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Permeability estimates of self‐affine fracture faults based
on generalization of the bottleneck concept
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[1] We propose a method for calculating the effective permeability of two‐dimensional
self‐affine permeability fields based on generalizing the one‐dimensional concept of a
bottleneck. We test the method on fracture faults where the local permeability field is
given by the cube of the aperture field. The method remains accurate even when there is
substantial mechanical overlap between the two fracture surfaces. The computational
efficiency of the method is comparable to calculating a simple average and is more than
two orders of magnitude faster than solving the Reynolds equations using a finite
difference scheme.
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1. Introduction

[2] In many low permeability geological formations, flow
occurs primarily through fracture networks [National Academy
of Sciences Committee on Fracture Characterization and
Fluid Flow, 1996]. In order to model such systems and to
predict their behavior, there is a need for reliable modeling of
the hydromechanical behavior of fracture.We consider in this
note the situation where the shear displacement between the
fracture walls strongly affects its permeability. Because of its
relevance, this situation has been considered in many recent
hydromechanical studies [Archambault et al., 1997; Yeo
et al., 1998; Hans and Boulon, 2003; Auradou et al.,
2005; Matsuki et al., 2006; Watanabe et al., 2008; Nemoto
et al., 2009]. Laboratory tests report that the shearing pro-
cess results in a significant channelization of the flow and an
enhancement of the permeability in the direction normal to
the shear. This behavior is found to be related to the long‐
range spatial organization of the void space, and efforts
have been undertaken to modelize such system in order
to provide upscaled value for the fracture permeability.
Recently Mallikamas and Rajaram [2005] determined ana-
lytically using perturbation analysis of the Reynolds equa-
tion to the lowest nontrivial order the fracture permeability.
This model, however, does not take into account the role of
contact areas and will fail if they appear. The effect of
contacts may, however, be taken into account by introducing
an empirical parameter [Zimmerman and Bodvarson, 1996]
that is strongly influenced by the number and the spatial
distribution of the contacts [Li et al., 2008].
[3] We present in this note a computational method for

calculating the permeability of such fracture faults even in
the presence of contacts. This new method scales linearly
with the number of grid points and is more than two orders

of magnitude faster than solving the finite differenced
Reynolds equations through LU decomposition.
[4] There is now ample experimental and observational

evidence that fracture surfaces are self affine [see, e.g.,
Mandelbrot et al., 1984;Brownand Scholz, 1985;Power et al.,
1987; Bouchaud et al., 1990; Måly et al., 1992; Schmittbuhl
et al., 1993; Plouraboue et al., 1995]. A self‐affine fracture
may characterized by a rescaling r of distances in the
average fracture plane and a rescaling rz of distances in
the orthogonal direction leaves the statistical properties of
the surface unchanged. Here z is the Hurst exponent. We use
in the following z = 0.8, i.e., the value often reported for
rocks fractures [Poon et al., 1992; Schmittbuhl et al., 1993;
Matsuki et al., 2006]. When the two matching fracture sur-
faces are displaced by a distance l along the average fracture
plane, the ensuing aperture field will be self‐affine up to the
length scales of the order of l. On larger scales, the aperture
field settles to a constant value proportional to the average
fracture opening [Plouraboue et al., 1995]. This gives rise to a
aperture field h = h(x,y).
[5] As the two fracture surfaces approach each other, they

will eventually come into contact and hence overlap. Overlap
also occurs if the gap between the two fracture surfaces
remains fixed while the lateral displacement l increases. At
such places of contact, we set the aperture h(x,y) to zero. The
contact areas are shown as white in Figure 1. The lateral
displacement results in a strong structural anisotropy: The
contact zones are more elongated in the direction normal to
the displacement (x direction with reference to Figure 1) than
in the other direction (y direction with reference to Figure 1).
[6] The idea behind the method we introduce in this note is

based on the generalization of the concept of the bottleneck to
higher dimensions. Some forty years ago, Ambegaokar et al.
[1971] presented a different generalization of the same con-
cept. As we shall see, only in a limiting case do the two
generalizations approach each other.

