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[1] The recent advances in 3-D imaging of porous structures have generated a tremendous
interest in the simulation of complex single and two-phase flows. Lattice-Boltzmann (LB)
schemes present a powerful tool to solve the flow field directly from the binarized 3-D
images. However, as viscosity often plays an important role, the LB scheme should
correctly treat viscosity effects. This is the case using a LB scheme with two relaxation
times (TRT) unlike the broadly used, the single-relaxation rate, BGK, where the velocity of
the modeled fluid does not vary as the inverse of the viscosity applying the bounce-back
(no-slip) boundary rule. The aim of this work is to apply the LB-TRT approach to different
types of porous media (straight channels, 2-D model porous media, sandstone) to solve for
the flow field and to evaluate the approach in terms of parameter dependence, error and
convergence time on the basis of permeability. We show that the variation of permeability
with the free relaxation parameter L of the TRT scheme depends on the heterogeneity of
the sample and on the numerical resolution. The convergence time depends on the applied
viscosity and the parameter standing for the speed of sound, thus the computation time can
be reduced by choosing appropriate values of those parameters. Two approaches to
calculate permeability (Darcy’s law and viscous energy dissipation) are proposed and
investigated. We recommend to use Darcy’s law, as dependence on L is less important.
Periodic (in the presence of a driving body force) and pressure boundary conditions are
evaluated in terms of the results.
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1. Introduction
[2] Since the past decade, numerical experiments are

commonly performed to determine and investigate transport
properties of porous structures such as electrical conductiv-
ity, permeability, solute dispersion, relative displacement of
a two-phase flow or NMR response. A better understanding
of physical processes, and their complex interplay with the
pore structure, is nowadays achieved by solving the govern-
ing equations directly in the pore space obtained from
microtomographic (micro-CT) images [Auzerais et al.,
1996; Arns et al., 2001, 2004; Talabi et al., 2009; Zhan
et al., 2010; Ovaysi and Piri, 2010; Bauer et al., 2011].
The improvement and development of such approach is im-
portant, for instance in geophysics, to understand the inter-
action between the rock and the fluids and the resulting
consequences on the transport behavior. In contaminant hy-
drology and in petroleum engineering, the method permits
the determination of the (relative) permeabilities of rocks
and provides a fundamental understanding of the dispersion
process at the pore level.

[3] Most of the past studies deal with the flow of incom-
pressible viscous fluids and various numerical methods to
solve the flow equations were proposed. Two distinct
approaches should be mentioned: Pore network models [e.g.,
Fatt, 1956; Joekar-Niasar and Hassanizadeh, 2011] and
direct numerical simulations (e.g., Finite Element [Borne,
1992; Sun et al., 2010], Finite Volume [Adler et al., 1990;
Mostaghimi et al., 2010], Lattice-Boltzmann [Cancelliere,
1990; Zaretskiy et al., 2010]). The first is based on the mod-
eling of the pore space by a network of interconnected pores
and throats, reducing the governing equations to a system of
linear equations, which can be easily solved. The second
uses the voxel representation of the pore space obtained
from the micro-CT images as numerical grid without major
modification of the rock geometry and topology. Lately,
Lattice-Boltzmann schemes became very popular. The rea-
son for this lies mainly in the simplicity to solve the flow in
complex geometries like porous media. In addition, Lattice-
Boltzmann schemes are easily parallelized and therefore
ideally suited to treat relatively large volumes. This tech-
nique was developed following the pioneering works of
Rothman [1988] on Lattice Gas Automata (LGA) and Succi
et al. [1989] on Lattice-Boltzmann Equation (LBE). Among
the different schemes, the BGK model [Qian et al., 1992]
with a single-relaxation parameter � in combination with the
bounce-back boundary rule is the most popular. A major
drawback of the method is that the fluid velocity is not pro-
portional to the inverse of its viscosity. As a consequence,
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the permeability obtained with this method varies with the
viscosity. This dependence is mainly due to the bounce-back
boundary rule that imposes the location of the solid boundary
which has a numerical error that depends on the viscosity.
To overcome this problem, one solution is to use a more pre-
cise boundary scheme [Ginzburg and d’Humières, 2003;
Ginzburg et al., 2008a] or to increase the resolution of the
numerical domain, e.g., the pore space. Yet, imaging techni-
ques including micro-CT have a finite resolution that can be
of the same order as the pore size, making this approach
inappropriate. Another solution proposed by Manwart et al.
[2002] is to use a ‘‘magic’’ viscosity that corresponds to the
value of the relaxation time (� � 0:6) at which the effective
permeability does not depend on the resolution of the numer-
ical domain. Yet, this procedure has two disadvantages. First,
the prescribed � depends on the porous structure [Ginzburg
and d’Humières, 2003], the value obtained for Fontainebleau
sandstone might not be the same for other media. Second,
since the viscosity is imposed, this procedure cannot be used
in the case of two phase flow with different viscosities or
non-Newtonian flow. Such situations are however encoun-
tered in many applications such as in Enhanced Oil Recovery
[Wu and Pruess, 1996] as well as in soil remediation. A pos-
sible solution is to improve the BGK model by using a multi-
ple-relaxation-time (MRT) model [d’Humières et al., 2002]
or a two-relaxation-time (TRT) model [Ginzburg, 2007].
The ability of the MRT and TRT schemes were tested on
synthetic model structures like fiber materials [Ginzburg and
d’Humières, 2003], body-centered cubic arrays of spheres
and random-sized sphere packings [Pan et al., 2006] and
for several other regular structures using the TRT model
[Ginzburg et al., 2008b]. As demonstrated analytically in the
work of d’Humières and Ginzburg [2009], MRT schemes
lead to viscosity independent results only if the free relaxa-
tion parameters are correctly chosen. The proper choice
should keep fixed the specific combinations � (defined in
section 2) for all symmetric and antisymmetric collision
modes. The TRT scheme is the most efficient operator for
low Reynolds number flow. However, improper choice of
the free relaxation parameter in the MRT scheme leads to
viscosity-dependent permeability, explaining the result of
Narvaez et al. [2010]. It is important to remark that even if
the MRT, in its more general form, might be less efficient in
terms of computational cost, this is not the case for the TRT
scheme where computational costs equal those of BGK.

