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We investigate the linear stability of miscible, viscosity-layered Poiseuille flow. In the
Stokes flow regime, diffusion is observed to have a destabilizing effect very similar
to that of inertia in finite-Reynolds-number flows. For two-layer flows, four types of
instability can dominate, depending on the interface location. Two interfacial modes
exhibit large growth rates, while two additional bulk modes grow more slowly. Three-
layer Stokes flows give rise to diffusive modes for each interface. These two diffusive
interface modes can be in resonance, thereby enhancing the growth rate. Furthermore,
modes without inertia and diffusion are also observed, consistent with a previous
long-wave analysis for sharp interfaces. In contrast to that earlier investigation, the
present analysis demonstrates that instability can also occur when the more viscous
layer is in the centre, at larger wavenumbers.
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1. Introduction
The stability of flows with viscosity stratification has been widely investigated,

motivated by such industrial processes as pipeline lubrication, polymer deposition
and extrusion. Since the pioneering work of Yih (1967), it has been known
that Couette–Poiseuille flows with step-like viscosity stratification are unstable for
arbitrarily small positive Reynolds numbers. This is in contrast to single-fluid
Couette–Poiseuille flows, which require a critical value of the Reynolds number
to trigger an instability (see Lin 1955). However, both types of flow share the
property that inertia is required for instabilities to develop. The present investigation
will demonstrate that for miscible flows with viscosity stratification, instabilities can
develop even in the Stokes regime, as a result of diffusive effects.

Our investigation will focus on two-dimensional Poiseuille flows (see figure 1)
which are driven by a mean pressure gradient and bounded by no-slip walls. We
will occasionally refer to related stability results for other, similar configurations, such
as those of Couette type, where the flow is driven by a wall moving at a constant
velocity, or Couette–Poiseuille type, which involve both a pressure drop and a moving
wall. Axisymmetric core–annular flows have also been widely investigated, due to
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FIGURE 1. Sketch of two-layer (a) and three-layer (b) plane Poiseuille flow. The fluids
have different viscosities and are miscible with each other. The base state velocity fields are
indicated by the horizontal bars.

their relevance to industrial applications. The so-called half-Poiseuille configuration, in
which the pressure-driven flow is bounded by one no-slip and one slip wall, is related.
It corresponds to the symmetric three-layered case with Hu = Hd in figure 1(b).

The stability of single-fluid, plane Poiseuille flow has been the subject of numerous
studies in the literature (see Drazin & Reid 1981 and Schmid & Henningson 2001 for
reviews). As mentioned earlier, here the Reynolds number must exceed a critical value
for the flow to become unstable. For such flows, the instability is controlled by the
critical layer in the flow, where the fluid velocity U(y) is equal to the phase velocity
cφ of the disturbance. In this region the viscosity term is most important, since the
term in the Orr–Sommerfeld equation with the (U(y)− cφ) prefactor vanishes, and the
remaining inertial term also vanishes in the long-wave limit. This instability mode is
usually referred to as the Tollmien–Schlichting or ‘bulk’ mode. We also mention the
work by Wall & Wilson (1996), who investigated the influence on the stability of the
viscosity variation due to a temperature gradient in the channel. The author reported
that, while the Péclet number has little influence on the instability, the base state
viscosity distribution does influence the Tollmien–Schlichting mode. Consistent with
this observation, this type of instability mode is modified for non-Newtonian fluids
(Nouar & Frigaard 2009). The stability of Couette–Poiseuille flows with viscosity
stratification was first studied by Yih (1967). In the long-wave approximation, he
showed that two viscous fluids separated by a sharp interface result in unstable flow
for any positive Reynolds number, however small. Follow-up investigations since then
have addressed many aspects of this inertial interfacial instability. Among them are the
work of Hooper & Boyd (1983) for unbounded two-dimensional shear flows, and the
investigation by Hinch (1984) into the physical instability mechanism for short waves.
The latter author argues that inertia induces a phase shift of the vorticity on both
sides of the interface, which destabilizes the system. Also relevant is the numerical
investigation by Yiantsios & Higgins (1988), who provide stability results for two-
layered Poiseuille flows with buoyancy. A physical instability mechanism has also
been proposed by Charru & Hinch (2000), based on their investigation of bounded and
unbounded Couette flow.
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The first axisymmetric Poiseuille flow investigation by Hickox (1971) was later
extended by Renardy (1987), who accounted for the influence of surface tension and
a density difference (see Joseph & Renardy 1992a,b). Three-layer Couette flows were
analysed by Li (1969) and Kliakhandler & Sivashinsky (1995). We will find below
that this case is particularly interesting, as it leads to instability even for vanishing
Reynolds number, i.e. in the absence of inertia.

