Subsequently,
we perform a parametric study for different values of the two interface locations and
thicknesses.

4.2. Local stability analysis of the finger
As a representative case, we discuss the flow for F = 60, R = 2.5 and Pe = 2000 at
time t = 4.1. The base state is shown in figure 8(a). Figure 8(b) shows the y-locations
yu and yd of the upper and lower interface, defined by the c = 0.5 concentration
contour, as a function of the streamwise x-location. We note that in the central section
2 6 x 6 6.5 of the finger, where the unidirectional flow assumption is reasonably
valid, the y-location of the upper interface is approximately constant, while the lower
interface rises in the streamwise direction.

We define the upper and lower interface thicknesses δu and δd, respectively, in terms
of the root mean square (r.m.s.) of ∂c/∂y

δ =
√∫

y2
∂c

∂y
dy−

(∫
y
∂c

∂y
dy

)2

. (4.10)

This definition is particularly useful for investigating initially step-like profiles. We
remark that this definition is also consistent with the parametric thickness in the error-
function introduced later in (4.11), as it gives δ = δu and δd, respectively. Figure 8(c)
indicates that the upper interface thickness δu has a maximum in the central region of
the finger.
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FIGURE 9. Dispersion relations σ α(α, x0) (a) and σ β(β, x0) (b) at different locations x0 for
the base state corresponding to F = 60, R = 2.5 and Pe = 2000 at time t = 4.1. Along the
central section of the finger, both the maximum growth rate and the wavenumber of the most
dangerous mode vary little with the streamwise location.
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FIGURE 10. Maximum growth rate σ l
0(x0) (a) and the corresponding, most amplified

wavenumber (b) of the α- and β-mode as functions of x0, for F = 60, R= 2.5 and Pe= 2000
at time t = 4.1. Along the central section of the finger, both the maximum growth rate
and the wavenumber of the most dangerous mode vary little with the streamwise location.
The spanwise β-mode is always more unstable than the streamwise α-mode. The symbols
indicate the growth rates obtained when the parametric linear stability analysis, which will be
described below, is applied for the interfacial properties shown in figure 8.

We can now perform a linear stability analysis for every location x0, as described
above. Figure 9 displays representative dispersion relations σ α(α, x0) and σ β(β, x0) for
the base state depicted in figure 8.

Both the maximum growth rates σ α,β(x0) and the corresponding, most amplified
wavenumbers show relatively little variation along the central section of the finger, as
confirmed by figure 10. Note that the minima and maxima at the front and rear of the
finger are unphysical, since here the unidirectional flow analysis is not valid. Clearly,
at every x0-location the spanwise instability mode exhibits a much larger growth rate
than the streamwise one. In fact, the α-mode is stable along most of the interface. We
note that this result is not unexpected since, if the finger were α-unstable, we should
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FIGURE 11. The most unstable gravitational β-mode for F = 60, R = 2.5 and Pe = 2000 at
time t = 4.1. (a) Contours of ĉ superimposed onto the base state. (b) Eigenfunction of the
stream function. The instability alternately shifts the upper interface towards the top wall and
away from it, while modifying its local thickness periodically in the spanwise direction.

have seen streamwise instabilities arising in the direct numerical simulation (DNS) of
the two-dimensional base state. The physical interpretation of this behaviour will be
discussed in the context of the parametric study.

From the results shown in figure 10, we obtain the global maximum of the growth
rates σ αG and σ

β

G and the corresponding, most dangerous wavenumbers αG and βG,
along with the locations xαG and xβG where they are observed. Figure 11 provides insight
into the physical nature of the β-mode. It consists of a spanwise periodic array of
counterrotating streamwise vortices that alternately shift the upper, unstable interface
towards and away from the top wall. Those interface sections shifted closer to the wall
are steepened in the process, while the downward displaced sections grow thicker. This
instability mode is responsible for the ‘cavity formation’ observed in Part 2 (John et al.
2013).