[4] Many articles on porous media apply the Navier-
Stokes equilibrium (and assuming low Reynolds number).
We will use Stokes equilibrium that is simpler and suffi-
cient for our purpose. The goal of the present paper is to
assess the TRT scheme to solve Stokes flow for pressure P
and momentum j

!
, prescribing kinematic viscosity � and

external body forcing �0F
!

:

r
!

P� �0F
!
¼ �� j

!
; (1)

in different types of porous media (straight channels, 2-D
generated porous media and binarized 3-D images of Fon-
tainebleau sandstone). The emphasis will on the evaluation
of the scheme in terms of parameter dependence, errors and
convergence time on the basis of permeability. The struc-
ture of the paper is as follows: the numerical implementa-
tion is presented in section 2. In section 3, we present the

results obtained from the different configurations. Section 4
is dedicated to the summary and conclusions. In Appendix A,
we show how to compute the effective permeability from the
viscous energy dissipation.

2. Hydrodynamic Problem and Presentation of
the TRT Method
2.1. Description of the TRT Method

[5] As a matter of principle, the basic idea of the Lattice-
Boltzmann method is to discretize the velocity distribution
function of particles on a grid. To this goal, we introduce
the population fq as the density of particles moving with the
velocity c

!
q. The algorithm is mainly a succession of two

steps. The first is the propagation step (equation (2)), where
we move the density on the grid according to its velocity.
The second is the collision step (equation (3)), where we
redistribute populations meeting at the same node using a
collision operator that depends on the local macroscopic
quantities (pressure, momentum, . . .).

[6] Modeling of the Navier-Stokes equations with the
TRT operator is discussed in detail in [Ginzburg, 2007;
Ginzburg et al., 2008a; Ginzburg, 2008]. In the present
work, we use the D3Q19 Stokes scheme where the unknown
variable of the scheme at time t is the Q-dimensional popula-
tion vector ffq; q ¼ 0; . . . ;Qmg, specified on the nodes r

!
of

the D-dimensional regular computational mesh �, where
Qm ¼ Q� 1 ¼ 18 and D ¼ 3.

[7] The nodes of the grid are related by the velocity vec-
tors c

!
q, q ¼ 1; . . . ;Qm and c

!
0 � 0. Without loss of gener-

ality, we assume that the first Qm

2 vectors c
!

q are opposite to

the second set of Qm

2 vectors defined as c
!

q ¼ �c
!

q. We then
operate with the symmetric ff þq ¼ ðfqþ fqÞ=2g and the anti-
symmetric ff �q ¼ ðfq � fqÞ=2}) components, q ¼ 1; . . . ;

Qm=2. We set f þ0 ¼ f0 and f �0 ¼ 0 for immobile population.
The two-relaxation-times (TRT) update is performed with
the prescribed equilibrium distribution fe6

q g, the external
momentum quantity S�q and two collision eigenvalues

s6 2 �0; 2½, sþ for all symmetric and s� for all antisym-
metric nonequilibrium components, fnþq g and fn�q g,
respectively. Thus, we obtain

f0ð r!; t þ 1Þ ¼ ½ f0ð1� sþÞ þ sþe0�ð r!; tÞ; fqð r! þ c
!

q; t þ 1Þ

¼ ~fqð r!; tÞ;
(2)

with

~fqð r!; tÞ ¼ ½ fq � sþnþq � s�n�q þ S�q �ð r
!
; tÞ; q ¼ 1; . . . ;

Qm

2

~fqð r!; tÞ ¼ ½ fq � sþnþq þ s�n�q � S�q �ð r
!
; tÞ; q ¼ 1; . . . ;

Qm

2
;

(3)

where

n6
q ¼ f 6

q � e6
q

� �
; f 6

q ¼
1

2
fq 6 fq
� �

;

when c
!

q ¼ �c
!

q; q ¼ 1; . . . ;
Qm

2
:

(4)
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[8] Computing the linear collision operator we have
accounted that the symmetric components are the same for
two opposite populations, and hence f þq ¼ f þq , nþq ¼ nþq ,

while the antisymmetric components have the opposite
signs, and hence f �q ¼ �f �q , n�q ¼ �n�q .

[9] The fluid dynamics, with the presence of a body
force �0F

!
, are obtained by prescribing the external momen-

tum set of quantities fS�q g and the equilibrium functions
e6

q . The latter require the computation of two quantities:
the local mass

� ¼
XQm

q¼0

fq ¼ f0 þ 2
XQm=2

q¼1

f þq ; (5)

and local momentum

J
!
¼
XQm

q¼1

fq c
!
q ¼ 2

XQm=2

q¼1

f �q c
!

q: (6)

Equilibrium functions then become

eþq ¼ c2
s t?q�; e�q ¼ t?qðJ

!
� c
!

qÞ; e0 ¼ �� 2
XQm=2

q¼1

eþq (7)

with

S�q ¼ t?q�0F
!
� c
!

q; (8)

where �0 is a constant and taken as the initial mass average
of the fluid (routinely, �0 equals 1) and the weights ft?qg are
isotropic and obey two constraints :

X
q

t?qcq�cq� ¼ ���; 8�;� and
X

q

t?qc2
q�c2

q� ¼
1

3
; 8� 6¼ �: (9)

Here, they take the value t?q ¼ ftI; tIIg ¼ 1
6 ;

1
12

� �
for, respec-

tively, the first and second (diagonal) neighbor link in the
D3Q19 model. We remark that the classical BGK model is
recovered when sþ ¼ s� ¼ 1

�.
[10] The TRT scheme with equilibrium functions (7)–(9)

models solutions to Stokes equations (in lattice units) by

@t�þr
!
� j
!
¼ 0; @t j

!
þ r

!
P� �0F

!
¼ �� j

!
(10)

where the kinematic viscosity is given by � ¼ 1
3

1
sþ � 1

2

� �
,

the pressure P by P ¼ c2
s� and the macroscopic momentum

by: j
!
¼ J

!
þ 1

2 �0F
!

with u
! ¼ j

!
=�0. With this definition, the

average velocity and mass flux are equal [Ginzburg and
d’Humières, 2003] which is important—as we shall see—
for the permeability computations.

