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We introduce a model that allows for the prediction of the permeability of self-affine rough channels
�one-dimensional fracture� and two-dimensional fractures over a wide range of apertures. In the lubrication
approximation, the permeability shows three different scaling regimes. For fractures with a large mean aperture
or an aperture small enough to the permeability being close to disappearing, the permeability scales as the cube
of the aperture when the zero level of the aperture is set to coincide with the disappearance of the permeability.
Between these two regimes, there is a third regime where the scaling is due to the self-affine roughness. For
rough channels, the exponent is found to be 3−1 /H, where H is the Hurst exponent. For two-dimensional
fractures, it is necessary to introduce an equivalent aperture bc to make the scaling regime apparent. bc is
defined as the hydraulic aperture of the most restrictive barrier crossing the fracture normal to the flow
direction. This regime is characterized by an exponent higher than that for the one-dimensional case: it is 2.25
for H=0.8 and 2.16 for H=0.3.
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I. INTRODUCTION

In the last decades important research efforts from differ-
ent communities have been devoted to upscaling the perme-
ability of fractures. One of the practical issues, for instance,
for long-term sequestration or for geotechnical purposes, is
to predict the behavior of the permeability under changing
mechanical conditions �1�. To uncover fundamental physical
properties of transport phenomena in fractures, laboratory
tests on rock samples �2,3� or on modeled fractures �4� as
well as numerical modeling �5� have been carried out. These
studies have reported nontrivial relations between fracture
aperture and the measured permeability. For large mean dis-
tance between the halves, the permeability is found to scale
with the cube of this distance. In this limit, the fracture can
be viewed as consisting of two parallel flat walls �3�. But, as
soon as the halves are brought closer together, deviations
from this cubic law due to the surface roughness are seen
�6,7�. In the recent years, various theoretical models based on
statistical averages, weak disorder perturbation expansions,
or mean-field approximations have been tested to evaluate
these deviations �8–16�. In spite of much invested work,
most of the foregoing developments break down if contact
zones exist in the fracture. When the fracture halves are
brought even closer, all the fluid is finally forced to pass a
single strait—or bottleneck—connecting the inlet and the
outlet. Following the work of Ambegaokar, Halperin, and
Langer �AHL� �17�, the permeability of the entire fracture is
then controlled by the permeability of the bottleneck �18,19�.
When the fracture is further opened percolating channels
arise. The permeability is not controlled anymore by the

bottleneck since the flow may bypass this region. In a previ-
ous study, we have extended the bottleneck effect by intro-
ducing the concept of critical barrier or path �20�. In the
present paper, we improve the method by taking into account
secondary bottlenecks. Our approach allows us to identify
three regimes: the AHL regime �close to percolation�, the
cubic law regime for large mean aperture, and an intermedi-
ate nonlinear regime where the permeability is controlled by
the successive critical constrictions. In Sec. II, we derive an
extension of the bottleneck concept for flow in one-
dimensional �1D� rough channels. In Sec. III, we extend the
critical path analysis to two-dimensional �2D� fractures. We
assume an aperture field which is the free space between a
flat and a rough surface of height h�x ,y�. Hence, the aperture
is defined as h�x ,y�+a, where a is the aperture measured
from the percolation point, i.e., for a�0 there is no conduct-
ing channels, and the permeability is zero. As soon as a�0,
there is permeability. Possible contacts between the surfaces
are also considered, and flow is assumed to take place only
in open voids of the fracture where a�x ,y��0. Places where
the aperture is negative are considered in contact, and their
corresponding aperture h�x ,y�+a is set to zero. The fracture
aperture is changed by moving apart the mean planes of the
two surfaces, and its permeability is then analytically �when
the field is 1D� or numerically �for 2D fields� computed by
assuming that the Reynolds equation holds locally. We note,
however, that deviations from this law may be expected for
small mean separation between the fracture walls �21�.

In the present work, we consider aperture fields with self-
affine correlations, which are known to characterize natural
fractures �22–24�. Such aperture fields have a two-point
function p2��h ,�r��, giving the probability density to find a
height difference �h over a distance �r� that shows the in-
variance

�Hp2��H�h,��r�� = p2��h,�r�� , �1�
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where H is the Hurst or roughness exponent and � is an
arbitrary scaling factor. In this work, self-affine surfaces �1D
and 2D� are generated using a Fourier transform method.