Miscibility of the fluids primarily affects the stability properties of the flow by
causing the interface to be of finite width, so the viscosity distribution is smooth.
Furthermore, the interface thickness evolves in time. Except for the investigation by
Craik (1969), to be discussed below, stability analyses of miscible flows with viscosity
stratification are more recent. Originally, miscible flows were thought to have stability
properties similar to those of their immiscible counterparts. Molecular diffusion was
assumed to stabilize the flow somewhat, by reducing the initial viscosity contrast
and damping any instabilities that might arise: e.g. Scoffoni, Lajeunesse & Homsy
(2001). However, these assumptions were shown to be invalid by Ern, Charru &
Luchini (2003), who investigated the influence of the Péclet number on interfacial
instabilities in Couette flows. Specifically, they showed diffusion to have a non-
monotonic influence on the growth rate, so flows at intermediate Péclet numbers can
be more unstable than those without diffusion (infinite Péclet numbers). For symmetric
three-layer Poiseuille flows, Ranganathan & Govindarajan (2001) and Govindarajan
(2004) discussed the role of the thin, intermediate viscosity layer created by miscibility.
If this layer coincides with the location of the Tollmien–Schlichting critical layer,
the flow may become more stable or unstable, depending on the viscosity ratio. In
particular, it can become unstable at Reynolds numbers much lower than for the
corresponding immiscible configuration. A similar result was obtained by Malik &
Hooper (2005), who showed that in the case of a two-layered system, when the critical
layer is located within the width of the interface (treated as a third layer), the system
gives rise to an interfacial instability. We emphasize that in the above cases, inertia
is still required to drive the instability. Moreover, diffusion has little influence on the
instability beyond causing the base state to have a finite width interfacial region. As a
case in point, Malik & Hooper (2005) analyse the flow as an immiscible three-layer
system.

Craik (1969) highlights several interesting aspects of miscible stability problems.
Specifically, he points out that the linearized advection–diffusion equation for the
concentration field (see below) has a structure similar to that of the Orr–Sommerfeld
equation. In particular, it has a corresponding term with a prefactor (U(y) − cφ).
The author argues that this should lead to the existence of a critical diffusive layer,
in which diffusion cannot be neglected. Hence one should obtain ‘diffusive’ modes,
analogous to the ‘viscous’ modes found by Lin (1955), by replacing Re with Pe. Using
this analogy, Craik predicts that for two-layered Couette flow one should observe a
Yih-like instability if the diffusive critical layer coincides with a region where the
second derivative of the base flow velocity is negative. One of the goals of the present
investigation will be to elucidate whether or not the critical layer is of particular
significance for miscible flows with viscosity stratification.

Recently, Selvam et al. (2007) numerically investigated inertial instabilities of
miscible core annular flow. Interestingly, they observe that the flow can be unstable
in the Stokes flow limit. This finding partially motivates the current investigation
into Stokes flow instabilities of miscible two-layered or three-layered Poiseuille flows.
Section 2 formulates the governing equations, derives the relevant linear stability
problem and briefly comments on the numerical procedure for its solution. Section 3
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describes the linear stability findings for two-layered systems. Four modes are shown
to exist, and their dependence on the governing parameters will be discussed.
Section 4 provides corresponding results for three-layered systems. Specifically, it
discusses the existence of Stokes flow instabilities in light of the reversibility of the
Stokes equations. Finally, § 5 summarizes the main findings of the investigation.

2. Governing equations and numerical approach
We assume that the velocity u= (u, v) and the concentration field c are governed by

the dimensionless system of equations

∇ ·u= 0, (2.1)

Re

(
∂u
∂t
+ u ·∇u

)
=−∇p+∇ · τ, (2.2)

∂c

∂t
+ u ·∇c= 1

Pe
1c, (2.3)

where p denotes the pressure and τ represents the Newtonian stress tensor. Here we
have introduced characteristic length, velocity, time and pressure scales of the form

L∗ = e, U∗ = U, T∗ = e

U
, P∗ = µ1U

e
, (2.4)

where e indicates the channel width and U the mean flow velocity, respectively. We
furthermore assume an exponential dependence of the viscosity on the concentration

µ(c)= µ1eRc with R= lnµ2/µ1, (2.5)

where µ1 and µ2 denote the dynamic viscosities of the two fluids. The Reynolds and
Péclet numbers are defined as

Re= Ue

µ1
, (2.6)

Pe= Ue

D
, (2.7)

and represent, as usual, the ratio of advective to diffusive transport of momentum
and concentration, respectively. We impose no-slip velocity boundary conditions at the
walls, along with the condition of vanishing concentration flux across the walls.

In the usual way, we perform the stability analysis by linearizing equations
(2.1)–(2.3) around a steady, uniform base state that depends on y only:

p(x, y, t)= p̄(y)+ p′(x, y, t), (2.8)
u(x, y, t)= ū(y)+ u′(x, y, t), (2.9)

v(x, y, t)= v′(x, y, t), (2.10)
c(x, y, t)= c̄(y)+ c′(x, y, t). (2.11)

For two-layer flows, we will focus on concentration base states of error function shape

c̄(y)= 1
2
+ 1

2
erf
(

y− y0

δ

)
, (2.12)
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where y0 represents the interface position and δ denotes the width of the diffused base
state. Correspondingly, in the three-layered systems we have

c̄(y)= 1− 1
2

erf
(

y− yd

δd

)
+ 1

2
erf
(

y− yu

δu

)
, (2.13)

where yu and yd indicate the upper and lower interface locations with the respective
thicknesses δu and δd. Following the analysis by Yang & Yortsos (1997), the
unidirectional velocity base state ū(y) can be evaluated as

ū(y)= G(y)∫ 0.5

−0.5
G(y′) dy′

, (2.14)

where

G(y)=
∫ 0.5

−0.5
λ(y′) dy′

∫ y

−0.5
λ(y′)y′ dy′ −

∫ 0.5

−0.5
λ(y′)y′ dy′

∫ y

−0.5
λ(y′) dy′, (2.15)

and λ(y) = µ−1
1 e−Rc̄(y). We remark that the parallel flow assumption clearly represents

a certain idealization, as in a real flow one would expect to have a diffuse interface
whose thickness varies in the streamwise distance. However, a parallel flow appears to
be a well-suited first step for analysing miscible flows in the Stokes limit. It avoids
the complication of analysing non-parallel flow effects, which might obfuscate the
fundamental physical mechanisms underlying the instability.