The location xG of the highest growth rate reflects the influence of two competing
features, namely the vertical position and the thickness of the interface. One might
expect the wall to have a stabilizing influence, which should render the rear sections of
the interface more stable as compared with the forward sections, since they are located
more closely to the wall. At the same time, the forward sections of the interface
are thinner. Intuitively, one might associate thinner interfaces with larger growth rates.
Note, however, that the maximum growth occurs near x = 3, where the interface is
both thicker and nearer to the top wall, as compared with locations closer to the tip.
This perhaps unexpected behaviour will be analysed by means of a parametric study
below.

We now investigate the influence of the governing dimensionless parameters F,
R and Pe on the globally most unstable mode. Figure 12 displays the dependence
of the growth rate on F, for several values of the viscosity ratio. We note that
for every viscosity ratio and F-value, the β-mode is far more unstable than the
α-mode. The growth rate of the β-mode is seen to increase uniformly with F,
in spite of the fact that the unstable interface is shifted closer to the wall. This
indicates that the destabilizing effect of the increasingly unstable density stratification
outweighs the stabilizing effect of the top wall. Stronger viscosity contrasts are found
to enhance the growth rate. Since we employed the larger viscosity when rendering
the governing equations dimensionless, this means that for a constant viscosity resident
fluid, lowering the viscosity of the injected fluid results in a more vigorous instability.
Note that this observation is not in contrast to the findings of Goyal & Meiburg
(2004) for the Rayleigh–Taylor instability in a vertical Hele-Shaw cell. Those authors
found that an increase in the viscosity ratio had a stabilizing effect. However, they
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FIGURE 12. Growth rates of the globally most unstable α- and β-modes, as functions of the
gravity parameter F for different viscosity ratios and Pe= 2000.
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FIGURE 13. Location xG of the globally most unstable β-mode, along with the thickness of
the upper interface at this location. Pe= 2000 for all cases.

had employed the lower viscosity for the purpose of non-dimensionalizing. Hence, an
increase in the viscosity ratio corresponds to using increasingly viscous resident fluids,
which should be stabilizing. In Goyal et al. (2007) the authors normalize with the
larger viscosity and, similarly to our current findings, they observe an increase in the
viscosity contrast to be destabilizing.

Figure 13 displays several characteristics of the base state at the streamwise location
xG of the globally most unstable β-mode. For increasing F-values the instability
location moves towards the rear of the finger, and thus closer to the top wall, into a
region where the effective interface thickness δuG is somewhat larger. The reasons for
this observation will become clear from the parametric study to be discussed below.

The dependence of σ α,βG on the Péclet number is shown in figure 14. Consistent with
previous work for vertical Hele-Shaw cells, variations in Pe affect the instability only
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FIGURE 14. The global maximum of the growth rate σ α,βG , as function of the Péclet number
for different values of F and R= 2.5.

mildly. As Pe increases, the instability is enhanced somewhat for small F, while its
growth is reduced for higher F.

4.3. Parametric stability analysis
In order to investigate independently the influence of the interface thickness and the
proximity of the wall on the instability, we perform a parametric stability analysis for
a prototype interface. Towards this end, we define the concentration base profile as

c̄(y)= 1
2
− 1

2
erf
(

y− yd√
2δd

)
+ 1

2
+ 1

2
erf
(

y− yu√
2δu

)
. (4.11)

The unidirectional velocity profile ū(y) is deduced by a double integration of the one-
dimensional momentum balance for a given viscosity profile, subject to the constraint
that the average streamwise velocity has to be unity. The growth rates of the α-
and β-modes then become functions of both R, F and Pe, and of the two interface
positions (yu, yd) and thicknesses (δu, δd). Note that we also incorporate the possibility
to have a non-zero Reynolds number Re, in order to check the validity of the Stokes
flow assumption.