[11] The sound velocity cs is a tunable positive parame-
ter, c2

s < c2max
s < 1, which is usually set to

ffiffiffiffiffiffiffiffi
1=3

p
, [Lalle-

mand and Luo, 2000]. Nonnegativity of the immobile
weight e0=� imposes c2max

s ¼ 1
2 for the D3Q19. However in

the present computation we reached c2max
s � 0:6 without

affecting the results. This agrees with the stability analysis

[Ginzburg, 2012] where necessary stability condition for
D3Q19 is c2

s < 1=ð1þ 2tIÞ ¼ 3=4.
[12] In the TRT scheme, the second eigenvalue s� is a

free parameter (we recall that s� 2�0; 2½). In addition, for a
steady flow, it has been recently demonstrated in the work
of Ginzburg et al. [2008a] and d’Humières and Ginzburg

[2009] that j
!

varies as the inverse of �, only if the associ-
ated parameter � ¼ ð 1

sþ � 1
2Þð 1

s� � 1
2Þ is kept constant. Con-

sequently, we will hereafter use � as control parameter
rather than s�. We note that in the case of the standard BGK
scheme, we have s� ¼ sþ ¼ 1=� and thus: �BGK ¼ 9�2.

2.2. Boundary Conditions

[13] In LB simulations, no-slip boundary conditions, i.e.,
j
!
ðx!Þ ¼ 0

!
at the solid/fluid interface are implemented by

the so-called bounce-back rule. In this method, particles
meeting a solid perform a bounce back rule such that :
fqð r!; t þ 1Þ ¼ ~fqð r!; tÞ. This rule imposes the position of the
solid interface half way between the two grid points located
in the fluid and in the solid for a straight velocity profile.
Other methods do exist to define the interface position. Yet,
for micro-CT images the position of the interface is not pre-
cisely known since it depends on the resolution and seg-
mentation procedure applied to separate the void from the
solid space (see section 3.4); we thus solely considered the
bounce back rule in the present study. Another advantage
of this rule is to keep the linearity of Stokes flow when �
is fixed.

[14] In order to drive the fluid, several methods exist
[Succi, 2001]. One is to impose a uniform body force in the
fluid at every point according to the definition of F

!
in equa-

tion (10), similar to a gravitational body force acting on the
fluid. This method is broadly used due to its relatively sim-
ple implementation, however, it requires a periodic sample.
This condition can be limiting in the case of 3-D natural po-
rous media since making the domain periodic implies an
increase of the domain by a factor 2 per axis and hence an
increase of the memory and computational time (for exam-
ple, a rough estimation of the memory requirement of a
volume of size N3 voxel with a porosity of � is given by
around � 160N3� bytes). One may mimic the periodic do-
main replacing periodic conditions by specular reflexion on
its bounds. This technique requires however a careful pre-
programming of link connections in complicated local geo-
metries, such as the corners.

[15] Another possible boundary condition consists of the
application of a pressure difference between the inlet and the
outlet of the system (here the plane x ¼ 0 and x ¼ L, respec-
tively). Numerically, the boundary pressure and a zero tan-
gential velocity at the inlet and outlet are imposed by using a
simplified mixed antibounce back method inspired from
[Ginzburg et al., 2008b] (see equation (2.41)):

fqð r!; t þ 1Þ ¼ �~fqð r!; tÞ þ 2t?qP0 � 1� 2

sþ

	 

sþnþq ð r

!
; tÞ

þ 1

2
t?qcqyjyð r!; tÞ þ

1

2
t?qcqzjzð r!; tÞ;

(11)

where P0 is the imposed pressure and q is the link that
crosses the boundary, ~fqð r!; tÞ is thus the outgoing distribu-
tion after collision. We remark that the last two terms of
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equation (11) forcing jy ¼ jz ¼ 0 do not affect significantly
the permeability calculation; they are however useful to
remove numerical oscillations observed at the boundary.
Their weights can be tuned by changing the prefactor
which is kept constant and equal to 1=2 in the present
work. Both driving condition types are used in this study.
We refer in the following as DC1: body force, periodic in
the direction of flow, no flow on the borders in the other
directions, DC2: pressure gradient in the direction of flow,
no flow on the borders in the other directions. In both cases,
we used the bounce back rule at the solid-fluid interface.

2.3. Determination of the Permeability

[16] The macroscopic permeability is computed from the
solution of the hydrodynamic problem (equation (1)) in
two ways. The first uses Darcy’s law which relates the
average local velocity to the average pressure gradient. The
diagonal elements of the permeability tensor K can be
computed as

KD;ii ¼ �
� < jiðx!Þ >

< riP� �0F
!

i >
; i ¼ 1; 2; 3; (12)

where < jiðx!Þ > is the volume averaged ith component of
the velocity field, and < riP� �0F

!

i > is the ith compo-
nent of the applied driving force across the sample. In the
case of a periodic structure, < riP >¼ 0 and �0F

!

i is the
volume averaged value of the applied forcing (see Ginz-
burg and d’Humières [2003] for details). When the pres-
sure gradient is prescribed, then < riP > is computed
from the average pressure at the inlet and the average pres-
sure at the outlet.

[17] The second method is to consider energy dissipation
due to viscous drag [Happel and Brenner, 1983]. In this case,
the permeability is computed using the following relation

KE;ii ¼
< jiðx!Þ>2

2 < �ð j
!
Þ : �ð j

!
Þ >;

(13)

where �ðx!Þ is the symmetric deformation rate tensor given
by

�ij ¼
1

2

@ji
@xj
þ @jj

@xi

	 

(14)

� : � ¼ 1

2

X
i;j

@ji
@xj

	 
2

þ @ji
@xj

@jj

@xi

" #
: (15)

The main advantage in the second approach lies in the fact
that LB scheme directly provide the deformation rate ten-
sor. It is directly computed from the nþq distribution using
weight relation (9) as

�ijð j
!
Þ ¼ � 3sþ

2

XQm

q¼1

nþq cqicqj: (16)

In the Appendix B, we show that the Darcy’s law and
energy dissipation approaches are identical for the driving
conditions we have considered.