We assume a normal mode decomposition of the perturbations of the form
p′

u′

v′

c′

=


P̂(y)
Û(y)
V̂(y)

Ĉ(y)

 ei(αx−ωt). (2.16)

We thus obtain a generalized eigenvalue problem

Aφ=−ωBφ, (2.17)

where the operators A, B and the vector φ are defined by

A=


0 iαI ∂y 0
−iαI M1 M6 M2

−∂y 0 M3 M4

0 0
∂ c̄

∂y
I M5

 , B =


0 0 0 0 0
0 0 i Re 0 0
0 0 0 i Re 0
0 0 0 0 i

 (2.18a)

and

φ=


P̂
Û
V̂

Ĉ

 , (2.18b)

with

M1 = [−α2eRc̄ − iRe ūα]I + R eRc̄ ∂ c̄

∂y
∂y + eRc̄∂yy, (2.19)
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M2 = eRc̄R

(
R
∂ ū

∂y

∂ c̄

∂y
+ ∂

2ū

∂y2

)
I + eRc̄R

∂ ū

∂y
∂y (2.20)

M3 =−α2eRc̄I − iαRe ūI + 2eRc̄R
∂ c̄

∂y
∂y + eRc̄∂yy, (2.21)

M4 = iαeRc̄ ∂ ū

∂y
RI, (2.22)

M5 =
(
−iαū− α2 1

Pe

)
I + 1

Pe
∂yy, (2.23)

M6 =
(

iαR eRc̄ ∂ c̄

∂y
− Re

∂ ū

∂y

)
I, (2.24)

where I represents the identity matrix; ∂y and ∂yy denote the first and second
derivatives in the y-direction, which we discretize by means of the sixth-order compact
finite difference derivative operator (see Lele 1992) on a regular grid. For the sake
of efficiency, in the two-layered case, we also sometimes use a collocation Chebyshev
method to discretize on a non-uniform mesh refined around the interface (analogous
to the one used by Govindarajan 2004). The grid size was adapted (more points for
thin interfaces) to reduce the error to below 0.1 %. The complex eigenvalue ω is
subsequently calculated via standard MATLAB routines.

We thus obtain the growth rate σ(α) = Im(ω) and phase velocity cφ(α) = ω/α as a
function of the wavenumber α, for all perturbation modes. In the following, we will
denote by σM the maximum growth rate of all modes, and by αM the wavenumber at
which it occurs.

We remark that, if one had used a streamfunction formalism, the first three lines
of (2.17) would have led to the classical Orr–Sommerfeld equation (e.g. Govindarajan
2004). In contrast, in the inertialess regime (Re = 0) it is primarily the last equation,
which is derived from the linearized concentration equation, that determines the growth
rate (though coupled with the flow equation)

∂ c̄

∂y
V̂ − iα(ū(y)− cφ)Ĉ − α2 1

Pe
Ĉ + 1

Pe
∂yyĈ = 0. (2.25)

Following Craik (1969), we emphasize the fact that, in the long-wave limit
(i.e. neglecting the α2 term), this eigenproblem is very similar to the Orr–Sommerfeld
problem. The solutions are controlled by the critical layer, the position yc at which
ū(yc) = cφ . Solutions of this eigenproblem should thus be very similar to the viscous
solution studied by Lin (1955) if we replace Re by Pe.

To summarize, the governing parameters of our problem are the viscosity ratio
R, the Péclet number Pe, and the Reynolds number Re, in addition to the interface
locations and thicknesses, respectively.

3. Two-layer system
In this section, we will discuss linear stability results for plane Poiseuille flow of

two fluid layers miscible with each other; see figure 1(a).

3.1. Eigenspectra at large Reynolds numbers
Building on the discussion in South & Hooper (1999), we compare in figure 2 the
eigenspectra (noting cr = Re(cφ) and ci = Im(cφ)) for the cases R = 0 (no viscosity
contrast) and R = 2.5 at Re = 103. In the absence of a viscosity contrast, we obtain
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FIGURE 2. Eigenspectra (a, b) and velocity profiles (c, d) for Pe = 104, Re = 103, δ = 0.01,
α = 2 and Hd = 0.45. (a, c) The two layers have the same viscosity (R = 0). (b, d) The two
layers have different viscosities (R= 2.5).

the classical Y-shaped eigenspectrum for plane Poiseuille flow, with the A, P and
S branches (Mack 1976). A closer comparison with the eigenspectrum obtained by
South & Hooper (1999) for corresponding immiscible two-layer flow, however, reveals
that for the present, miscible case a significantly larger number of modes exists on
each of those branches. Hence, we conclude that these new modes originate from the
convection–diffusion equation. This is easily confirmed by varying the Péclet number,
which results in a shift of those additional modes.