2. Model Description

[7] Before delving into the two‐dimensional generaliza-
tion, and hence the method we present, we discuss the one‐
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dimensional case. Hence we have a channel with self‐affine
walls that have been translated relative to each other along
the direction of the channel by a distance l. The channel
aperture is given by h = h(y), where the y axis is oriented
along the channel. Assuming that the Reynolds equations
govern the flow in the channel, the local permeability is
proportional to h(y)3. The permeability of the entire channel is
then given by the harmonic mean of the local permeability,
i.e., / hh(y)−3i−1 [Zimmerman and Bodvarson, 1996]. If

we now assume that the two channel walls are brought
close together (so that hh(y)i decreases), the permeability is
increasingly controlled by the region of minimum aperture
miny h(y)3 [Gutfraind and Hansen, 1995; Skjetne et al.,
1999], which may be then viewed as a bottleneck.
[8] How wide, D, is the bottleneck region? This of course

depends on the geometry of the two channel walls in this
region. For the time being, we leave D as a parameter. We
now divide the entire channel along the y axis into two
regions: The bottleneck region which has a width D and the
rest which has a width L − D, where L is the length of the
entire channel. The bottleneck region have a permeability
essentially given by miny h(y)

3/D and the rest of the channel
will have a permeability that is essentially hh3(y)i/(L − D).
The total permeability of the channel Ky may then be
approximated by Dy given by

L

Dy
¼ D

miny h yð Þ3 þ
L�D

hh yð Þ3i : ð1Þ

[9] Clearly, D will evolve as the average channel width
hh(y)i decreases and keeping it constant will constitute an
approximation. How good is such an approximation? A
natural choice for a fixed D may e.g. be the discretization
length scale (i.e., the lattice constant). As hh(y)i decreases,
the more dominant the bottleneck region will be and the
more sensitive Dy will be to the discretization at this point.
Approximations are unavoidable as the average channel
width decreases. A “natural” choice as the discretization
length itself breaks down when the discretization itself
breaks down.
[10] We now turn to generalizing this discussion to two‐

dimensional aperture fields h = h(x,y). The main difference
between the one‐dimensional channel and the two‐dimen-
sional fracture is that flow can in the latter case easily
bypass regions of small aperture. They do not play the
crucial role here as they did in the one‐dimensional channel.
[11] We therefore generalize the concept of the bottleneck

for two‐dimensional fractures. As a first step to this gener-
alization, we consider paths going from one side of the
fracture to the opposite side cutting across the average flow
direction. As a result of mass conservation, the flow has to
pass through all such paths. For each transverse path C with
respect to the flow direction (here, the y direction), we may
calculate the average aperture cubed along it,

LChh3iC ¼
Z
C
d~‘ �~exh

�
~‘
�3
; ð2Þ

where LC is the length of the path and~ex is the unit vector in
the x direction. This average now replaces for the two
dimensional system, the local permeability h3(y) for the
channel in one dimension.
[12] In the one‐dimensional channel we then went on to

identifying the smallest local permeability miny h
3(y). This

was the bottleneck. In two dimensions, we now search for
the path with the smallest average aperture cubed, hence-
forth referred to as the worst path,

min
y

h yð Þ3! min
C

Z
C
d~‘ �~exh

�
~‘
�3
: ð3Þ

Figure 1. Aperture field obtained by shifting laterally by
~� = 10~ey two matching self‐affine surfaces with Hurst expo-
nent z = 0.8. The size is 512 × 512, and the mean aperture is
hhi = 7. Darker shades mean smaller apertures, whereas
lighter shades mean larger apertures. White zones are con-
tact areas. The flow is (top) along and (bottom) normal to
the lateral displacement ~�. The flow lines are shown as grey
paths. The worst paths normal to the average flow directions
in the two cases are shown as thick grey lines. In Figure 1
(top), we have hh3i/RC d~‘ ·~eyh(~‘)

3 = 3.32, and in Figure 1
(bottom), we have hh3i/RC d~‘ ·~exh(~‘)