II. ONE-DIMENSIONAL SYSTEMS

We start by considering one-dimensional flow. In this
case, the fracture field is assumed invariant in the y direction,
and the flow occurs through a rough channel with local ap-
erture h�x�+a. The flow is totally stopped as soon as the two
surfaces come into contact, leading here to minx h�x�=0. The
permeability K of this one-dimensional aperture field is, in
the lubrication limit, given by the integral

L

K
= �

x0

xL dx

k„h�x� + a…3 , �2�

where k is a constant and xL−x0=L is the length of the sys-
tem. When the rough profile is discretized over a length �, so
that h�x�→hk, Eq. �2� becomes

L

K
= �

0

L/�
�

k�hk + a�3 . �3�

Before considering self-affine correlations in h�x�, we in-
vestigate the simpler but unrealistic case when there are no
spatial correlations. This is done in order to introduce the
concepts that will be central in the following.

A. Uncorrelated aperture fields

When the aperture field has no spatial correlations, we use
order statistics combined with Eq. �2� to determine the scal-
ing properties of the permeability. The aperture field is fully
characterized by the probability density p�h�, and its cumu-
lative probability is P�h�=�0

hdh�p�h��. By taking the advan-
tage that in Eq. �2� the occurrence order of the apertures does
not matter, we may therefore order the h�x� distribution in
ascending order. The ordering transformation is h�x�→h���
=h�x����, where h��1��h��2� if �1��2. We define h̄��� as
the average of h��� over an ensemble of realizations. From
order statistics �25�, we then have

P�h̄���� =
�

L
. �4�

Note that we have, by definition, h̄�0�=0 and

�maxx��0,L� h�x�	= h̄�L�, where �¯ 	 refers to an ensemble
average. The average inverse permeability is then given by
the expression

L

K
= �

0

L d�

k�h̄��� + a�3
= �

0

L d�

k„P−1��/L� + a…3 , �5�

In the situation where the aperture field is distributed ac-
cording to a power law, p�h��h�−1, where ��0, bounded
above by 	, the cumulative probability is given by P�h�
= �h /	��. This leads to

h̄��� = P−1��/L� =
	

L1/��1/�. �6�

This result is illustrated in Fig. 1 where the ordered sequence

h̄��� is shown as a function of � for �=1.25 and 3.33, re-
spectively.

The permeability of a power-law-distributed aperture field
is then given by the integral

L

K
= �

0

L d�

k„�	/L1/���1/� + a…3 . �7�

We show in Fig. 2 the permeability K as a function of the

FIG. 1. Ordered sequences h��� from an uncorrelated noise
distributed on the interval �0,1� according to the power law
p�h�
h�−1 with exponents �=1.25 �solid line� and 3.33 �dashed
line�. The data have been averaged over 1000 samples and each
sample has a length of 215. The dotted lines have slopes of
0.8=1 /1.25 and 0.3=1 /3.33, respectively.

FIG. 2. Permeability K averaged over 1000 fields of length 215

with h distributed according to a power law p�h�
h�−1 on the unit
interval, where �=1.25. Solid line and open circles show, respec-
tively, the permeability K calculated from Eqs. �3� and �7� as a
function of minimum opening a. The three scaling regimes are de-
limited by vertical lines. The dashed line represents a3−�=a1.75.
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opening a for �=1.25 based on lubrication limit expression
�3� together with the solution of Eq. �7�.

As is apparent in Fig. 2, there are three power-law re-
gimes. We identify them in the following. By introducing the
notation

I�y� =
1

y��
0

y� d�

��1/� + 1�3 , �8�

Eq. �7� may be written as

1

K
=

I�	/a�
ka3 . �9�

Depending on the value of the ratio a /	, I displays two scal-
ing regimes. In the first limit, when a /	→
, corresponding,
for instance, to a widely open fracture or to a fracture with
small wall roughness, I�	 /a� tends to 1 and Eq. �9� becomes

K = ka3. �10�

In this regime, the permeability follows the classical cubic
law. In the other limit, when a /	→0, i.e., when the fracture
is closed, we deduce from Eq. �7� that the inverse permeabil-
ity behaves as

1

K
=

I


ka3�a

	
��



1

a3−� , �11�

where

I
 = �
0


 d�

��1/� + 1�3 . �12�

When �=1.25, I
0.520 65. Hence, in this regime, the per-
meability shows a nonlinear variation with the fracture aper-
ture with an exponent 3−�.