When we introduce a viscosity contrast between the two layers, several features
emerge that correspond to the observations of South & Hooper (1999) for immiscible
flows (figure 2). Most importantly, an unstable mode (encircled) appears in the upper
plane ci > 0, attributed to an interfacial instability mode, and the S-branch splits into
two new branches (denoted S1 and S2). The additional splitting of the P-branch was
not observed by South & Hooper (1999), which may indicate that it is associated
with the convection–diffusion equation. We note that the two new branches P1 and P2

appear to intersect the real axis at values close to the interface velocity (cr ∼ 1.1) and
the maximum flow velocity (cr ∼ 1.9), respectively.

Figure 3 indicates that the majority of the modes remain unchanged as the Reynolds
number is reduced to zero, confirming that they are associated with the concentration
equation. Most importantly, as Re approaches zero the unstable mode remains in the
upper plane, which indicates that the instability is not primarily due to inertial effects.
In the following, we will investigate this instability mode at Re = 0, with a focus on
the contribution of the advection–diffusion equation.
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FIGURE 3. Eigenspectra for Pe= 104, R= 2.5, α = 2 and H = 0.45 for different Re numbers.
As Re is reduced to zero, the unstable mode remains in the upper plane.
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FIGURE 4. Representative dispersion relation σ(α) of the most unstable mode. The
parameters are Re= 0, R= 2.5, Pe= 2× 103, H = 0.45 and δ = 0.01.

3.2. Influence of interface location and viscosity contrast
Figure 4 shows a typical dispersion relation σ(α) for Re= 0. From curves such as this,
we can obtain the most unstable wavenumber αM and its growth rate σM, as functions
of the fluid layer thickness H and the interface thickness δ.

Figure 5 illustrates how σM varies with the fluid layer thickness H, for different
viscosity ratios R. The growth rate is seen to depend strongly on the interface position,
and it generally reaches its highest values for interfaces located close to the cell centre,
but shifted towards the side of the less viscous fluid. σM generally increases with the
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FIGURE 5. Maximum growth rate σM as function of the interface location, for different
viscosity ratios R. The other parameters are Re= 0, Pe= 2× 103 and δ = 0.01.

viscosity contrast. Above R> 3, a strong maximum in the growth rate arises for small
values of H, i.e. for relatively thin layers of the less viscous fluid. This observation is
in contrast to the well-known ‘thin viscous effect’, which associates a thin layer of less
viscous fluid with a stabilization of the interface (see Renardy 1987).

The instability modes can be characterized more precisely by comparing their phase
velocity to the velocity at the interface location, as well as to the maximum velocity
of the entire profile. Figure 6 allows us to distinguish four regions of instability for
R= 4.

I1: The most unstable range of interface locations is given by H ∈ [0.2; 0.5]. In
this range, the phase velocity of the instability is significantly larger than
the fluid velocity at the interface. Eigenfunction streamline plots (figure 7)
reveal two counter-rotating vortices at the same x-location, one centred at the
interface and the other located entirely within the less viscous fluid.

I2: The second unstable range occurs for H ∈ [0; 0.13]. It has a phase velocity
much smaller than the interface velocity, and it is characterized by only one
vortex centred at the interface location.

B1: A third unstable range H ∈ [0.13; 0.2] is characterized by a phase velocity
larger than the maximum base flow velocity. While this may be surprising
at first glance, we recall that Joseph (1968) (see also Drazin & Reid 1981)
reports that the phase velocity is bounded by a value higher than the
maximum fluid velocity. The instability mode involves a single vortex, which
is centred inside the more viscous fluid but extends across the whole domain.

B2: A final unstable mode occurs in the range H ∈ [0.5; 0.8]. This mode is
characterized by a small phase velocity (see figure 6) and a single vortex
centred inside the less viscous fluid.

In summary, for large viscosity contrasts we observe four distinct regimes of
instability at Re = 0, depending on the thickness of the less viscous fluid layer. Two
of these modes are associated with interfacial instabilities, while the other two indicate
bulk flow instabilities. We note that for intermediate viscosity ratios, e.g. R = 2.5, the
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The contour lines represent the perturbed streamline (thick line for anticlockwise and thin for
clockwise). (a) I1-mode, H = 0.3 and α = 1.8653. (b) I2-mode, H = 0.05 and α = 4.0444. (c)
B1-mode, H = 0.15 and α = 0.5137. (d) B2-mode, H = 0.7 and α = 1.3445.

I2- and B1-modes are stable. Interestingly, for most conditions the phase velocity of
the instability is quite distinct from the velocity at the interface location. This suggests
that the mechanism described by Govindarajan (2004), which involves an interaction
between the critical layer and the mixed layer, may not be applicable here.



494 L. Talon and E. Meiburg

10–3 10–2 10–1 103 104 105

Pe
106

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

(a) (b)

FIGURE 8. Maximum growth rate for different values of the interface thickness (a) and the
Pe number (b). The other parameters are Re= 0, R= 2.5, H = 0.45.