3 = 8.54.
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Figure 1 shows for one of the realizations the two worst
paths obtained for flow directions along and normal to the
lateral displacement.
[13] Using the same reasoning as in one dimension, we

may now generalize equation (1) by replacing miny h(y)
3 by

minC
R
C d~‘ �~exhtð~‘Þ3, hence

L

WDy
¼ D

minC
R
C d~‘ �~exh

�
~‘
�3 þ L�D

W hh x; yð Þ3i ; ð4Þ

where W is the width of the fracture in the x direction.
[14] When the average flow is in the x direction rather

than the y direction, there is of course an equivalent
expression for Dx. These two expressions, for Dy and Dx,
form the core of our method for approximating the perme-
ability of fracture faults.
[15] We now discuss briefly the relation between the

worst path method and the Ambegaokar‐Halperin‐Langer
(AHL) estimate [Ambegaokar et al., 1971]. The AHL esti-
mate is based on the idea that when the local permeability is
very widely distributed, the upscaled permeability is con-
trolled by the smallest local permeability along the path
connecting the inlet to the outlet that has the highest average
permeability along it. If in equation (2) we assume that
h3(x,y) is so widely distributed that the integral is domi-
nated by the largest value of h3(x,y) along the path, the
integral becomes

hh3iC ¼ max
~‘2C

h
�
~‘
�3
: ð5Þ

If we now combine this expression with equation (3) to
estimate the permeability of the bottleneck region, we find

min
C

max
~‘2C

h
�
~‘
�3� �

: ð6Þ

This expression is essentially the Ambegaokar‐Halperin‐
Langer expression for the permeability, except that we in
this limit end up with the maximum permeability along the
path with the minimum permeability along it, whereas in
the analysis of Ambegaokar et al. [1971], “min” and “max”
have been substituted. In two‐dimensional systems, this is
equivalent. Hence, only in the limit of extremely broad
aperture distributions, is our formulation equivalent to that of
Ambegaokar et al. [1971].
[16] As in one dimension, the width of the bottleneck

region, D, is a parameter depending on the local topography
near the worst path. It needs to the determined indepen-
dently. One way to estimate it is to equate Dy (Dx), gotten
from equation (4), with the permeability gotten from another
method when the fracture opening is large: the detail of
the procedure is described farther in the text. As in one
dimension, we expect D to change as the average fracture
aperture, hh(x,y)i is lowered. Assuming that it is a constant
(as we will do) constitutes an approximation.
[17] Given the aperture fields, we compared their per-

meabilities found using equation (4) with the results of two
other techniques. The first one, proposed by Gelhar and
Axness [1983], is based on a stochastic continuum theory
applied to a first order perturbation expansion of the Darcy’s
law. We compute numerically the Fourier transform of the

permeability field perturbation K̂(kx, ky) = FT(h3(x,y) −
hh(x,y)3i). The two component of the effective perme-
ability are then calculated from the integrals

Fx

hh3i ¼ 1�
ZZ

k2x
k2

jK̂j2
hh3i2 dkx dky ð7Þ

and

Fy

hh3i ¼ 1�
ZZ

k2y
k2

jK̂j2
hh3i2 dkx dky: ð8Þ

Since this is only a second order expansion, these results are
expected to be valid only for small permeability fluctua-
tions, i.e., when the fracture opening hhi is large compared
to the height fluctuations in the fracture [Mallikamas and
Rajaram, 2005]. The second method consists in solving
the flow field inside the permeability field by using a lattice
Boltzmann method. In the this scheme, we introduce a body
force to produce a Darcy‐Brinkman equation as described
by Martys [2001] and Talon et al. [2003]. We decrease
the Brinkman term so that it has no appreciable effect on the
permeability. When the two surfaces are in contact, the
lattice site is set to be solid by using the “bounce‐back”
reflection method for the density distribution. A pressure‐
imposed boundary condition is used at the inlet and outlet as
described by Zou and He [1997].
[18] Practically, we identify the worst path and the

corresponding integral, equation (3) by using a transfer
matrix algorithm [Barabási and Stanley, 1995]. If the average
flow direction is in the y direction, the path we construct runs
between the sides of the sample parallel to the x axis. We
discretize the aperture field h(x,y) → h(i, j), onto a square
lattice where i runs from 1 toM =W/a and j from 1 toN = L/a,
and a is the lattice constant. We introduce a second field
p(i, j) which initially is set to zero everywhere. We then
update layer by layer in the i direction