The relation given by Eq. �11� breaks down for small
enough a when the system is discretized, h�x�→hk. When
discretized, Eq. �7� reads

L

K
= �

0

L/�
�

k„W/�L/��1/�k1/� + a…3 . �13�

For small enough a, the first term in the sum will dominate,
and the permeability is then given by

K =
L

�
ka3. �14�

This third scaling regime is visible in Fig. 2 for the
permeability calculated from discretized fields hk, where
1�k�215. The analytical calculation based on Eq. �7�
�dashed line in Fig. 2� does not exhibit such a regime.

In this paragraph, we have demonstrated that for uncorre-
lated power-law-distributed aperture field three scaling re-
gimes exist: for small a /	, K
a3; for intermediate
a /	, K
a3−�; and for large a /	, K
a3 again. The next
section extends this feature to self-affine correlated fields.

B. Self-affine correlations in the aperture field

As in the previous case, the zero level of the self-affine
field h�x� is adjusted, so that minx h�x�=0. Because of cor-

relations, Eq. �4� cannot be straightforwardly used to com-
pute the permeability. Rather, the averaged ordered sequence
of h is given by

h̄��� = c�H, �15�

where c is a prefactor. The reason for this is that since all
moments of h�x� taken at a distance x from the origin where
we have h�x=0�=0 behave as

��h�x��q	1/q 
 xH, �16�

we must have ��x and Eq. �15� follows. We test Eq. �15� in
Fig. 3. For H larger than 0.5, the scaling predicted by Eq.
�15� falls onto the numerical observation, for � larger than 50
�similarly with the power-law distribution; see Fig. 1�. How-
ever, for smaller values of H, the deviation becomes larger
�see Fig. 3�. For the 1D situation, we shall only consider a
Hurst exponent H�0.5.

We now combine Eq. �15� with Eq. �5� to calculate the
permeability,

L

K
= �

0

L d�

k�c�H + a�3 . �17�

We show in Fig. 4 the permeability derived from calculation
of Eq. �3� and from Eq. �17�.

Since Eqs. �17� and �7� are formally identical, the scaling
analysis presented in Eqs. �8�–�10� is the same for the self-
affine case as for the power-law-distributed and uncorrelated
functions when the exponent � is substituted for 1 /H.
Hence, for intermediate minimum apertures a, we find the
scaling

K =
k

I


La3−1/H. �18�

We note that the permeability is in this intermediate re-
gime proportional to the length L. This is different from the
prediction of Roux et al. �26� giving K
L3H in the same

FIG. 3. Ordered and averaged sequence h̄��� based on 1000
self-affine h�x� with Hurst exponents equal to 0.8 and 0.3, respec-
tively. The data consist of 1000 samples of length 215. The straight
lines are �0.8 and �0.3, respectively.
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regime. This calculation was based on the assumption that
K
W3, where W is the average aperture when the fracture
surfaces are close to contact. The self-affinity then gives
W
LH, and K
L3H follows. However, Eq. �18� shows that
even though the fracture opening a is large enough, so that
the minx h�x� region no longer dominates, W does not enter
the expression, and the permeability is proportional to L
rather than L3H.

For small enough a, the region around the minimum ap-
erture dominates, and the permeability is given by Eq. �14�.
This was noted by Gutfraind and Hansen �27� in their nu-
merical study based on lattice-gas automata.

III. TWO-DIMENSIONAL APERTURE FIELDS

In going from one to two dimensions, i.e., when the ap-
erture field is a function of points in a plane �x ,y� rather than
only x, the concept of the narrowest constriction needs to be
redefined. In one dimension, the narrowest constriction is the
point along the fracture where there is first contact between
the two halves. This definition does not work in two dimen-
sions. The point at which there is first contact will have little
influence in this case, as the flow simply goes around it; and,
if the two halves are brought further into contact, deforma-
tion occurs. In this work, deformations are modeled as fol-
lows: the aperture field is defined by u�x ,y�=u+h�x ,y�.
Contact points �and thus deformations� appear wherever
u�x ,y��0. Hence, we model the deformation at those points
by setting the aperture equal to zero as follows:

n�x,y� = max
�x,y�

�u�x,y�,0� . �19�

Hence, by replacing h�x ,y�+u with n�x ,y� we model in a
simple way the possible overlaps of the walls.