3.3. Influence of the Péclet number and interface thickness

We now focus on the effects of miscibility, as characterized by the parameters Pe
and δ. Figure 8 shows the maximum growth rate σM as a function of the interface
thickness and the Péclet number for an interface position corresponding to the main
mode of instability I1. The graphs indicate that both δ and Pe have a non-monotonic
influence on the instability, in the following sense. For a given value of Pe, an
intermediate interface thickness exists for which the growth rate is maximized, while
in the two limits δ→ 0 or ∞ the growth rate approaches zero. Similarly, for a given
value of the interface thickness, the growth rate attains a maximum for an intermediate
value of the Péclet number, with the two limits Pe→ 0 or ∞ showing σM → 0. The
results for these limits are consistent with our expectations. Pe→ 0 means that the
interface is diffusing much faster than it is being advected, so we would expect
diffusion to damp any perturbations. In the other limit, Pe→∞, diffusion is absent, so
one should recover the limiting case of the classical interfacial instability described by
Yih (1967) and Malik & Hooper (2005), for which σ ∝ Re, with Re= 0 in our case.

Figure 9 displays the influence of the interface thickness and the Péclet number on
the maximum growth rate σM for different interface locations. We note that primarily
the interfacial modes I1 and I2 are affected by those two parameters, while the
influence on the B2-mode is relatively minor. For moderately large Péclet numbers,
the I2-mode that was stable at Pe= 2× 103 becomes the dominant mode. However, as
the Péclet number increases further, the growth rates of all modes begin to decline. We
remark that we expect the growth rates to tend to zero for Pe→∞, as the effects of
miscibility are reduced. Due to numerical limitations, however, this limit could not be
studied in detail within the present investigation.

3.4. Influence of the Reynolds number

Figure 10 displays the maximum growth rate σM as a function of the interface location
for several distinct Re values. The Reynolds number is seen to affect only the I1-mode.
Figure 10(b) indicates that the increase in σM with Re is approximately linear. This
mode is thus continuously affected by the Reynolds number and by the parameters Pe
and δ, reflecting the miscibility of the fluids. This finding is in agreement with the
observation made in § 3.1, where we showed that the diffusive and inertial instabilities
in fact correspond to the same interfacial mode.
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3.5. Instability mechanism
In order to identify the mechanism behind the growth of the instability, we need
to understand how a wavy perturbation of the interface results in the formation
of perturbation vorticity. Furthermore, as was already argued by Hinch (1984), the
maxima and minima of the vertical velocity field induced by this perturbation vorticity
need to exhibit a phase shift with regard to the maxima and minima of the interface
perturbation. Only if such a phase shift exists will the crests and valleys of the
interface move upwards and downwards, respectively, so that the initial perturbation
will grow. Hinch showed that for finite-Reynolds-number flows this phase shift is
generated as a result of fluid inertia. In the current Stokes flow situation, fluid inertia
is absent, so that a different mechanism must exist for the generation of the phase shift
between the interface and vorticity perturbations.

The base flow has a sharp change in slope at the interface, due to the different
viscosities. Let us assume a situation where we have less viscous fluid at the bottom,
and more viscous fluid above: see figure 11. Hinch (1984), in his figure 1, explains
that a wavy perturbation to the interface results in the formation of perturbation
vorticity of the sign shown in figure 11(b), as a result of the condition that the
velocity has to be continuous at the perturbed interface location. This perturbation
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FIGURE 11. Velocity profile for H = 0.3 (a) and H = 0.05 (b). (c, d) Sketch of the perturbed
vorticity generated near the crests and valleys of a sinusoidal interface perturbation, deduced
from the velocity profile. (e, f ) Perturbed streamline contours. The vertical lines mark the
valleys and crests of the interface perturbation. One can clearly see that the vertical velocity
field induced by the perturbation vorticity is shifted upstream (downstream) with regard to the
interface perturbation for the I1-mode (I2-mode).

vorticity is clearly visible in the corresponding streamfunction eigenfunction shown in
figure 11(c). The continuity of the shear stress at the interface causes this perturbation
vorticity to be larger in the less viscous layer. For finite-Reynolds-number flows, Hinch
then proceeds to argue that this vorticity perturbation is convectively transported, so
it develops a phase shift with regard to the interface perturbation, thus enabling the
interface perturbation to grow.

In the absence of fluid inertia, vorticity cannot be convectively transported, so the
Hinch mechanism cannot lead to instability in the Stokes flow limit. However, it is
important to keep in mind that for miscible fluid flow, as a result of diffusion across
the interface, some of the less viscous fluid moves above the interface, and some
of the more viscous fluid moves below the interface, thereby modifying the viscosity
profile. As a result of interface curvature, the details of this diffusion process will
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be slightly different where the interface is perturbed upward rather than downward.
Consequently, the local concentration perturbation will be different at those two
locations. The convective terms in the concentration equation will now shift this
perturbation concentration relative to the interface perturbation. Since the perturbation
vorticity is a direct consequence of the perturbation concentration (i.e. the perturbation
viscosity), this convective transport of the perturbation concentration will result in
the phase shift between vorticity and interface perturbation that is required for the
interface perturbation to grow: see figure 11(c). We recognize that the perturbation
velocity points upward at the location of the interface crest and downward at the
valley, so that the interface perturbation is amplified. To summarize, for miscible fluid
flows in the Stokes limit the convective terms in the concentration equation can have
an effect that corresponds to that of the inertial terms for finite-Reynolds-number
immiscible flows, as far as the generation of a phase shift is concerned.

The above argument also explains why the instability is non-monotonic in the Péclet
number. Convection is required to create the phase shift between the concentration
and the interface perturbations, but one also needs diffusion so that fluid can cross
the interface in the first place. Hence the instability disappears for both vanishing and
infinite Péclet numbers.