Figure 15 shows the growth rates σ αP and σ
β
P as functions of the two interface

positions (yu, yd) for Re = 0, R = 2.5, F = 60, Pe = 2000 and δu = δd = 0.01. We
note that the maximum growth rate for both modes occurs for yd = −0.5, i.e. when
the lower interface coincides with the bottom wall, so that effectively there is only
the upper, gravitationally unstable interface. In this case, the instabilities are most
pronounced when the upper, denser and more viscous fluid layer is somewhat thicker
than the lower one. On the other hand, if the upper interface is located close to the
upper wall or to the lower interface, the growth of the instability is damped. For
yu & 0.2, the growth rate is nearly independent of the lower interface position, as long
as the two interfaces are sufficiently far apart.

Interestingly, figure 15 indicates that the maximum growth rates of the α- and
β-modes are similar in magnitude. At first glance this may be unexpected, since
figure 12 had shown that for the DNS base state the spanwise β-mode grows much
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FIGURE 15. Parametric growth rates σ αP of the streamwise mode (a) and σ βP of the spanwise
mode (b), as functions of the upper yu and lower yd interface locations. The other parameter
values are Re= 0, R= 2.5, F = 60, Pe= 2000 and δu = δd = 0.01.

faster than the streamwise α-mode. Here it is important to keep in mind that the
DNS base state is characterized by an upper interface location of yu ≈ 0.4, for which
figure 15 indeed shows that spanwise waves grow much faster than their streamwise
counterparts.

In order to assess which mode dominates in which parameter regime, figure 16
displays the difference of the growth rates σ βP − σ αP as a function of the interface
locations. We note that for yu & 0.1 the spanwise β-mode generally dominates,
whereas for yu . 0.1 there exists a large region dominated by the streamwise α-
mode. We conclude that the proximity of the upper wall to the interface dampens the
streamwise mode more strongly than the spanwise one.

The thick black line and the open white circles in figure 16 indicate all of the
interface locations corresponding to the DNS. While the thick black line represents
those interface segments along which the streamwise derivative dyu(x)/dx < 0.01,
the white circles denote the segments with stronger slopes, where the parallel flow
assumption may be less well satisfied. We recognize that the entire interface lies in the
region where the spanwise mode dominates. In fact, it approximately follows a path
where the dominance of the β-mode is most pronounced.

In summary, figure 16 suggests that the dominance of the β-mode over the α-mode
observed in the stability analysis of § 4.2 is a consequence of the gravitational shift of
the upper interface toward the upper wall, and the stronger damping of the α-mode
by the resulting proximity of the wall. Figure 17 presents corresponding results for
F = 20 and 40, which display a similar trend.

We now briefly analyse the influence of Re, Pe and the thickness of the
gravitationally unstable interface for a representative pair of interface locations
(yu; yd) = (0.4;−0.2). It is well known that inertia can destabilize sheared viscous
flow (e.g. Yih 1967; Hinch 1984; Selvam et al. 2009) with a growth rate proportional
to the Reynolds number. Our objective here is to see how inertia might affect the
gravitational modes. Figure 18 shows that for Re 6 40 the influence of the Reynolds
number on the growth rates of the two modes is very small, which justifies the
Stokes flow assumption made earlier. The influence of the thickness of the upper
interface is somewhat counterintuitive. Figure 19 indicates that the growth rate of
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FIGURE 16. Difference of the growth rates σ βP − σ αP as a function of the upper yu and lower
yd interface locations, for different values of the viscosity parameter R. The other parameter
values are Re = 0, F = 60, Pe = 2000 and δu = δd = 0.01. The contour σ βP − σ αP = 0 is
highlighted by a somewhat thicker line. The open white circles and very thick black line
represent the interface locations (yu(x), yd(x)) corresponding to the DNS, e.g. figure 8: (a)
R= 2, σ βP − σ αP ; (b) R= 2.5, σ βP − σ αP ; (c) R= 3, σ βP − σ αP ; (d) R= 4, σ βP − σ αP .

