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Abstract – We demonstrate that the first arrival times in dispersive processes in self-affine
fractures are governed by the same length scale characterizing the fractures as that which controls
their permeability. In one-dimensional channel flow this length scale is the aperture of the bottle
neck, i.e., the region having the smallest aperture. In two dimensions, the concept of a bottle neck
is generalized to that of a minimal path normal to the flow. The length scale is then the average
aperture along this path. There is a linear relationship between the first arrival time and this
length scale, even when there is strong overlap between the fracture surfaces creating areas with
zero permeability. We express the first arrival time directly in terms of the permeability.

Copyright c© EPLA, 2012

Due to their role in the flow properties of tight and
low-permeability reservoirs such as shale gas reservoirs
and carbonate reservoirs, and on contaminant transport,
e.g., in connection with waste storage, the study of trans-
port in fractures is still a very vigorous field [1–4]. Most
present theoretical efforts attempt to relate the transport
properties of fractures to the statistics of the aperture
fields through analytical models based on statistical aver-
ages, weak-disorder perturbation expansions [5], mean-
field approximations or simplified aperture models [6]. We
also mention the work of Zhan and Yortsos [7] where a
method to deduce the heterogenities of a permeability
distribution from the concentration arrival time field was
proposed.
Due to the surface roughness, i.e., the heterogenities

of the aperture field, these relations provide satisfactory
results only over a finite range of conditions and do not
permit to predict the behavior of a fracture with large
heterogenities in the aperture field. One of the main
difficulties is to correctly take into account the increasing
influence of the contact area as the fracture aperture is
decreased [8–11]. We analyze in this letter the dispersion
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problem at finite Péclet number and identify the proper
aperture measure for this problem, taking into account
severe heterogeneities such as large contact zones. Our
main focus is on the breakthrough time, i.e., the time
at which the tracer appears at a given position. The
surprising result that we find is that this aperture is the
same as the one controlling the permeability [12,13].
There are now numerous experimental studies and field

observations that demonstrate that natural fractures have
a self-affine roughness [14–18] —for a review, see Bonamy
and Bouchaud [19]. Self-affine fractures are characterized
by a scaling invariance of the statistical properties of the
surface roughness under a rescaling of the distances by
a factor λ in the average fracture plane and a rescaling
λζ of the heights. Here ζ is the Hurst or roughness
exponent which takes value close to 0.8 for rocks such as
granite [20] and values close to 0.5 for porous rocks like
sandstone [21,22].
We consider in this work synthetic self-affine frac-

ture surfaces that have been generated using a Fourier
method [23,24]. The fracture is modeled by matching the
fracture surface with an opposite flat surface. Since we use
the Reynolds approximation, this correctly models flow in
fractures as it is only the aperture that enters the flow
equations. We define the fracture aperture H(�r ) as the
distance between the two surfaces at position �r. In the
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present work, the rough surface progressively approaches
the flat-surface one and the aperture of overlapping regions
is set to zero. Hence, H(�r )> 0, where there is no overlap
and H(�r ) = 0, where there is overlap.
The flow field is determined for a fixed pressure differ-

ence between the fracture inlet and outlet by solving the
finite differenced Reynolds equations through LU decom-
position. The total volume entering the fracture per width
and time at the inlet is proportional to the pressure ∆P
over the fracture, and is given by

Q=− K
Lµ
∆P, (1)

where K is the permeability and µ the viscosity of the
fluid. L is the length of the fracture.
The breakthrough time is typically obtained by

summing along each streamline the local time of convec-
tion [25–27]. This method does, however, not take into
account diffusion between and along the streamlines. We
have instead discretized the velocity field on a square
lattice with nearest-neighbor and next nearest-neighbor
connections. If we assume that the dispersion time
between neighboring nodes is the inverse of the velocity
component along the vector between them, we have then
introduced diffusion into the dispersion process. This
is so since a given tracer particle will not follow the
streamlines but move between the nodes via projected
velocity vectors. We add to this description the analysis
of Stern [28] of the first arrival time of a diffusive process
with or against a convective velocity field, making it
possible to tune the Péclet number. In order to find the
first arrival time, we use the optimal path algorithm of
Hansen and Kertesz [29]. We have verified our algorithm
by comparing it to a two-dimensional lattice Boltzmann
method [30]. Figure 1 shows the tracer concentration in
gray levels at breakthrough with Péclet number Pe= 10
based on the lattice Boltzmann method. In the following,
we do not discuss any dependence of our results on the
Péclet number. The numerical experiments we report
have been done at Pe= 10 as a reasonable value. Other
values add nothing significant.
Transport properties of fractures are often character-