3. Results
[18] The principal interest of section 3 is to interpret the

results obtained from binarized 3-D images of Fontaine-
bleau sandstone and to provide recommendations and infor-
mation on the choice of numerical parameters, permeability
formulations and micro-CT resolution. Nevertheless, given
the relatively complex structure of the sandstone, we first
apply the LB-TRT scheme to simpler model structures
(straight channel, assembly of straight channels in parallel
or series, 2-D model porous media with different degrees of
heterogeneity). These results will help us interpret the
results obtained from the micro-CT images.

3.1. Flow in a Narrow Straight Channel

[19] In Appendix C, we show that permeabilities calcu-
lated either by Darcy’s law (KD) or by the energy dissipa-
tion approach (KE) are in theory strictly identical. In
section 3.1 we evaluate the influence of the resolution for
both approaches by the TRT scheme using a simple geome-
try. To this goal we first present the effective TRT flow pro-
file jxðyÞ as a function of � which is then used to determine
analytically KD and KE. Then, we will investigate the de-
pendence of the permeability on � by applying the simplest
numerical integration rule (midpoint rue, corresponding to
a summation) commonly used to average the values from
the simulation data. Finally, we consider higher-order inte-
gration schemes.

[20] We first consider the flow in a channel consisting of
two parallel plates with D1=2 voxels filling the free space
between the walls. The solid interfaces are assumed to be
located half way between two adjacent voxels such that the
bounce back condition is fulfilled at the first order. The
effective profile computed by the TRT model assuming a
body force �0Fx follows a parabolic profile with,

jxðyÞ ¼
kf

2

	
D

2

	 
2

� y2



; (17)

where kf ¼ �0Fx

� and D is an effective width [Ginzbourg and
Adler, 1994; Ginzburg and d’Humières, 2003] given by

D2 ¼ D2
1=2 þ

16

3
�� 1: (18)

We see that the effective width (expressed in number of
voxels) varies with � and equals the actual width when
� ¼ 3=16. This mismatch converges as 1=D2

1=2 but it may

become important for low resolution when � is of the same
order as D2

1=2.

[21] We now investigate the influence of the numerical
error on the permeability of the channel. For this geometry,
the effective permeability Keff

D calculated using the Darcy’s
law (see equation (12)) is

Keff
D ¼

< jx>

kf
; (19)

with

< jx>¼
1

2h

Z h

�h
jxðyÞdy ¼ kf D2

12
: (20)
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The effective permeability is thus related to the effective
width by

Keff
D ¼

D2

12
: (21)

The energy dissipation approach (see equation (13)) gives a
permeability

Keff
E ¼

< jx>
2

2 < �2 >
(22)

with

<�2>¼ 1

4h

Z h

�h

@jx

@y

� �2

dy ¼ � 1

4h

Z h

�h
jxðyÞ

@2jxðyÞ
@y2

dy (23)

or, using equation (17), we have
@2jxðyÞ
@y2

¼ �kf leading to

<�2>¼ kf
2D2

24
(24)

so that equation (22) reduces to Keff
E ¼ D2

12. Both approaches
lead to the same value of the effective permeability using
equation (18):

Keff ¼ Kex þ
16
3 �� 1

12
; where Kex ¼

D2
1=2

12
: (25)

[22] The exact permeability is obtained for � ¼ 3=16.
However, to compute the permeabilities from the simula-
tion data, integrals in equations (20) and (23) are replaced
by sums. To investigate the influence of the numerical inte-
gration rule (midpoint rule, summation), we compute the
mean averaged values from the effective solution:

< jx>
TH ¼ kf

n

Xn

i¼1

h2 � i� 1

2

	 
2
 !

if D1=2 ¼ 2n;

) < jx>
TH ¼ kf

2nþ 1
2
Xn

i¼1

ðh2 � i2Þ þ h2

 !
if D1=2 ¼ 2nþ 1;

then < jx>
TH ¼

ð3D2 � D2
1=2 þ 1Þkf

24
;D1=2 ¼ 2n

or D1=2 ¼ 2nþ 1:

(26)

and

<�2>TH ¼
k2

f

2n

Xn

i¼1

i� 1

2

	 
2

if D1=2 ¼ 2n

)<�2>TH ¼
k2

f

ð2nþ 1Þ
Xn

i¼1

i2 if D1=2 ¼ 2nþ 1

then <�2>TH ¼
k2

f ðD2
1=2 � 1Þ
24

;D1=2 ¼ 2n or D1=2 ¼ 2nþ 1:

(27)

Note that relation (27) is exact since the first-order deriva-
tives are computed exactly for the parabolic profile using
equation (16). For Darcy’s law, the discretization of equa-
tions (19) and (26) gives

KTH
D ¼ Kex þ 8�� 1

12
: (28)

In this case numerical values are equal to the exact solution
KTH

D ¼ Kex if � ¼ 1=8.
[23] By means of the energy dissipation approach, equa-

tions (22), (26), and (27), yield

KTH
E ¼

ðD2
1=2 þ 8�� 1Þ2

12ðD2
1=2 � 1Þ

(29)

then KTH
E ¼ Kex if

� ¼
1� D2

1=2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1=2ðD2
1=2 � 1Þ

q
8

:
(30)

[24] Thus, for a given value of D2
1=2 the exact permeabil-

ity determined by the two approaches is obtained for two
different values of �. The result is confirmed in Figure 1
which shows KTH

D , KTH
E , KTRT

D and KTRT
E normalized with

Kex. The numerical results completely agree with relations
(28) and (29). Permeabilities computed by the Darcy’s law
or by the energy dissipation method using the TRT scheme
coincide with the values predicted by the numerical analy-
sis. In addition, they both show a linear increase with �
and cross the normalized permeability of the channel K ¼ 1
for two different values of �, 1=8 and 0.0623, respectively.
We can state that the slope of KTH

E is higher for the energy
dissipation method.

[25] Thus, although the exact permeability obtained by
Darcy and by the energy dissipation approaches are identi-
cal using an exact integration rule, the simulation results
differ due to the summation over the mesh. This difference
plays an important role in a low resolved channel.