In one dimension, the aperture of the narrowest constric-
tion is a. When a approaches zero, the permeability de-
creases and reaches zero for a=0. We wish to define the

aperture in the same way in two dimensions, namely, a is the
aperture for which the permeability reaches zero. When the
aperture is close to this value, the permeability is controlled
by a single strait as argued in a different context by Ambe-
gaokar et al. �17�. The minimum-maximum algorithm of
Hansen et al. �28,29� is used to identify the position of this
particular point. First, we identify the minimum height along
each path connecting the inlet to the outlet. The highest of
the minimum height gives then the minimal vertical shift for
which flow occurs. We will denote by a this height. Note
that, using this method, one can also localize the percolation
point that according to Ambegaokar et al. �17� should control
the permeability.

Figure 5 shows the permeability, computed by solving the
Kirchhoff equations, as a function of the aperture a. The
normalization of the permeability by a3 highlights two pla-
teaus for, respectively, small and large a’s. They correspond
to the two cubic regimes already observed in the one-
dimensional case.

In the intermediate regime, however, the normalized per-
meability does not show a power law in contrast to the one-
dimensional case �see the inset of Fig. 4�. This hints that at
the aperture a does not correspond to the aperture defined in
the one-dimensional case. We now identify the proper vari-
able for this. In a recent paper, Talon et al. �20� replaced the
one-dimensional notion of the “narrowest constriction” with
the “most restrictive path” in two dimensions. If C is one out
of all the possible paths that cut across the sample between
the two edges parallel to the average flow direction, we may
assign an “effective permeability” to it as the integral of
n3�x ,y� along C. We then identify the path with the smallest
effective permeability,

bc =
1

L�min
C
�

C
d�� · e��n3�����1/3

, �20�

where e�� is a unit vector pointing in the direction orthogonal
to the average flow direction. When a�1, bc will essentially
be equal to a, as the only opening along the most restrictive

FIG. 4. Permeability K defined in Eq. �3� as a function of mini-
mum opening a for 1000 self-affine fields h�x� of length 215 with
H=0.8. We also show integral �17� as a function of a. The straight
dotted line is the power law a3−1/H=a1.75 �Eq. �18��. The inset
shows the normalized permeability K /a3.

FIG. 5. Permeability K /a3 as a function of opening a for 100
self-affine samples of size 1024. For small and large a’s, K
a3, but
with different prefactors.
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path will be the AHL strait. However, for larger values of a,
they will no longer coincide. As a is increased even further,
they again approach each other.

We show in Fig. 6 permeability K as a function of bc as
defined in Eq. �20�. There are the small and large bc regimes
where K
bc

3. However, now there is also an intermediate
regime where there is power-law behavior,

K 
 bc
2.250.02, �21�

for H=0.8. For surfaces with H=0.3, we find an exponent
2.160.02.

In order to understand where this intermediate power-law
regime comes from, we generalize the concept of bc. Assume
now that we are no longer looking for the most restrictive
path for the entire sample, but for other restrictive paths that
start at a position x,

b�x� =
1

L�min
C�x�

�
C

d�� · e��n����3�1/3

, �22�

where C�x� is a path starting at x. In practice we use a
transfer-matrix algorithm for this �30�. We have that the most
restrictive path is given by bc=minx b�x�.

We may now order the local most restrictive paths,
b�x�→b���. Figure 7 shows the ordering statistic of
b���−bc obtained for self-affine surfaces h�x ,y�. For �
smaller than 50, b���−bc is found to follow a power law
characterized by an exponent � close to 1.5 for H=0.8 and
�=1.2, for H=0.3.

FIG. 6. �Color online� Permeability K as a function of bc for 100
self-affine samples with H=0.8 of size 1024�1024. The straight
lines are bc

2.25 and bc
3, respectively.

FIG. 7. Ordered sequences b���−bc from 1000 samples of size
1024�1024 with Hurst exponents H=0.8 and H=0.3, respectively.
The straight lines are proportional to �1.2 and �1.5, respectively.

