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We analyze the displacement of a viscous fluid by a miscible more viscous one in heterogeneous
porous media. We performed lattice Bhatnagar–Gross–Krook simulations, which were previously
successfully applied to the study of the dispersion of a passive tracer in a stochastic heterogeneous
porous medium. In the present situation, the flow is stable(no viscous fingering) and leads to an
overall Gaussian dispersion, the coefficient of which decreases as the viscosity ratio increases. The
results are in reasonable agreement with the stochastic approach of Welty and Gelhar. ©2004
American Institute of Physics. [DOI: 10.1063/1.1810474]

I. INTRODUCTION

One key issue in hydrology, contaminant remediation,
and petroleum engineering is the understanding of the cou-
pling between the porous medium heterogeneity and the fluid
displacement properties given by buoyancy or viscosity ef-
fects. In this paper, we will focus on the viscous effect re-
lated to the displacement of a less viscous fluid in the porous
medium by a more viscous fluid: This displacement is stable,
as opposed to the well-known situation where a more viscous
fluid is displaced by a less viscous one. If the latter case of
viscous fingering has been extensively studied in homoge-
neous porous media(of permeability uniform in space),1–3 it
is not the case for realistic, i.e., heterogeneous porous media.
A number of investigations4–11 have addressed the issue of
the coupling between a destabilizing viscosity contrast and
the permeability distribution. Basically, in a heterogeneous
porous medium, the fluid flows through the hydrodynami-
cally easiest path that is through the larger permeability path,
leading to an enhanced effect of heterogeneities, such as
“resonance” between the intrinsic scale of the fingers(in ho-
mogeneous medium) and the correlation length of the hetero-
geneous porous medium.5,6,9

Curiously enough, little attention has been paid to the
case of stabilizing viscous effects in displacements in hetero-
geneous porous media. Let us mention an experiment in a
layered porous medium,8 where the resulting stratification of
the displacement parallel to the layers was reduced and even
suppressed for a large enough stabilizing viscosity ratio.

In the present paper, using our lattice BGK(Bhatnagar–
Gross–Krook) simulation method,12 well suited for tracer
macrodispersion in heterogeneous porous media,13–15we ad-
dress the issue of miscible stable displacements in more re-
alistic heterogeneous porous media, namely, those with given
log-normal permeability distributions and correlation

lengths. We find that the mixing front between the fluids
exhibits Gaussian dispersion, the dispersion coefficient of
which decreases when the viscosity ratio increases. The re-
sults are shown to compare reasonably well with the extrapo-
lation of the predictions by Welty and Gelhar16 to our case.

II. NUMERICAL SIMULATIONS

As detailed in Ref. 12, the permeability fieldKsrWd of the
porous medium was chosen to obey a log-normal distribution

lnfKsrWdg = f̄ + f8srWd, s1d

where f̄ is the mean of the distribution and where the pertur-
bation field f8srWd has a zero mean value and a variances f

2.
The isotropic spatial correlation of the permeability field is
given by the exponential decay of the covariance function of
f8,

Rf fszWd = Eff8srWdf8srW + zWdg = s f
2 expS−

z

l
D s2d

with l the correlation length. Such a porous medium was
generated by convolving a random white noise field with an
ad hoccorrelation function, namely,

hsx,yd = expfsx2/d2 + y2/d2d1/3g, s3d

where the value of the parameterd sets that of the correlation
length l. Note that the characteristic value of the resulting

permeability field isKl =exps f̄d.
We then study the displacement in the porous medium of

a fluid of viscositym1 by another fluid of viscositym2, mis-
cible to the first one, and flowing at the constant mean rateq0

in thex direction. To achieve this, we perform the simulation
of the following equations for the velocity fieldqW and the
concentrationC of the injected fluid:

¹W ·qW = 0, s4d

¹W P = −
m

KsrWd
qW + mDqW , s5d
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]C

]t
+ qW ·¹W C = DmDC. s6d

We note that the flow equation[Eq. (5)] involves a
Brinkman-like term,mDqW, the influence of which on tracer
macrodispersion was analyzed in a previous paper.12 Follow-
ing Refs. 16 and 17, the fluid viscositym is assumed to have
an exponential concentration dependence, namely,

msCd = m1 expsbCd, s7d

where

b = lnSm2

m1
D . s8d

The case b.0 corresponds to a stable displacement,
whereasb,0 corresponds to an unstable one(viscous fin-
gering). Note also that the concentrationC undergoes an iso-
tropic mesoscopic diffusion of coefficientDm [Eq. (6)], lead-
ing to the same value of the mesoscopic longitudinal and
transverse dispersivities:aL=aT=Dm/q0.