[26] However, replacing the midpoint rule by a trapezoi-
dal rule, the ‘‘best’’ � value is � ¼ 5=16 for Darcy’s law

and � ¼ 5� 2D2
1=2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1=2ð2þ D2
1=2Þ

qh i
=16 for energy

dissipation method (cf. equation (29) and (30) for midpoint
rule). At the same time, applying the Simpson’s rule, e.g.,
replacing ðh2 � ði� 1=2Þ2Þ in the first line in equation (26)
by ðh2 � ½ði� 1Þ2 þ i2 þ 4ði� 1=2Þ2�=6Þ, one obtains the
following exact effective solution: < jx >TH ¼ ð3D2�
D2

1=2Þkf =24 which coincides with Kex ¼ D1=2

12 when D1=2 ¼
D, i.e., when � ¼ 3=16. Similarly, Simpson’s rule gives

< �2 >¼ kf D1=2

24 , and then KTH
E ¼ Kex for � ¼ 3=16. At this

point we stress the Simpson’s rule (S), midpoint (M) and
trapezoidal (T) rules are related: S ¼ 2M þ T

3 . This relation is
satisfied for � using Darcy’s law: 3

16 ¼ 1
3 2� 1

8þ 5
16

� �
,

because of the linearity of the effective width square with �.
However, it is not so for the energy dissipation method com-
puted as the ratio of two mean quantities. On this basis, we
should expect less linear dependency on � for this method.

[27] Although one could suggest that a high-order inte-
gration method will also improve the precision in arbitrary
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geometry, we believe that it would be so only provided that
(1) the effective solution imposes no-slip velocity at the
boundary nodes with the effective local second-order preci-
sion, at least, and (2), one may perform accurate interpola-
tions for the intermediate integration points. In porous
media, it is difficult to reach the local second-order preci-
sion because of insufficient pore resolution and imprecise
description of solid boundaries. At the same time, when the
boundaries are precisely described, the higher-order accurate
boundary schemes alone strongly reduce solution depend-
ency on � [Ginzburg and d’Humières, 2003; Ginzburg
et al., 2008a]. They are the best candidates for most accurate
permeability measurements, with or without using highly
accurate integration rules.

3.2. Permeability of Independent Channels Placed in
Parallel and Series

[28] To get insight into the sensitivity of � for a real po-
rous media characterized by its topology and its degree of
heterogeneity, we now consider a porous medium modeled
by an ensemble of individual permeabilities placed in par-
allel or series with respect to the flow direction. The effec-
tive or macroscopic permeability, for the first case, is the
arithmetic average of the individual permeabilities. For the
second case, the effective permeability is given by the har-
monic average. The individual permeabilities have a value
corresponding to the one obtained by the TRT method and
given by equation (28). The macroscopic permeability is
thus also a function of �. To determine the influence of the
degree of heterogeneity on the Kð�Þ curves, normalized

permeabilities resulting from arithmetic and harmonic
averages of the two normal random distributions of individ-
ual channel diameters with the same mean value:
< D1 >¼< D2 >¼ 10 and two standard deviations:
	1 ¼ 1, 	2 ¼ 3:5 are plotted in Figure 2 as a function of �.

[29] For the parallel configuration, the permeability
varies linearly with �. However, for the second configura-
tion, a negative curvature is observed. Also, the depend-
ence on � is more pronounced for the distribution with the
large standard deviation. This behavior can be explained by
the so-called bottleneck effect. If a porous medium is char-
acterized by a topology and heterogeneity in a way that it
always allows the fluid to pass through large pores, global
permeability and therefore dependency on � is determined
by those highly resolved pores. Thus, in this case depend-
ency on � is minor. However, in the case of a bottleneck
system, where fluid is forced to pass through small restric-
tions, global system behavior depends on those underre-
solved regions [Talon et al., 2010]. Thus, dependency on �
becomes important and nonlinear.

3.3. Two-Dimensional Model Porous Media: Array of
Circles and Truncated Gaussian Distribution

[30] Our attention is now drawn to the influence of vis-
cosity by comparing the TRT to BGK scheme, the choice
of driving conditions, the approach to determine permeabil-
ity (Darcy: KD or energy dissipation: KE) and the conver-
gence time as a function of the model parameters. To this
goal, a regular and a random 2-D porous medium was gen-
erated. The first corresponds to an array of disks whereas

Figure 1. Permeability measured by the Darcy (squares) and the energy dissipation (circles)
approaches for a channel of constant aperture D1=2 ¼ 10 as a function of �. The two lines show the theo-
retical results given by equations (28) and (29).
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the second was generated by assigning random values taken
from a Gaussian distribution to a two dimensional grid
[Adler et al., 1990]. All grid cells whose value is below a
certain value cth correspond to the solid phase and others to
the void space. The value of cth sets the porosity of the
media to 1� � ¼ 0:5ð1þ erf ðcth=

ffiffiffi
2
p
ÞÞ. The two porous

structures, displayed in Figure 3, have the same porosity,
� ¼ 0:75.

[31] Table 1 gives the permeability values obtained with
TRT and BGK scheme for the random porous media.
Results are given for both driving conditions (DC1: body
force, DC2: pressure gradient). The values of the perme-
ability obtained by TRT scheme are clearly viscosity inde-
pendent whereas those determined by BGK do depend
on �. Table 1 also gives the permeability obtained with the
different driving conditions (only for TRT scheme): the
values are close demonstrating that conditions are equiva-
lent. The small difference between the values can be
explained by the size of the porous media, being periodic it
is infinite for DC1, whereas for DC2 it has a finite size.

[32] Figure 4 shows the normalized permeability Kð�Þ
Kð�¼ 0:1Þ

for the two porous media as a function of �. Values of �
were chosen in the range of � 2 ½0:01; 0:4�, as � ¼ 3=8 is
the exact solution for diagonal Poiseuille flow. For higher
values of � the error becomes very important (see Ginzburg
et al. [2008b]). For both methods (Darcy’s law or energy
dissipation) and different porous structures, the permeability
depends nonlinearly on � with a lower gradient for the reg-
ular network. This reduction can be explained by the above
mentioned bottleneck effect (see section 3.2). In fact, the
heterogeneous porous medium has a local distribution of
the permeability which is larger than the one of the regular
porous medium. Thus, bottleneck effect in the irregular po-
rous media is more pronounced.