Let us now consider the corresponding figure 11(d–f ) for the I2-mode. We note that
the curvature of the base velocity profile at the interface is opposite to the I1-mode
of figure 11(a). Hence the perturbation vorticity is now clockwise at the crest and
anticlockwise in the valley, i.e. opposite to the I1-mode, and the phase shift between
interface and vorticity perturbation is of the opposite sign as well.

3.6. Discussion

The above results indicate the existence of four distinct instability modes in the Stokes
flow regime. The two most rapidly growing modes are interfacial in nature. The results
demonstrate that both Re and Pe continuously modify the growth of the same mode,
which seems to indicate that molecular diffusion acts similarly to fluid momentum
diffusion (viscosity) for small Re numbers. We remark that, since the growth rate of
the inertial instability is proportional to the Reynolds number while the growth rate
of the diffusive mode has an upper bound, the contribution of molecular diffusion
to the interfacial instability is dominant only at low Reynolds numbers (for Re . 10)
and comparatively large Péclet numbers, i.e. at large Schmidt numbers. This raises
the question as to how important these effects are in real-world applications. Recall
that for a given fluid the Schmidt number Sc = Pe/Re is constant, e.g. Sc ∼ 103 for
water. For Pe = 2 × 103 we obtain Re ∼ 2, which lies in a range where the molecular
diffusion contribution is significant (see figure 10). Thus, in experiments at Reynolds
numbers of the order of unity (such as in d’Olce et al. 2008, for instance) one should
expect a significant contribution of the molecular diffusion to the destabilization.

We remark that the instability modes described above probably also occur for
miscible fluid layers in the Couette configuration. In this context, the investigation by
Ern et al. (2003) is relevant. For miscible shear instabilities at Re= 0.25, these authors
show that the growth rate displays a non-monotonic behaviour with Pe, exhibiting a
maximum around Pe ∼ 103. Moreover, in the limit Pe→∞, the growth rate tends
to the limit of the discontinuous two-layer flow. In light of the present results, their
observations are probably due to the superposition of a constant inertial contribution
and the diffusion effects analysed here.
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4. Three-layer system
We now focus on plane Poiseuille flows with two miscible interfaces, as depicted in

figure 1. For this configuration, inertial instabilities have been extensively investigated
in two dimensions, e.g. Yih (1967), Joseph & Renardy (1992a,b) and Govindarajan
(2004) and others, whereas Stokes flows received comparatively little attention in the
past.

4.1. Stokes flow instability in the absence of diffusion
The earlier investigations by Li (1969), Kliakhandler & Sivashinsky (1995) and Talon
et al. (2004) show that, for the case of long waves in a non-symmetrical, three-layered
system, the two sharp interfaces may interact to produce an instability. Remarkably,
this instability exists in the absence of inertia and diffusion. Shariati et al. (2004)
and Talon et al. (2004) discuss this instability in terms of the change of type
of the conservation equations from hyperbolic to elliptic. Neglecting diffusion, the
conservation of mass in the upper and lower layers can be written as

∂Hu

∂t
+ ∂Fu

∂x
= 0 and

∂Hd

∂t
+ ∂Fd

∂x
= 0, (4.1)

where Hu and Hd denote the upper and lower layer thicknesses, and Fu and Fd

represent the corresponding volume fluxes. Using quasi-parallel flow approximation,
one can show that Fd and Fu depend only on Hu and Hd, as the height of the middle
layer can be expressed in terms of Hu and Hd. Consequently, (4.1) can be rewritten as

∂

∂t

(
Hu

Hd

)
+
(

M11 M12

M21 M22

)
·
∂

∂x

(
Hu

Hd

)
=
(

0
0

)
, (4.2)

where the matrix M is real and depends on Hu and Hd only.
It is straightforward to show that the eigenvalues of the matrix M represent the

complex velocity of a long-wave perturbation. The fact that the matrix is real is of
importance with respect to the stability of the flow, since only two possibilities exist:
either the system is hyperbolic, in which case both eigenvalues are real, so the flow
is marginally stable for long waves, or the system is elliptic, which means the two
eigenvalues are complex (and necessarily conjugate), so the flow is unstable. Note
that the flow can never be strictly stable, since if the eigenvalue of one mode has a
negative imaginary part, that of the other mode has a positive imaginary part. In light
of the following discussion, we remark that these instabilities always exhibit a phase
shift between the two interfaces.

It is of interest to discuss the above type of instability in light of the reversibility
of the flow equations. Hinch (1984) points out that for Stokes flow in the absence of
diffusion, if the horizontal flow direction is reversed, the vertical direction is reversed
as well, so one should return to the initial state. Since the stability properties of the
flow should not depend on the horizontal flow direction, the author argues that Stokes
flow should be stable, and that inertia is required for instability to occur. However,
the above equation shows that even a reversible equation can give rise to instability,
in the absence of inertia and diffusion, as a result of M being real, i.e. the existence
of two complementary modes. For a given horizontal flow direction, one of the two
modes will be stable, while the other one is unstable. If the flow direction is reversed,
the previously stable (unstable) mode will now be unstable (stable). Hence, one can
return to the initial state, even though unstable modes exist, so the reversibility of the
equation is not incompatible with the existence of an instability, if all of the modes
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FIGURE 12. Growth rate of the most unstable mode as a function of the upper and lower
fluid layer thicknesses. The parameters are R = 2.5, Re = 0, Pe = 2,000 and δu = δd = 0.01.
Symbols denote unstable states.

are taken into account. However, since we need at least two modes for this instability
to arise, we conclude that at least two interfaces are required. This is one reason
why immiscible, two-layered Stokes flows of Poiseuille or Couette type are always
marginally stable.