ized by equivalent or apparent apertures —such as the
hydraulic, mass balance or electrical apertures— which
refers to the aperture of a fracture with flat and paral-
lel walls having the same property as the original frac-
ture. In practice, equivalent apertures are estimated from
hydraulic and conservative tracer tests. The mass balance
aperture bm is defined as the ratio between the fluid flux Q
and the averaged fluid velocity u [31,32]. In practice, the
average fluid velocity u equals the average of the velocities
of all fluid particles and should be derived from the aver-
age residence time determined from the momentents of
the time distribution of the measured tracer breakthrough
curve [31]. Here we connect the first arrival time, τmin, to
the average fluid velocity u by the expression u=L/τmin,
as proposed by Guimerà and Carrera [32]. Since the
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Fig. 1: Fluid flows in a self-affine aperture field seen from above.
The curves are the streamlines of the flow field. The streamlines
have been found using the Kirchhoff method. We have then
used the lattice Boltzmann method to simulate dispersion
fixing the Péclet number at 10. The tracer concentration
is shown on a grey scale where darker gray means higher
concentration. Areas where the aperture is zero —i.e., the
fracture surfaces are in contact— are shown as black.

pressure gradient is kept fixed, the mass balance aperture
bm =Q/u is proportional to Kτmin.
Before considering two-dimensional fractures, i.e.,

fractures where the aperture is orthogonal to a two-
dimensional fracture plane, we consider a one-dimensional
version of the problem, i.e., a fracture where the aperture
is orthogonal to a fracture line. We introduce a Cartesian
coordinate system with the x-axis along the line which
now consitutes the flat surface. Let us set a=minxH(x).
We then define

h(x) =H(x)− a. (2)

When a� 0, the fracture is closed and hence the perme-
ability is zero. For positive a, it is this parameter that
controls the permeability of the fracture in the lubrication
approximation [13]. The permeability is in this limit given
by the expression

L

K
=

∫ L
0

dξ

k(cξζ + a)3
, (3)

where k and c are two parameters. c, the topothesis which
characterizes the roughness of the aperture field, is a
length scale, and k has the units of permeability. For large
a, this gives rise to the scaling relation

K ∼La3, (4)

whereas for intermediate a, we find

K ∼La3−1/ζ . (5)
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For small a, the permeability is completely controlled by
the region where h(x) = 0, and the continuum approach
behind eq. (3) breaks down. We then find that the
permeability is given by

K ∼L0a3. (6)

We now calculate τmin using the lubrication approxima-
tion and in the infinite Péclet number limit where diffusion
is absent. The first tracer to traverse the rough channel is
the one which has traveled along the streamline located
midway between the walls, i.e., where the velocity is at its
maximum. The time this has taken is τmin, and it is given
by

τmin =

∫ L
0

dx

u(x)
, (7)

where u(x) is the maximal velocity at position x along
the channel which is proportional to the flow rate over the
local aperture in the lubrication aproximation. We have
thus

τmin ∝ 1
Q

∫ L
0

(h(x)+ a) dx. (8)

Combining eqs. (1) and (8), we get

τminK =
Lµ

∆P

∫ L
0

(h(x)+ a) dx. (9)

This integral may be performed by using order statis-
tics [13]: we order the function h(x)→ h[ξ] = h(x[ξ]) such
that h[ξ1]� h[ξ2] when ξ1 � ξ2. For a self-affine profile we
have that h[ξ]∼ ξζ , and eq. (8) becomes

τminK =
Lµ

∆P

∫ L
0

(
cξζ + a

)
dξ =

µ

∆P

[
cL2+ζ + aL2

]
, (10)

where c is a constant. Hence, we have the central result
for a one-dimensional channel,

τminK =A+Ca, (11)

where A∝L2+ζ and C ∝L2. Hence, we see that it is the
minimum aperture a which controls the first arrival time
τmin. This is the same aperture that controls the perme-
ability, see eqs. (4)–(6). This is a somewhat surprising
result, since at the minimal aperture location, because of
mass conservation, the flow rate is maximal. Consequently,
the time in the bottle neck effect makes a small contribu-
tion to the integral in eq. (7). However, the bottle neck
controls the total flow rate, and this, in turn, controls the
first arrival time.
As described in Talon et al. [12,13], the extrapolation

of the bottle neck effect to a two-dimensional fracture
is not straightforward since the minimal aperture point
is easily bypassed by the flow. However, it is possible to
generalize the concept to two dimensions by replacing the
minimal aperture a by the minimal path aperture. In order
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Fig. 2: Scaling of coefficients A (upper panel) and C (lower
panel) defined in eq. (19). The straight lines are best fits and
have slopes 3 for the ζ = 0.8 data (+) and 2.2 for the ζ = 0.3
data (×) in the upper panel. The theoretical values are 2.8
and 2.3, respectively. In the lower panel, the best fit has slope
2.0 for both the ζ = 0.8 and ζ = 0.3 data. The theoretical value
is 2.