[33] Finally, the permeability increases faster with �
when it is computed using the energy dissipation method as

it is the case for a single channel. This increase is due to
the computation of the ratio of two averaged quantities,
< jx> and < �2 >, differently depending on � (see sec-
tion 3.1) and, perhaps, to high-order errors in equation (16).

[34] Figure 5 (top left) shows the convergence of KDðtÞ
toward its final value for different values of � computed by
the TRT scheme. Computations were done using the irregu-
lar porous medium. When a small value of � is used, KDðtÞ
converges with slight oscillations, they however become im-
portant for high values of �. In order to determine the conver-
gence time, we define criteria based upon the rate of change

of the permeability @KðtÞ
@t ; or numerically; Kðtiþ1Þ �KðtiÞ

tiþ1� ti

� �
. Cri-

teria using the relative distance to the final value are not

Figure 2. Macroscopic permeability values for straight
channels acting in parallel (thin dashed and solid lines) or
series (thick dashed and solid lines) normalized by
< Keff ð� ¼ 1=8Þ >. The diameters of the channels are ran-
domly drawn from a normal distributions with a fixed mean
< D > ¼ 10 but two standard deviations 	1 ¼ 1 (dashed
lines) and 	2 ¼ 3:5 (solid lines).

Figure 3. Regular and random 2-D model porous media
where the black color represents the solid phase.

Table 1. Permeability of the 2D Random Porous Media as a
Function of the Viscosity and the Two Driving Conditions Calcu-
lated by the TRT and the BGK Methodsa

Viscosity, �

TRT: DC1 TRT: DC2

BGK: DC2(L ¼ 0.01) (L ¼ 0.2) (L ¼ 0.01) (L ¼ 0.2)

0.01 0.5986 0.8177 0.5942 0.8124 0.5308
0.05 0.5986 0.8177 0.5942 0.8124 0.6319
0.1 0.5986 0.8177 0.5942 0.8124 0.7282
0.2 0.5986 0.8177 0.5942 0.8124 0.8953
0.4 0.5986 0.8177 0.5942 0.8124 1.2002

aThe two driving conditions were DC1 and DC2.
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suitable for natural porous media, since the exact permeability
of the samples are often not known. In Figure 5 (top right)

we plot @KDðtÞ
@t and we see that the convergence criteria is met

after the last oscillation, once the rate of change is either
below 10�10 (defined as criteria 1) or below 10�6 (defined as
criteria 2). Figure 5 (bottom) shows convergence as well as its
derivative for the BGK scheme. Convergence behavior is sim-
ilar to that for the TRT scheme, indicating that it is mostly
controlled by the viscosity value.

[35] Figure 6 gives the convergence time as a function of
� for the regular and the random porous media determined
using the two criteria. As expected, the convergence time is
shorter for criteria 2 than for criteria 1. The convergence
time also varies with the fluid viscosity with a global mini-
mum that depends on the porous structure and the applied
criteria.

[36] As pointed out in section 2, the sound speed cs is
also a free parameter. Figure 7 shows the convergence time
(criteria 2) as function of c2

s for various viscosities �. We
see that convergence time decreases with increasing values
of c2

s and the dependence on viscosity becomes less
important.

Figure 4. Normalized permeability Kð�Þ=Kð� ¼ 0:1Þ
obtained for the random (crosses) and the regular (circles)
2-D porous media as a function of � calculated by the
Darcy (solid line) and the energy dissipation approaches
(dotted line).

Figure 5. (left) Variation of the permeability K(t) and (right) its derivative
 @KðtÞ

@t

 as function of the
number of iterations for different viscosities for the irregular porous media. (top) TRT simulations with
� ¼ 0:2. (bottom) BGK simulations.
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[37] As a consequence, the computation time may be
optimized by using a proper combination of viscosity � and
speed of sound cS. This behavior strongly depends on the
porous structure. For instance, convergence time decreases
with the viscosity in the case of Poiseuille flow (results not
shown).

3.4. Application of the TRT to Fontainebleau
Sandstone

[38] A 3-D image of a small sample of Fontainebleau
sandstone was acquired by an X ray microtomography sys-
tem using a spatial resolution of �res ¼ 6 lm (see Figure 8).
Segmentation of the acquired gray level image was then
performed by thresholding at the minimum between the
two peaks of the gray level histogram (details about the
image acquisition and processing are given in the work of

Figure 6. Convergence time as a function of the viscosity for the periodic (circles) and the random
(crosses) porous media using criteria 1 (i.e., j @KðtÞ

@t j < 10�10) (dotted lines) and criteria 2 (i.e.,
j @KðtÞ

@t j < 10�6) (solid lines).

Figure 7. Convergence time of the permeability as a
function of c2

s and viscosity for the random 2-D porous
media using criteria 2 j @KðtÞ

@t j < 10�6.

Figure 8. Microtomographic 2-D slice of the Fontaine-
bleau sandstone sample of porosity � ¼ 14:5%. The corre-
sponding 3-D image size is 5003 with a 6 lm voxel size.
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Bauer et al. [2011]), resulting in a porosity of 14:5%. The
binarized image consists of 5003 voxels of length 6 lm.
This image map is then directly used for LBM simulations
using the voxels as the numerical grid. The statistical analy-
sis of the image reveals that the mean grain size of the sand-
stone is 250 lm. The correlation length of the segmented
image was determined by means of the autocorrelation
function Aðh

!
Þ ¼< f ð r!Þf ð r! þ h

!
Þ >. The correlation length

L was then deduced from an exponential fit applied to the
autocorrelation function [Keehm and Mukerji, 2004]. We
obtained a correlation length of L ¼ 13 voxels, which is
very close to the mean pore diameter � 80 lm (� 13:33
voxels).

[39] The first issue is to determine if the selected volume
of the imaged sample (i.e., 3 mm3) is sufficiently large to

represent a given property of the porous medium. A very
efficient way to determine the representative elementary
volume (REV) size is, first, to compute the continuum vari-
able—here the permeability—over different averaging win-
dows moved over the sample. Then, REV size and the
convergence rate toward the REV can be determined from
the variation of �ðaÞ ¼ j	KðaÞ=< KðaÞ > j, where 	K rep-
resents the standard deviation of < K >, as function of the
window size a [Bauer et al., 2008].