p iþ 1; jð Þ ¼ min p i; j� 1ð Þ; p i; jð Þ; p i; jþ 1ð Þ½ � þ h iþ 1; jð Þ3 ð9Þ

until i = M−1. The integral equation (3) is then given by

p M ; jMð Þ ¼ min
j

p M ; jð Þ ; ð10Þ

where we designate by jM the j value where the minimum
p was identified. In order to reconstruct the worst path, we
start at the position (M, jM). We then move on the next
layer, and identify min[p(M − 1, jM − 1), p(M − 1, jM),
p(M − 1, jM + 1)]. The j value that corresponds to the
minimum at level i = M − 1 is designated jM−1. We then
repeat this algorithm until we have identified j1. The
sequence ji where i = 1,� � �, M gives the coordinates of the
worst path.
[19] In equation (8) we are assuming that the paths only

connect nearest‐neighbor and next‐nearest‐neighbor nodes
on the lattice, i.e., (i, j ± k) with (i + 1, j) where k = 0,1. This
may be generalized to k = 0,� � �, m. In our numerical cal-
culations presented in Figures 2 and 3 we have used m = 2.
However, we see no appreciable difference between this
value and m = 1.
[20] The algorithm described in equation (8) assumes that

the paths do not turn back, i.e., jc = jc(i). In very strongly
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disordered fractures, such turns may play a role. This is not
the case for the fractures studied here. However, when turns
do appear, different and more involved algorithms must be
used [Hansen and Hinrichsen, 1992; Hansen and Kertész,
2004]. Whereas the algorithm described in equation (8)
scales as the number of nodes M × N in the discretized
height field, the algorithms capable of handling overhangs
scales as M2 × N2.

3. Results

[21] We first study the situation where flow is parallel to
the lateral displacement, i.e., orthogonal to the channeliza-
tion. Such flow situation is illustrated in Figure 1 (top).
Figure 2 shows the variation of the permeability of the frac-
ture estimated by the lattice Boltzmann method (squares) and
by the second order expansion (triangles) as functions of the
mean fracture opening and for two lateral displacements. For
each of the aperture fields, p(M,jM) as well as hh3i were
measured. The estimation of Dy still requires an estimation
of D, see equation (4). For the two lateral displacements and
for large fracture openings, the second order estimate of the
permeability, Fy, equation (8) fits the lattice Boltzmann
Ky well. In this region, we equate Fy and Dy, hence
determining D. We then go on to using the same D for all
subsequent fracture openings. Herein lies the major approx-
imation in our method. As soon as contact areas appear (here
a noticeable difference occurs when contacts cover about
10% of the total fracture area), the perturbative estimate Fy

fails to describe the continuous drop of the permeability
whereas Dy remains very close to Ky.
[22] For flow normal to the lateral displacement and, as

illustrated in Figure 1 (bottom), we find strong channeliza-
tion and it is markedly different from the one observed when

flow is parallel to ~�. Figure 3 shows the permeabilities
found by the three methods: a drop off of the permeability
with the fracture closure is observed but is less marked than
for flow along the shift (see Figure 2 for comparison). As
previously mentioned, as soon as contacts between the two
surfaces occur the perturbative method fails to describe the
marked permeability decrease observed with the lattice
Boltzmann method. Yet the worst path method still accu-
rately captures the permeability reduction estimate in the
direction parallel to the channelization even for large lateral
displacement of the fracture walls.
[23] We show in Figure 4 the relative errors between the

worst path method and the lattice Boltzmann method, and
the perturbative approximation and the lattice Boltzmann
method for different average fracture openings. The data
have been averaged over ten samples. As we see, the worst
path method performs very well for all values of the average
fracture opening and for the two flow directions.

4. Conclusion

[24] To conclude, we have introduced a new technique to
estimate the permeability of self‐affine fracture faults.
Compared to other approximative methods, it performs very
well by being able to reproduce the permeability closely
even when the fracture opening tends to zero. “Exact”
methods such as the lattice Boltzmann method gives more
precise results. However, the computation time is reduced
by several orders of magnitude compared to alternative
methods. To our knowledge, solving the finite differenced
Reynolds equations through LU decomposition is the fastest
“exact method”. For the samples studied in this note, the
worst path method used 0.01 s per sample and per average
fracture opening, whereas the LU decomposition used from
3 to 8 s. Both methods scale linearly with the number of
nodes.
[25] A length scale D is introduced in order to fit the per-

meability measured. This length characterizes the extension

Figure 2. Normalized permeabilities of a rough fracture
for flow along the lateral displacement as function of the
fracture opening hhi for two lateral displacements (thick
curves, ~� = 10~ey; thin curves, ~� = 20~ey). Circles, permeabil-
ity, Dy, calculated using equation (4). Squares and triangles
are for the permeabilities obtained by the lattice Boltzmann
(Ky) algorithm and by the second‐order perturbation theory
(Fy). The system size is 512 × 512, and D has been set equal
to 33 for l = 10 and 38 for l = 20 by matching Dy and Fy for
the maximum fracture opening.