The simulations presented here were performed on typi-
cal mesh sizes 5123512 and during 150 000 time steps, us-
ing a 1.7 GHz Pentium IV. They were characterized by a
Brinkman parameterKl /l2!1, which mimimizes the effect
of the Brinkman term, and a variances f

2 of the permeability

distribution ranging in[0, 1]. Typical mean flow rateq0,
viscosity ratiom2/m1 (and thusb), and diffusion coefficient
Dm ranged in[0.001, 0.01], [1, 2.5] sbP f0,0.9gd and f5
310−5,10−3g, respectively. In such conditions, the CPU time
was about 10 h.

Figure 1 (top) shows typical invasion patterns, on the
same permeability distribution, for tracer dispersion(m2/m1

=1, b=0, left) and for a stable displacement(m2/m1=1.22,
b=0.2, right). Even for this viscosity ratio close to 1, the
sharpening of the mixing front is clearly observed, compared
to the tracer case. An estimate of the front width is obtained
by computing the derivative of the mean concentration pro-

file C̄sxd (dots in Fig. 1, bottom). Then the so-obtained mean
concentration gradients are fitted tentatively to Gaussian pro-
files (solid lines in Fig. 1, bottom). Note that such a Gaussian
behavior is reached at long times, for a spreading of the
mixing front in the mean flow direction large enough com-
pared to the correlation length of the permeability field: Typi-
cally a ratio of those quantities of the order of 20 was nec-
essary to obtain Gaussian profiles.

From these profiles, one measures the variances2std at
time t. The time evolution ofs2 for the invasion pattern of
Fig. 1, right, is displayed in Fig. 2. One notices thats2 in-
deed varies nearly linearly with time at long times. Therefore
an effective diffusion coefficientDeff can be measured using
the relation,

FIG. 1. The top figures show typical injected fluid patterns(in dark gray) for the tracer case,m2/m1=1 (b=0, left) and for
m2/m1=1.22 (b=0.2, right). The permeability field(given by the gray-level background) and the flow parameters are the same:l=2, s f =0.8, q0=4310−3,

Dm=5310−5. The bottom figures display the measured absolute value of the mean concentration gradient, −s]C̄/]xd (dots), and the data fit to a Gaussian
behavior(lines), as functions of the distancex to the injection plane.
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1

2

ds2

dt
= Deff.

This diffusive behavior was observed whatever the values of
q0, b, Dm, and s f used (in the ranges given above): This
supports the contention that the mixing regime is diffusive in
our range of parameters.

III. THEORY

Before proceeding to the data analysis, let us summarize
the analytical derivation of the macroscopic dispersion coef-
ficient in a viscously stabilizing two-dimensional displace-
ment in a heterogeneous porous medium. For this purpose,
we follow the same approach as in Refs. 16 and 12 and use
the permeability field[Eqs. (1) and (2)] and the flow equa-
tions [Eqs. (4), (5), (7), and (8)] detailed above. The diffu-
sion equation of the concentrationC is written in the form

]C

]t
+ qW ·¹W C =

]

]x
Sq0aL

]C

]x
D +

]

]y
Sq0aT

]C

]y
D s9d

in order to investigate the roles ofaL and aT, respectively.
We assume small perturbations about the transversely aver-
aged values for the concentration, the velocity, and the pres-

sure:C=C̄sxd+C8, qW =q0uWx+qW8, P=Psxd+P8. Viscosity and
permeability fields become, respectively,

msCd = msC̄d + C8
dm

dC
sC̄d = msC̄ds1 + bC8d

and

KsrWd = Kls1 + f8d.