[40] In a recent study, Keehm and Mukerji [2004] pro-
pose to use a sample size of at least a ¼ 15L in order to
reduce the spreading of permeability 	KðaÞ to about 30%.
This value is slightly higher than the one we obtained; in
our case the spreading becomes lower than 30% for a sam-
ple size of a � 100 (see Figure 9). This difference might be
explained by the fact that we used a better resolution to
obtain micro-CT images. Also, the REV for the permeabil-
ity determined by Darcy’s law or by the energy dissipation
function might not be exactly identical. Yet, the autocorre-
lation function might be used to give a fast estimation of
the size of the REV without the need to solve for the flow
field.

[41] Due to the small size of the sample, we were unable
to obtain accurate experimental values its permeability. We
therefore estimate its value from experimental data
obtained for larger samples. Figure 10 shows a set of per-
meability values of a series of various Fontainebleau sand-
stones (taken from Zinszner and Pellerin [2007]); the data
are well adjusted by an exponential fit K ¼ �ð�� �Þ
 with
� ¼ 2:62, � ¼ 2:42, 
 ¼ 4:08 (RMSE¼0.31). Using this
law, the permeability of a sample of 14:5% porosity is
about 764mD 6 244mD.

[42] In Figure 11 we present KD obtained by the TRT
scheme (� ¼ 0:4 and � ¼ 0:2) and BGK ð� 2 ½0:01; 0:4�Þ
as a function of � for a sample of 3003 voxels. The upper
value of � ¼ 1 was chosen in order to cover the range of
the experimental data. According to equation (2.1), for the

Figure 9. REV size determination of the permeability
obtained by the energy dissipation function. Convergence
toward the REV, 	K : standard deviation of < KðaÞ >, a :
window size.

Figure 10. Permeability values of Fontainebleau sandstone samples (data set of Zinszner and Pellerin
[2007]) as a function of porosity.
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BGK simulations � was chosen in a way that the range of �
is similar to the one used for TRT scheme. The given per-
meabilities are expressed in ½mD�, conversion from LB
units to physical units is done using Kphys ¼ �2

resKLB. As
expected, the permeability values obtained by BGK depend
on the viscosity. However, in the investigated domain of �,
permeability values are within the range of the experimen-
tal data. Considering the TRT simulations, the nonlinear
dependence of KD on � is similar to the one presented in
section 3.3. Numerical results are in good accordance with
experimental data for � 2 ½0:05; 1�. As discussed previ-
ously this range depends on the image resolution. However,
considering theoretical values of � providing exact solu-
tions of straight (� ¼ 3=16 or � ¼ 1=8 when accounting
for the error of the numerical integration) or diagonal
(� ¼ 3=8) Poiseuille flow, we find that for homogeneous
structures, permeability can be reasonably estimated within
the range of experimental data by using 1=8 < � < 3=8.

[43] Table 2 shows the convergence time of the Fontai-
nebleau sandstone as a function of the viscosity for
� ¼ 0:2. To smooth data a moving average of N ¼ 50 was
applied before differentiation. Convergence criteria 2� @KðtÞ

@t < 10�6
�

was used. In contrast to the 2-D porous
media, there is no minimum in convergence time. Conver-
gence time decreases with decreasing viscosity. This is in

contrast to results of Pan et al. [2006] and Ginzburg and
d’Humières [2003] for artificial porous structure where
convergence time increases for lower viscosity.

4. Conclusion
[44] In summary, the TRT operator in combination with

the bounce-back rule is a powerful LBE scheme for perme-
ability computations in 3-D micro-CT images of porous
media, provided that the eventual variability of the results
with free parameter � is carefully controlled.

[45] The major interest of this approach lies in the viscos-
ity independence of the resulting permeability. Thus, it is the
most suitable for immiscible two-phase flow simulations.

[46] The obtained solution however depends on �. This
dependency is the numerical artifact of the scheme which
originates, mainly, from the second-order error in the clo-
sure relation of the bounce-back rule and, for higher orders,
from the structure of its nonequilibrium corrections. The
free parameter � has thus no physical meaning. We also
note that the TRT scheme is the most simple operator able
to maintain fixed the specific combinations for all symmet-
ric and antisymmetric collision modes. This guarantees a
viscosity independent permeability. It is therefore the most
efficient operator for low Reynolds number flow.

[47] The aim of the present work was to apply it to differ-
ent types of porous media and to evaluate it in terms of pa-
rameter dependence, error and convergence time. We would
like to conclude the present article with some remarks and
recommendations.

[48] Convergence time strongly depends on the applied
viscosity, convergence is faster for low viscosities for the
majority of the considered tests. Additionally, we stated
that for high values of sound speed cs convergence time
decreases and becomes less dependent on viscosity. Thus,
the use of low viscosities in combination with high values
of sound speed can strongly reduce computation time.

[49] We have shown that driving conditions DC1 (body
force) and DC2 (pressure gradient and zero tangential ve-
locity) give similar results. In LB methods, DC1 is easier to
implement and minimizes boundary effects. However, it
has very high memory consumption. Thus, for large sam-
ples, e.g., 3-D micro-CT images, DC2 is more convenient.

[50] The major objective was to determine the depend-
ence of permeability on �. As can be seen from equation
(21) and equation (18) that variation of K with � reduces as
L�2 with the applied resolution.

[51] Indeed, using a very high resolution permits the
reduction of this dependency, as has already been shown by
Narvaez et al. [2010]. Similar to BGK simulations depend-
ence on � reduces with increasing resolution. However,
especially in 3-D samples, where memory requirements are
more important than in 2-D samples, a compromise between
best resolution and maximal sample size, should be
accepted. Also, best resolution has generally a technical
limit. In this case, dependence on � cannot be neglected
and therefore has to be thoroughly investigated. We have
shown, that dependence on � is more pronounced for heter-
ogeneous than for homogeneous samples.