the β-mode increases with the interface thickness. This observation resembles our
earlier findings for Rayleigh–Taylor instabilities in vertical Hele-Shaw cells (Goyal &
Meiburg 2004), which also showed that for variable viscosity fluids, thicker interfaces
can be more unstable than thinner ones. A similar behaviour was also observed for
shear instabilities between fluids of different viscosities (Talon & Meiburg 2011). We
remark that for very thick interfaces the growth rate would decrease again (not shown
in the figure), as the driving density gradient decreases, so that the most rapid growth
occurs for an intermediate thickness δu. This explains the unexpected result found in
§ 4.2 that the maximum growth rate occurs where the upper interface is thickest.

Not surprisingly, as discussed above, for a constant F-value the growth rate of the
β-mode increases with the Péclet number, i.e. with the Rayleigh number (FPe). We
note moreover that the growth rate seems to saturate for large Pe numbers, consistent
with the observations in Goyal & Meiburg (2004). Interestingly, the growth rate of
the α-mode increases rapidly above Pe≈ 2000. As discussed above, the streamwise α-
mode is also affected by the unstable density stratification. For the current combination
of interfaces positions, the streamwise shear flow has a stabilizing effect, but for large
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FIGURE 18. Parametric growth rates σ βP (filled symbol) and σ αP (open symbol) as functions
of the Reynolds number Re for the interface locations yu = 0.4 and yd = −0.2. The other
parameter values are R= 2.5, F = 60, Pe= 2000 and δu = δd = 0.01.

Péclet (and thus the Rayleigh) numbers, the gravitational instability tends to overcome
this stabilizing effect of the shear flow.

5. Viscous mode
For the purpose of investigating the tip instability mode, we follow the approach

employed by Goyal & Meiburg (2006) for the neutrally buoyant case. By analysing
the quasisteady base flow in a moving reference frame, we obtain a computational
eigenvalue problem in a two-dimensional domain around the tip of the form of (4.7)



Miscible displacements in horizontal Hele-Shaw cells. 1 287

0

1

2

3

–1

4

0.02 0.04 0.06 0.080 0.10

(a) (b)

103 104102 105

0

1.0

1.5

0.5

–0.5

FIGURE 19. Parametric growth rate σ βP (filled symbols) and σ αP (open symbols) as functions
of the upper interface thickness (a) and the Péclet number (b), for the interface locations
yu = 0.4 and yd = −0.2. The values of the other parameters are R = 2.5, F = 60, Pe = 2000
and δu = δd = 0.01.

with

A=
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where
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R
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1st mode 2nd mode
xtip − xcut σ σ

5.5 0.697995 0.228195
4.5 0.697995 0.161296
3.5 0.697995 0.098228
2.5 0.697995 0.042463
1.5 0.697932 −0.00023

TABLE 1. Growth rate of the first and second instability modes for different values of
xcut , for R = 2.5, F = 60, Pe = 2000 and β = 4.5. Although the growth rate of the second,
gravitational mode depends on xcut , the dominant, viscous mode is not affected.

M6 = 1
Pe
(−β2I + ∂yy + ∂xx)− ū∂x − v̄∂y, (5.2f )

B=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 I

 and φ =


P̂
Ŵ
Û
V̂

Ĉ

 . (5.3)

Its solution yields the shape of the dominant mode along with the corresponding
growth rate. Since the use of a moving reference frame is appropriate for the region
near the tip only, we employ a computational domain that extends a few gap widths on
either side of the tip. At the domain boundaries we need to satisfy Neumann boundary
conditions for the eigenfunctions. Towards this end, we suppress the gravitational
instability mode along the upper, unstable interface at those domain boundaries far
ahead and behind the tip. This can be accomplished by artificially reducing the gravity
parameter F to zero a certain distance behind the tip, in a gradual fashion. To be
precise, we introduce an artificial x-dependence of F in the form

F(x)= F
(

1
2 + 1

2 erf(2(x− xcut))
)
, (5.4)

where xcut defines a position sufficiently far behind the tip location. Typically, in our
computations xtip − xcut ∼ 5, which is sufficient for the properties of the tip instability
mode not to be affected (see table 1).