to introduce this concept, we orient our fracture such that
the one of the edges parallel to the average flow direction
follows the x-axis. The y-axis follows the edge where the
tracer is injected and the z-axis is orthogonal to the
average fracture plane. Hence, 0� x�L and 0� y�W .
We define C(x) as a path starting at (x, y= 0) and ending
at (x′, y=W ) without crossing itself. Hence, we define the
quantity

B(x) =
1

WL

[
min
C(x)

∫
C(x)
d�� · �ey(��)3

]1/3
. (12)

This is the minimal average fracture opening over all paths
starting at (x, 0) and ending anywhere along the opposite
edge at y=W . This quantity corresponds to H(x) in
the one-dimensional case. The minimal path aperture is
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Fig. 3: Loglog plot of τminK −A as a function of a and bc for
ζ = 0.3 (top) and ζ = 0.8 (bottom). The solid curves are for
τminK −A vs. bc, whereas the broken curve is for τminK −A
vs. a. We determine A by varying it until we obtain the best
possible power law. In both panels, the straight portions of the
curves have unit slope as indicated in eq. (19). The curves are
based on one sample of size 512× 512 for each roughness.

defined as

bc =min
x
B(x), (13)

corresponding to the smallest aperture a in the one-
dimensional case. We finally define

b(x) =B(x)− bc, (14)

in the same way we defined h(x) in eq. (2) in the one-
dimensional case.
The central idea in Talon et al. [13] was that the

two definitions bc and b(x) could replace a and h(x) in
the one-dimensional case in the permeability integral (3).
After ordering b(x)→ b[ξ], we find that b[ξ]∼ ξβ , where
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Fig. 4: (Colour on-line) First arrival time τmin vs. permeability
K for ζ = 0.8 (upper panel) and ζ = 0.3 (lower panel). Each
curve is based on one sample of size 512× 512. The slopes of
the straight lines are given in the main text.

β = 1.5 for ζ = 0.8 and β = 1.2 for ζ = 0.3. The intermedi-
ate scaling regime (5) then is replaced by

K ∼WLb3−1/βc , (15)

whereas the large- and small-scale regimes become, respec-
tively,

K ∼WLb3c , (16)

and
K ∼WL0b3c . (17)

Numerical experiments based on solving the Kirchhoff
equations give

K ∼


WLb2.25±0.02c , for ζ = 0.8,

WLb2.16±0.02c , for ζ = 0.3,
(18)

for the intermediate regime. The results are very close to
the prediction of eq. (15).
By following exactly the same procedure for the first

arrival time, i.e., replacing h(x) by b(x) and a by bc in
eq. (8), we find

τminK =A+Cbc, (19)
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where A∝WL2+ζ and C ∝WL2. Figure 2 shows A and
C as a function of L verifying these two scaling laws. We
show in fig. 3, τminK as a function of bc and of a. We see
that the linearity of τminK is verified for the entire range
of bc values, whereas it is only true for large values of a.
This is where a and bc begin to coincide.
Hence, we have verified that the miminal path aperture
bc controls both the permeability K and the minimal time
τmin. This, together with eq. (19) constitute two main
results of this letter.
Since the first arrival time and the permeability are

controlled by the same aperture, it is possible to eliminate
the aperture between them. Hence, we may express the
first arrival time directly in terms of the permeability by
combining eqs. (16)–(19). We show in fig. 4 τmin vs. K
for two roughnesses, ζ = 0.8 and ζ = 0.3. We expect that
for small K, τmin ∼A/K1, where A is defined in eq. (19).
For large K, we expect τmin ∼C/K2/3. For intermediate
K, we expect τmin ∼A/K +C/K0.56 when ζ = 0.8 and
τmin ∼A/K +C/K0.54 for ζ = 0.3. C is defined in eq. (19).
Straight lines with the appropriate slopes have been added
in fig. 4. For the intermediate region, we have used only
the term proportional to C.
We have in this letter shown that the permeability

and the first arrival time in dispersive processes are
controlled by the same aperture length scale in self-
affine fractures. We have also shown that the functional
relation between the first arrival time and this aperture
is linear, see eq. (19). The appropriate aperture is the
minimal path aperture defined in eqs. (14) and (13). It is a
generalization of the concept of the narrowest constriction
that controls both the permeability and the first arrival
time in one-dimensional fracture systems. Whereas the
scaling properties we report are specific to self-affine
aperture fields, the method of analyis based on optimal
paths is not.
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