FIG. 8. �Color online� Pressure field in gray levels a self-affine
realization. The flow is from left to right. Dark regions correspond
to contact zones. From top to bottom: �b−bc�=10−4 �AHL regime,
the arrow indicates the percolation point�, 0.5 �crossover regime,
the arrows show the two significant pressure drops corresponding to
the two major barriers�, 28 �crossover regime�, and 97 �cubic law
regime�.

PERMEABILITY OF SELF-AFFINE APERTURE FIELDS PHYSICAL REVIEW E 82, 046108 �2010�

046108-5



The local most restrictive path b�x� plays the role of
a+h�x� in the one-dimensional case. Under this assumption,
the two-dimensional permeability is given by

L

K
= �

0

L dx

kb3�x�
= �

0

L dx

k�„b�x� − bc… + bc�3 . �23�

This equation should be compared to Eq. �3� for the one-
dimensional system. bc in the present case plays the role of
a, and b�x�−bc plays the role of h�x�. Following the logic
that led to Eq. �7�, we would expect the exponent of the
power law of the intermediate regime to be 3−1 /�; hence,
2.33 for H=0.8 and 2.16 for H=0.3. Clearly, the assumption
that b�x� could replace a+h�x� in an equivalent system does
lead to a reasonable determination of the exponent.

The three regimes are qualitatively illustrated in Fig. 8
that shows the pressure field for different values of �b−bc�.
In Fig. 8�a�, we see the regime for which the permeability is
controlled by a single element—the AHL regime, giving rise
to a cubic law behavior. Figures 8�b� and 8�c� show the
crossover regime giving rise to the intermediate power law in
the permeability. Figure 8�d� shows the large-opening regime
where again a cubic law is found.

IV. SUMMARY AND DISCUSSION

We have in this paper discussed permeability of fractures
as a function of fracture opening. We identify three regimes:
a first regime where the permeability is completely con-
trolled by one single local area. This area is that identified by
the AHL construction and is closely related to the percolation
point. In one-dimensional channels, it corresponds to the nar-
rowest constriction. In this regime, we find that the perme-
ability follows a cubic law with respect to the fracture open-
ing. When the fracture opening is very large, another cubic
law regime is found. The prefactors of the two cubic laws are
different. Between these two regimes, there is an intermedi-
ate regime where nontrivial scaling is found. In one-
dimensional systems, this scaling can be derived thanks to
order statistics for uncorrelated power-law aperture distribu-
tion. In the case of self-affine aperture field, despite long-
range correlations the order statistics also follows a power
law as for the uncorrelated aperture field. Consequently, the
three scaling regimes are observed for self-affine fractures,
with an intermediate exponent of 3−1 /H.

However, in two dimensions, ordering the permeability
distribution modifies the effective permeability; ordering sta-
tistics is thus no longer applicable in this form. We improved
the approach proposed in a previous work �20� where we
introduced the concept of most restrictive path. We used the
same concept to model the fracture as a sequence of trans-
verse barriers put in a series. The concept of a path defined
here should not be confused with that of a flow path. A
hydraulic aperture is then estimated for each barrier. The
problem reduces then to a one-dimensional one, where order-
ing is allowed. We have then shown that the order of each
most restrictive barrier displays a power-law trend. This
model allows us to interpret three observed scaling regimes
as functions of the equivalent aperture bc of the most restric-
tive path. However, contrary to the one-dimensional case, the
scaling law could not be predicted from the roughness of the
fracture wall. The obtained exponent for 2D is higher than
that for the 1D channel. This indicates that the deviation to
the cubic law is less important in 2D systems. This can be
understood from the bypass effect and the localization of the
flow. Yet, our approach introduces a different scale bc which
allows us to continuously describe the crossover from the
AHL regime to the “cubic law” one using a framework
which is the same in one and two dimensions. To our knowl-
edge none of the previous methods describe such a behavior.

The numerical simulations performed here are based on
lubrication theory. This approximation may, however, fail to
correctly estimate the flow field as soon as the roughness
significantly varies over small distances. Future work with
flow fields estimated by solving the three-dimensional Stokes
equation will be carried out. Other permeability distributions
will be considered to generalize our model. We also believe
that an extension to three-dimensional permeability field is
worth investigating.
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