Figure 3. Normalized permeabilities of a rough fracture
for flow normal to ~� as function of the fracture opening
hhi for two lateral displacements (thick lines, ~� = 10~ey; thin
lines, ~� = 20~ey). Despite the flow direction, the conditions
are similar to the ones of Figure 2, and circles, squares,
and triangles refer to Dx, Kx, and Fx, respectively.
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in the flow direction of the region dominated by the worst
path. We assume that D remains constant as the average
fracture opening is changed. This is one of the major
approximation build into the method, but it allows us to
determineD by comparison with other approximate methods
such as the perturbative scheme for large enough average
fracture openings for them to be accurate.
[26] Future work will be devoted to the study the rela-

tionship of between D and the statistics of the aperture
fields.
[27] The worst path method is accurate even if the aper-

ture field shows structural anisotropy. Such situation is
achieved by laterally displacing the fracture walls leading,
as observed on natural fractures, to an anisotropic perme-
ability field. The proposed method can be further extended
to other transport properties such as diffusion or electrical
conductivity. Different statistical fields such as log normal
permeability fields which also give rise to heterogenous
flow structures will also be of interest as well as three‐
dimensional permeability fields.
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his stay at Orsay and the Université de Paris 11 for funding. This work has
been greatly facilitated by the GdR 2990 HTHS and the Triangle de la
Physique.

References
Ambegaokar, V., B. I. Halperin, and J. S. Langer (1971), Hopping conduc-

tivity in disordered systems, Phys. Rev. B, 4, 2612–2620.
Archambault, G., S. Gentier, J. Riss, and R. Flamand (1997), The evolution

of void spaces (permeability) in relation with rock joint shear behavior,
Int. J. Rock Mech. Min. Sci., 34(3–4), 1–15.

Auradou, H., G. Drazer, J. P. Hulin, and J. Koplik (2005), Permeability
anisotropy induced by the shear displacement of rough fracture walls,
Water Resour. Res., 41, W09423, doi:10.1029/2005WR003938.

Barabási, A. L., and H. E. Stanley (1995), Fractal Concepts in Surface
Growth, Cambridge Univ. Press, Cambridge, U. K.

Bouchaud, E., G. Lapasset, and J. Planès (1990), Fractal dimension of frac-
ture surfaces: A universal value?, Europhys. Lett., 13, 73–79.

Brown, S. R., and C. H. Scholz (1985), Broad bandwidth study of the
topography of natural rock surfaces, J. Geophys. Res., 90, 12,575–
12,582.

Gelhar, L. W., and C. L. Axness (1983), Three‐dimensional stochastic anal-
ysis of macrodispersion in aquifers, Water Resour. Res., 19, 161–180.

Gutfraind, R., and A. Hansen (1995), Study of fracture permeability using
lattice gas automata, Transp. Porous Media, 18, 131–149.

Hans, J., and M. Boulon (2003), A new device for investigating the hydro‐
mechanical properties of rock joints, Int. J. Numer. Anal. Methods Geo-
mech., 27(6), 513–548.

Hansen, A., and E. L. Hinrichsen (1992), Some remarks on percolation,
Phys. Scr. T, 44, 55–61.

Hansen, A., and J. Kertész (2004), Phase diagram of optimal paths, Phys.
Rev. Lett., 93, 040601, doi:10.1103/PhysRevLett.93.040601.

Li, B., Y. J. Jiang, T. Koyama, L. R. Jing, and Y. Tanabashi (2008), Exper-
imental study of the hydro‐mechanical behavior of rock joints using a
parallel‐plate model containing contact areas and artificial fractures,
Int. J. Rock Mech. Min. Sci., 45(3), 362–375.

Mallikamas, W., and H. Rajaram (2005), On the anisotropy of the aperture
correlation and effective transmissivity in fractures generated by sliding
between identical self‐affine surfaces, Geophys. Res. Lett., 32, L11401,
doi:10.1029/2005GL022859.