Figure 20 compares the eigenfunctions of the neutrally buoyant case (F = 0,
figure 20a) with the variable density case (F = 60, figure 20b) for R= 2.5, Pe= 2000
and β = 4.5. As the gravity parameter increases, the centre of the tip instability
mode shifts towards the upper interface, where it is reinforced by the unstable
density stratification. At F = 60, both the perturbation concentration and the associated
velocities are essentially limited to the upper half of the gap. In this way, the roll-like
structure of the perturbation velocity field observed by Goyal & Meiburg (2006) for
the neutrally buoyant case becomes distorted, as the dominant axis of rotation acquires
a streamwise component in addition to the cross-gap component. Figure 21 provides
quantitative information on the influence of density variations in the presence of a
gravitational field. The dispersion relations σ v(k) for R = 2.5, Pe = 2000 show that
as F increases, the most unstable mode is shifted towards shorter wavelengths. At the
same time, the maximum growth rate is enhanced.
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FIGURE 20. Eigenfunctions (from top to bottom) ĉ, ŵ and the vector field (û, v̂)
superimposed onto the concentration base state for R = 2.5, Pe = 2000 and β = 4.5. (a)
The neutrally buoyant case F = 0. (b) The variable density case F = 60. In the presence of a
density difference, the centre of the tip instability mode shifts towards the unstably stratified
interface.
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FIGURE 21. Dispersion relations σ v(k) for R = 2.5, Pe = 2000 and various values of F. An
increase in F results in higher growth rates, while shifting the most dangerous mode towards
shorter wavelengths.

Figure 22 displays both the growth rate σ vM and the wavenumber βvM of the most
unstable tip instability mode as functions of F, for various R-values and Pe = 2000.
An increase in the density contrast generally results in a mild amplification of the
growth. This effect is more pronounced for larger viscosity contrasts. In light of the
significant differences between the base states for small and large F (cf. figure 20),
the relatively small influence of F on the growth rate is perhaps surprising. Similarly
to the pure viscous fingering instability, larger viscosity contrasts have a destabilizing
effect at all values of F. Larger density contrasts uniformly reduce the wavelength of
the most unstable mode for all viscosity ratios. This effect is more pronounced for
small values of R.
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FIGURE 23. Dispersion relation σ v(k) for R = 2.5, Pe = 2000, F = 0 (circle) and F = 60
(square). The dashed line with diamonds corresponds to a base state obtained for F = 60, but
with the gravity term having been removed from the stability analysis. The dashed line with
triangles corresponds to a base state obtained for F = 0, but F = 60 in the stability analysis.

Gravity affects the present stability problem in two fundamentally different ways.
First of all, it modifies the base state by breaking the symmetry of the displacement
front with respect to the centre plane of the Hele-Shaw cell, as discussed above in § 3.
Second, the presence of density variations in a gravitational field results in additional
terms in the linearized stability equations. In order to establish which of these two
effects dominates, we carried out two additional calculations. In the first, we employed
the base state for F = 0, R = 2.5 and Pe = 2000, but retain the gravitational terms
for F = 60 in the stability calculation. In the second, we employed the base state
for F = 60, R = 2.5 and Pe = 2000, but eliminated the gravitational terms from the
stability calculation. Figure 23 displays the corresponding dispersion relations. They
show that the change in the base state as a result of gravity is stabilizing, while the
presence of gravitational effects in the stability equations increases the growth rate and
shifts the most amplified mode to shorter wavelengths. We conclude that the growth
of the tip instability is governed by the competition of two effects. The symmetry of
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the base state is broken for F 6= 0 and the finger moves towards the wall, which is
stabilizing. On the other hand, the presence of the unstable density stratification in a
gravitational field is destabilizing. This effect dominates, so that overall the growth
rate of the tip instability mode increases with F.