4.2. Results
Figure 12 shows the stability diagram as a function of the upper and lower fluid layer
heights, Hu and Hd. The other parameters are R = 2.5, Re = 0, δu = δd = 0.01 and
Pe = 2,000. The grey-level contours represent the growth rate. We note that, due to
the symmetry of the problem, the diagram is symmetrical with respect to the line
Hu = Hd. Symbols indicate the type of the dominant instability mode, according to one
of three categories. When the upper and lower interface oscillations are in phase, the
mode is said to be of ‘snake’ type. When they have opposite phases, we term it to be
of ‘bamboo’ type. Finally, modes that do not show either of those characteristics are
simply referred to as ‘other’.

While most combinations of Hu and Hd result in weakly unstable flow, figure 12
allows us to identify five islands of strong instability. The dominant island of
instability, denoted by ‘I’, is of bamboo type and represents a diffusive interface
mode. The streamfunction eigenmode (see figure 13a), indicates a shape that is very
similar to the I1 mode of the previous section. A main region of closed streamlines
is centred at the interface closest to the channel centreline, while a counter-rotating
region is located at the same x-location inside the less viscous fluid. We remark that
these closed streamlines of course exist only for the perturbation streamfunction and
not the complete streamline (addition of the base and perturbed flow).
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Figure 14 shows the corresponding stability diagram for δu = 0.04 and δd = 0.01.
The contours are no longer symmetrical, and growth rates in the upper half of the
‘I’-island have significantly decreased. This dependence on the interface thickness
confirms that the mode is diffusive. We can furthermore conclude that the upper
(lower) section of the ‘I’-island reflects the instability of the upper (lower) interface,
which indicates that the interface located further away from the wall is the more
unstable one.

We note that for symmetrical cases Hd = Hu the growth rate can be amplified
through a ‘resonance’ mechanism, where the term resonance is used in the following
sense. As we saw in figure 13(a), when Hu and Hd have different values, the
instability mode is similar to a single-interface mode. It consists of a strong region
of perturbation vorticity centred at one interface, with a second, weaker and opposite
rotation at the other interface. Since single-interface modes are generated at both of
the interfaces, as the values of Hu and Hd approach each other, the strong perturbation
vorticity of each single-interface mode might be amplified by the weaker, opposite
sign vorticity of the single-interface mode from the opposite interface. Figure 13(b)
shows the perturbation streamlines for such a configuration. We note that in this
symmetrical case both interfaces are unstable and that the two perturbed vortices have
equal strength. Hence, the two single-interface modes effectively amplify each other,
thereby strengthening the symmetrical ‘bamboo’ mode.

The second island of instability, denoted by ‘E’ in figure 12, signifies an ‘elliptical’
instability in the sense discussed earlier. Indeed, this region is located precisely
where Kliakhandler & Sivashinsky (1995) predicted it to be (see their figure 2a).
The streamfunction eigenmode shows a phase shift between the perturbations of the
two interfaces; see figure 13(c). There is only one circulation flow present, centred
within the less viscous fluid. A change in the thickness of one of the interfaces does
not have a strong effect on the growth rate, as can be seen in figure 14.
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FIGURE 14. Growth rate of the most unstable mode as a function of the upper and lower
fluid layer heights. The parameters are R= 2.5, Re= 0, Pe= 2,000, δu = 0.04 and δd = 0.01.

The last island of instability, marked ‘II’ in the figure, is more difficult to
characterize. The streamfunction eigenmode in figure 13(d) seems to suggest that
this mode is an interfacial instability. Surprisingly, however, a decrease of the interface
thickness does not have a strong effect on the growth rate. By increasing the Péclet
number, on the other hand, we can show that this mode is similar to the I2-mode
described in the previous section.

We now consider the stability diagram for the opposite case, i.e. when the more
viscous fluid is located in the channel centre: see figure 15. Again, different instability
modes can be identified. By inspecting the streamfunction eigenmode (figure 16) and
changing one interface thickness (figure 17), one finds that I and II represent diffusive
interfacial instabilities. I is a one-interface I1-mode (two convections rolls), for which
the other interface (close to the wall) has very little influence. Mode II is similar
in nature to the I2-mode, even though streamlines cross both interfaces. We note
that, in contrast to the previous case, no resonance effects occur for the symmetric
configuration. This is because the second interface does not have a vortex. While
mode B is also a one-interface mode, it corresponds to the B2-mode, as can be
seen in figure 16. The last mode, denoted by E in the diagram, is more complex
to characterize. The location in the diagram and the small influence of diffusion are
similar to the E regime in the R= 2.5 case, when the less viscous fluid is in the centre.
It is worth mentioning that if we increase the Péclet number, all modes except E
vanish. Recall that the long-wave analysis of Kliakhandler & Sivashinsky (1995) does
not predict any instabilities for R < 0. However, the streamfunction eigenmode in
figure 16(d) shows that the wavelength is very small (αM = 10.4 in this case). It
also displays a phase shift between the two interfaces, and a closed streamline region
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FIGURE 15. Growth rate of the most unstable mode as a function of the upper and lower
fluid layer thicknesses. The parameters are R=−2.5, Re= 0, Pe= 2,000 and δu = δd = 0.01.
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FIGURE 16. Streamfunction eigenmodes. The parameters are Re = 0, R = −2.5, Pe = 2,000,
δu = δd = 0.01. (a) I-mode, (Hd;Hu) = (0.6; 0.05), αM = 1.2507. (b) II-mode, (Hd;Hu) =
(0.45; 0.35), αM = 2.0926. (c) B-mode, (Hd;Hu) = (0.85; 0.05), αM = 1.8545. (d) E-mode,
(Hd;Hu)= (0.2; 0.7), αM = 10.4.