Måly, K. J., A. Hansen, E. L. Hinrichsen, and S. Roux (1992), Experimen-
tal measurements of the roughness of brittle cracks, Phys. Rev. Lett., 68,
213–217.

Mandelbrot, B. B., D. E. Passoja, and A. J. Paullay (1984), Fractal charac-
ter of fracture surfaces of metals, Nature, 308, 721–722.

Martys, N. S. (2001), Improved approximation of the Brinkman equation
using a lattice Boltzmann method, Phys. Fluids, 13, 1807–1810.

Matsuki, K., Y. Chida, K. Sakaguchi, and P. W. J. Glover (2006), Size
effect on aperture and permeability of a fracture as estimated in large
synthetic fractures, Int. J. Rock Mech. Min. Sci., 43(5), 726–755.

National Academy of Sciences Committee on Fracture Characterization and
Fluid Flow (1996), Rock Fractures and Fluid Flow: Contemporary
Understanding and Applications, Natl. Acad. Press, Washington, D. C.

Nemoto, K., N. Watanabe, N. Hirano, and N. Tsuchiya (2009), Direct mea-
surement of contact area and stress dependence of anisotropic flow
through rock fracture with heterogeneous aperture distribution, Earth
Planet. Sci. Lett., 281, 81–87.

Plouraboue, F., P. Kurowski, J.‐P. Hulin, S. Roux, and J. Schmittbuhl
(1995), Aperture of rough cracks, Phys. Rev. E, 51, 1675–1685.

Poon, C. Y., R. S. Sayles, and T. A. Jones (1992), Surface measurement
and fractal characterization of naturally fractured rocks, J. Phys. D Appl.
Phys., 25, 1269–1275.

Power, W. L., T. E. Tullis, S. R. Brown, G. N. Boitnott, and C. H. Scholz
(1987), Roughness of natural fault surfaces, Geophys. Res. Lett., 14,
29–32.

Schmittbuhl, J., S. Gentier, and S. Roux (1993), Field measurements of the
roughness of fault surfaces, Geophys. Res. Lett., 20, 639–641.

Skjetne, E., A. Hansen, and J. S. Gudmundsson (1999), High‐velocity flow
in a self‐affine channel, J. Fluid. Mech., 383, 1–28.

Talon, L., J. Martin, N. Rakotomalala, D. Salin, and Y. C. Yortsos (2003),
Lattice BGK simulations of macrodispersion in heterogeneous porous
media, Water Resour. Res., 39(5), 1135, doi:10.1029/2002WR001392.

Watanabe, N., N. Hirano, and N. Tsuchiya (2008), Determination of aperture
structure and fluid flow in a rock fracture by high‐resolution numerical
modeling on the basis of a flow‐through experiment under confining pres-
sure, Water Resour. Res., 44, W06412, doi:10.1029/2006WR005411.

Yeo, I. W., M. H. De Freitas, and R. W. Zimmerman (1998), Effect of shear
displacement on the aperture and permeability of a rock fracture, Int.
J. Rock Mech. Min. Sci., 35(8), 1051–1070.

Zimmerman, R. W., and G. S. Bodvarson (1996), Hydraulic conductivity of
rock fractures, Transp. Porous Media, 23, 1–30.

Zou, Q., and X. He (1997), On pressure and velocity boundary conditions
for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591–1598.

H. Auradou and L. Talon, Laboratoire FAST, UMR 7608, Université
Paris Sud, CNRS, Bâtiment 502, F‐91405 Orsay CEDEX, France.
(auradou@fast.u‐psud.fr; talon@fast.u‐psud.fr)
A. Hansen, Department of Physics, Norwegian University of Science and

Technology, N‐7491 Trondheim, Norway. (alex.hansen@ntnu.no)

Figure 4. The relative errors ∣Fx − Kx∣/hh3i, ∣Fy − Ky∣/hh3i,
∣Dx − Kx∣/hh3i, and ∣Dy − Ky∣/hh3i as a function of the aver-
age fracture aperture hhi. The data has been averaged over
10 samples, each of size 512 × 512, Hurst exponent H =
0.8, and lateral displacement u = 10.

TALON ET AL.: TECHNICAL NOTE W07601W07601

5 of 5



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