[52] Considering Fontainebleau sandstone digital sam-
ples of 14:5% porosity imaged at 6 lm resolution, we can
state that permeability values obtained by the TRT scheme

Figure 11. Permeability KD (given in mD) obtained by
TRT and BGK scheme as a function of �. The value of �
for the BGK scheme is deduced from equation (2.1). Driv-
ing conditions DC2 were used. Horizontal lines show the
range (dashed lines) and the mean (solid line) of the experi-
mental data.

Table 2. Convergence Time for Permeability Measurements of
the Fontainebleau Sandstone as a Function of the Viscosity for
L ¼ 0.2a

Viscosity, � Convergence Time

0.01 618
0.05 1325
0.1 1747
0.2 2344
0.4 3094

aConvergence criteria 2
� @kðtÞ

@t < 10�6
�

was applied.
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are in good accordance with the experimental data for
� 2 ½0:05; 1�. As mentioned in section 3.4, permeability of
homogeneous structures can be estimated reasonably well
(within the range of the experimental data) by using � in
the interval � 2 ½1=8; 3=8� which are the values of � pro-
viding exact solutions for straight or diagonal Poiseuille
flow. For the BGK scheme, values are within the range of
experimental data in viscosity interval we considered. As
expected BGK values depend on the viscosity. Considering
viscosity values such that 9�2 ¼ �2 2 ½0:05; 1�, the perme-
ability values are then found within the experimental inter-
val. In contrast to that, the TRT scheme allows a very large
range of viscosities. It is thus suitable to use this scheme
when viscosity contrasts are important (e.g., two phase
flow, non-Newtonian fluids. . .). Finally, we can conclude,
that dependence on � is less important when determining
permeability using Darcy’s law instead of the energy dissi-
pation function.

Appendix A: Permeability Computation Based
On Viscous Energy Dissipation

[53] Stokes equation can be written as follows:

0 ¼ � @P

@xi
þ �0Fi þ 2�

X
j

@�ij

@xj
; (A1)

where � is the deformation rate tensor �ij ¼ 1
2 ð

@ji
@xj
þ @jj

@ xiÞ
for incompressible flow.

[54] A scalar product with the flow profile gives then:

0 ¼ �
X

i

ji
@P

@xi
þ
X

i

�0Fiji þ �
X

ij

ji
@

@xj

@ji

@xj
þ @jj
@xi

	 

(A2)

and the incompressibility assumption leads to:

0 ¼ �
X

i

@

@xi
ðPjiÞ þ

X
i

�0Fiji

þ �
X

ij

@

@xj
ji
@ji

@xj
þ ji

@jj

@xi

	 

� @ji

@xj

@ji
@xj
þ @ji

@xj

@jj
@xi

	 
� �
:

(A3)

Viscous energy dissipation can be expressed As e ¼
2�
�0

� : � ¼ �
�0

X
ij

@ji

@xj

	 
2

þ @ji

@xj

@jj

@xi

" #
. Thus, equation (A3)

becomes

0 ¼ �
X

i

@

@xi
Pjið Þ þ

X
i

�0Fiji þ 2�
X

ij

@

@xj
ji�ij

� �
� �0e (A4)

[55] By integrating this expression over the fluid volume
Vf of the sample and using the Gauss-Ostrogradsky theo-
rem, we obtain:

0 ¼ �

ZZ
@V

X
i

PjidSi|{z}
1ð Þ

þ �0

ZZZ
Vf

X
i

FijidV|{z}
2ð Þ

þ 2�

ZZ
@V

X
ij

jj�ijdSi|{z}
3ð Þ

�
ZZZ

Vf
�0edV|{z}

4ð Þ

;

(A5)

where @V is the fluid boundary and dSi the ith component
of the elementary surface vector directed toward the out-
side. We note that the two surface integrals (1) and (3) vanish
at the fluid-solid interface (because of the no-slip condition)
so that only the volume integrals at the boundary domain
remain. From this general equation, we will now study the
particular cases of the two applied driving conditions.

Appendix B: Pressure Condition (DC1)
[56] In this case, we applied an inlet (Pin) and outlet

(Pout) pressures in the x-direction, additionally, zero tan-
gential velocity uy is imposed at these boundaries. At the
remaining boundaries, no-slip condition is used. The first
term in (A5) becomes then

�
ZZ

@V

X
i

PjidSi ¼ Pin � Poutð Þ
ZZ

@V
jxdS

¼ Pin � Poutð ÞS < jx>

¼ �V < jx>
2

Kxx
;

assuming that Darcy’s law (equation (12)) Kxx ¼
� � < jxð x

!Þ >
< rxP > ¼

L� < jxð x
!Þ >

Pin �Pout
is valid.

[57] Since the inlet and outlet boundary surfaces are per-
pendicular to e

!
x and assuming that jy ¼ jz ¼ 0, the third

term in (A5) becomes:

2�

ZZ
@V

X
ij

jj�ijdSi ¼ 2�

ZZ
@V

jx
@jx
@x

	 

dSx (B1)

¼ �2�

ZZ
@V

jx
@jy

@y
þ @jz
@z

	 

dSx (B2)

¼ 0; (B3)

where we have used the fact jz ¼ jy ¼ 0 at the boundary
surfaces.

[58] As the body force is zero equation (A5) becomes:

�V

Kxx
< jx>

2 ¼
ZZZ

Vf
�0edV (B4)

�V

Kxx
< jx>

2 ¼
ZZZ

Vf
2�� : �dV (B5)

and

Kxx ¼
< jx>2

2 < � : � >
: (B6)

Appendix C: Periodic Condition With Uniform
Body Force (DC2)

[59] In the case of the periodic condition in a combination

with a uniform body force
�

Fx e
!

x ¼ �jx
�0Kxx

e
!

x

�
, the relation

between permeability and the deformation rate tensor is
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simpler to prove. The two surface terms in equation (A5)
disappear either because of the no-slip condition or because
of the periodicity (d

!
S changes its orientation at the inlet

and outlet).
[60] The second term of equation (A5) takes the form:

�0

ZZZ
Vf

X
i

FijidV ¼ �0Fi

ZZZ
Vf

jidV ¼ �0FxV < jx >

¼ �V

Kxx
< jx>

2

thus, identical to Appendix B, we can deduce Kxx from
equation (A5) as

Kxx ¼
< jx>2

2 < � : � >
: (C1)
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