centred between the two interfaces. In contrast to the previous E-mode, the instability
involves three regions of closed streamlines.
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FIGURE 17. Growth rate of the most unstable mode as a function of the width of the upper
and lower layer. The parameters are R=−2.5, Pe= 2,000, δu = 0.04 and δd = 0.01.

5. Conclusion
The results obtained in the present investigation demonstrate that diffusion in

viscosity-layered Poiseuille flow can have a destabilizing effect very similar to that
of inertia. We specifically focus on the Stokes flow limit in order to be able to address
the influence of inertia and diffusion separately. The parametric study identifies four
types of instability, each of which can dominate, depending on the interface locations.
While the two dominant modes are interfacial in nature, the two bulk modes have
much smaller growth rates. Our results show that the Péclet and Reynolds numbers
affect the same unstable mode in a similar fashion. As suggested by Craik (1969),
this may be related to the similar ways in which these two parameters appear in
the perturbation equations. The convection–diffusion equation for the concentration
perturbation also gives rise to a diffusive critical layer, where diffusion cannot
be neglected. Regarding the physical mechanism responsible for the instability, this
suggests that similar effects may be at work as for inertial instabilities. Govindarajan
(2004) identifies an ‘overlap’ mode, which results in instability when the wave velocity
is equal to the fluid velocity at the interface. For the present diffusive situation, a
critical layer could in principle also exist. However, the above analysis shows the
phase velocity of unstable perturbations to be quite different from the fluid velocity at
the diffusive interface, so this critical layer mechanism does not seem to be relevant
here. The ‘bulk’ modes identified above appear to be the diffusive analogues to the
one observed by Wall & Wilson (1996). Using similar arguments to those of Hinch
(1984), we propose a mechanism for the destabilization of miscible Stokes flows. As
for immiscible flows, we find that the perturbation vorticity and the associated velocity
generated at the interface have a phase shift with regard to the interface perturbation.



504 L. Talon and E. Meiburg

This vorticity thus destabilizes the interface by amplifying the crests and valleys of
the interface. The mechanism that produces the phase shift must be different from the
one described by Hinch (1984) for immiscible flows, since there is no inertia in the
momentum equations. Here the shift is produced by the convection and diffusion of
the perturbed concentration, and thus viscosity.

Three-layered Stokes flows are also found to be unstable. For such flows, we
observe modes that correspond to their two-layer counterparts, with some modification
due to the presence of the second interface. In addition, we find that the two interface
modes can be in resonance, thereby enhancing the growth rate. Interestingly, the
symmetric Poiseuille flow case (Hu = Hd) gives rise only to instabilities of the
diffusive ‘I’-mode for R = ±2.5. This suggests that a corresponding axisymmetric
mode may be responsible for the observation by Selvam et al. (2007) of a pipe flow
instability in the vanishing Re regime.

For three-layer Poiseuille flow, we also observe additional instability modes that
are not due to diffusion. Some of these modes are consistent with predictions from
long-wavelength stability analyses of two non-diffusive sharp interfaces by Li (1969),
Kliakhandler & Sivashinsky (1995) and Shariati et al. (2004). However, while those
long-wavelength analyses predict instabilities only for R > 0, the present analysis,
which covers all wavenumbers, demonstrates that unstable modes also exist for R < 0,
albeit at much smaller wavelengths. It is interesting to note that these instability modes
require the presence of at least two interfaces, due to the reversibility of the Stokes
equation. This is consistent with the fact that we observe only diffusive modes for
two-layered systems.

It will be interesting to extend the present investigation to diffusive instabilities
in related geometries such as Couette or mixed Poiseuille/Couette flows. In fact,
the striking similarities between the present findings and those of Ern et al. (2003)
suggest that the mechanisms described here could be responsible for some of their
observations, in particular for the non-monotonic behaviour of the growth rate as a
function of the Péclet number. Finally, we need to keep in mind that the present
stability analysis is based on the assumption of a uniform and stationary base state.
This represents an approximation, as in a real flow the base state evolves in space
and time due to diffusion. Hence, future work should address the spatial stability
analysis along the lines explored by d’Olce et al. (2009), Sahu et al. (2009) and
Selvam et al. (2009), in order to understand the contribution of the diffusive mode on
the transition from convective to absolute instability. Finally, it will be of interest to
explore the nonlinear behaviour (see Charru & Fabre 1994) to derive the contribution
of miscibility on the equation of motion of the pseudo-interface. Fully nonlinear
Stokes simulations will be useful in this context.
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