6. Discussion and conclusions
We have analysed the linear stability of variable density and viscosity, miscible

displacements in a Hele-Shaw apparatus. In contrast to previous investigations
(Wooding 1969; Goyal et al. 2007), the current study has been focused on horizontal
Hele-Shaw cells, in which the influence of gravity on the base state and its linear
stability is quite distinct from vertical cells. As a first step, we obtained the two-
dimensional base states by means of nonlinear Stokes simulations. We found that,
even though gravity is oriented perpendicularly to the displacement direction, the
vertical position of the displacement front reaches an quasisteady equilibrium value.
This reflects a balance between viscous and gravitational forces that prevents the
displacement front from reaching the horizontal wall. The quasisteady tip propagation
velocity, and the length of the transient phase required to reach this velocity, both
increase with the gravity parameter.

The above family of base states allows for two different instability modes. First,
there is the familiar tip instability, which is driven by the unfavourable viscosity
contrast of the displacement, and which may be modulated by the presence of density
variations in a gravitational field. Second, we may expect a primarily gravitational
instability to occur along the unstably stratified horizontal interface of the base state
finger. In order to investigate these instabilities in detail, it is important to realize that
the base state is characterized by three main regions that need to be treated differently.
The tip of the displacement front is quasisteady in a reference frame moving with
the tip propagation velocity, and hence its linear stability needs to be studied in this
reference frame. The root of the finger is nearly quasisteady in the laboratory reference
frame. However, a close inspection of this region does not reveal any instability.
Finally, the section connecting the tip of the finger to its root is characterized by a
nearly unidirectional flow, so that its linear stability can be evaluated by analysing a
series of one-dimensional base states.

For the gravitational mode along the upper side of the finger, the investigation
shows that it becomes more unstable as the gravity parameter increases. This result
is not obvious since for higher gravity numbers the interface is located closer
to the wall, which can be expected to have a stabilizing effect. Interestingly, the
gravitational instability sees the highest growth rates far behind the finger tip, where
the interface is both thicker and located closer to the wall than near the finger tip. The
competing influences of interface thickness and wall proximity are clarified by means
of a parametric stability analysis. Moreover, it is shown that the proximity of the
upper wall to the interface suppresses the streamwise instability modes. Overall, the
gravitational mode is characterized by a wavelength of about one half the gap width,
which is about three to five times shorter than for the dominant tip instability mode.

The tip instability mode represents a gravity-modulated version of the neutrally
buoyant mode identified by Goyal & Meiburg (2004). The analysis shows that in
the presence of density stratification the growth rate increases slightly, while the
dominant wavelength decreases. This overall destabilizing effect of gravity is due to
the additional terms appearing in the linearized stability problem, which outweigh the
stabilizing effects of gravity onto the base state.
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FIGURE 24. Comparison of the gravitational and tip modes in the (F,R)-plane. Diamonds:
the viscous tip mode has a larger growth rate. Circles: the gravitational mode has a
larger growth rate. Open symbols correspond to parameter combinations for which a fully
quasisteady state was not reached.

It is of interest to determine where in the (F,R)-plane which of the two
above instability modes dominates. Towards this end, figure 24 distinguishes regions
according to which mode has the larger growth rate. The viscous mode is seen to
dominate for small F, whereas for larger F the gravitational mode has the higher
growth rate. However, it is to be kept in mind that these two instability modes
appear in different parts of the flow field, so that throughout most of the (R,F)-plane
we expect them to coexist, with the gravitational mode characterized by a smaller
wavelength as compared to the viscous tip mode. In Part 2 of this investigation (John
et al. 2013), we will conduct high-resolution, three-dimensional numerical simulations,
in order to obtain insight into the nonlinear evolution of the viscous and gravitational
instabilities.
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