The calculation of the mean dispersive fluxq8C8 along the
same line as in Ref. 12 then leads to an effective macrodis-
persivity a, when a uniform mean concentration gradient,

−s]C̄/]xd, as in Ref. 16 is assumed. We find after some cal-
culations that the longitudinal macrodispersivitya=Deff/q0,
with Deff the effective diffusion coefficient, is given by

a = ls f
2E

0

` u2du

s1 + u2d3/2S1 +
Kl

l2u2DFu2S1 +
Kl

l2u2D + bG
s10d

with b=−sbl2/aTds]C̄/]xd. We note that the modelization is
not self-consistent, as the description of the front spreading
in terms of a diffusive process leads to the definition of a
diffusion coefficient which depends on the concentration gra-
dient. However, the model allows the understanding of the
interplay between the different physical quantities in the
spreading process. More precisely, the above equation[Eq.
(10)] shows that the dispersivity depends on the following
two dimensionless variables: the Brinkman termKl /l2, the
effect of which was previously studied in the tracer case,12

and the parameterb, which accounts for viscosity contrasts;
for b=0 the tracer case12 is retrieved. Note that a finite value
of b requires transverse mixingsaTd and a uniform concen-
tration gradient as in Taylor dispersion.18 Note also that Eq.
(10) agrees with Welty and Gelhar’s equation16 in the limit-
ing caseKl /l2→0.

IV. RESULTS AND DISCUSSION

The viscosity effects can be quantified by measuring the
effective diffusion coefficientDeff in terms of b. As men-
tioned above, the value ofb, which is proportional to the
concentration gradient, depends on the location where the
latter quantity is measured. Here, we arbitrarily chose the
largest concentration gradient in the middle of the front(see
Fig. 1), and hence the largest parameterb, namely,

bM = −
bl2

aT

U ]C̄

]x
U

Max
. s11d

Note that in so doing, the theoretical dispersion coefficient
[Eq. (10)] is underestimated.

Figure 3 shows the effective diffusion coefficientDeff

normalized by the value,q0ls f
2, obtained in the tracer case

FIG. 2. Half of variance of the mean concentration gradient,1
2s2 (dots), vs

time for the simulation of Fig. 1, right. The line is a linear regression fit of
the data. Here, we obtainDeff=5310−3.

FIG. 3. Normalized effective diffusion coefficient,Deff/q0ls f
2, vs the pa-

rameterbM = u−sbl2/aTds]C̄/]xduMax, for different values of the control pa-
rametersq0, b, Dm, and s f

2 (symbols). Each symbol corresponds to the
variation of one parameter at a time. The lines give the prediction of Eq.
(10), using the valuesb=bM (solid line), b=bM /2 (dashed), and b=bM /3
(dot-dashed).
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(b=0 and forKl /l2→0), versus the parameterbM. Note that
each symbol in Fig. 3 corresponds to the variation of one
control parameter(q0, b, Dm, or s f

2) at a time, and that each
data point is obtained from one given realization of the po-
rous medium, which induces some scatter in the results.
However, the data collapse reasonably well on a single
curve. This supports the idea that the front experiences a
uniform effective mobility gradient. Figure 3 also displays
the theoretical prediction of Eq.(10) (solid line), using the
same valuebM as in the simulations. Although the trend is
the same as for the simulations, the model underestimates the
diffusion coefficient, in accordance with the above remark.
Therefore, we also plot in Fig. 3 the analytical curves ob-
tained for smaller mean concentration gradients, correspond-
ing to b=bM /2 andb=bM /3. A better agreement is observed
when a mean concentration gradient, typically two times as
small as the maximum gradient, is used in the prediction of
Eq. (10). Note that as diffusion proceeds, the concentration
gradient should decrease in time, leading to a decrease ofb.
Consequently, the diffusion coefficient predicted by the
model should increase in time, leading eventually to the dis-
persivity of the tracer case,asb=0d, as in Ref. 12. However,
the characteristic time for such a process is far beyond our
simulation means. For instance, in the conditions of the
simulation of Fig. 1, right, the variances2std should reach
the value of 106 (compared to a few hundreds at the end of
the simulation) for the macrodispersivity of the tracer case to
be obtained. We may note also that the increase of the diffu-
sion coefficient in time is a direct consequence of the trans-
verse diffusion, which tends to smooth out the viscosity con-
trast. This can be compared to the well-known Taylor
diffusion in a capillary tube, where the transverse dispersion
is responsible for the diffusive regime18 at long times and to
miscible displacements between two plates, in which, for
small Peclet numbers and a stable viscosity ratio, a diffusion
regime was obtained with a diffusion coefficient equal to that
of the Taylor regime(tracer case).19

V. CONCLUSION

We studied in this paper the macrodispersion in miscible
and stable displacements of a less viscous fluid by a more
viscous one in heterogeneous porous media, by means of a
lattice BGK simulation method. This method was previously
applied to the study of the effect of the Brinkman parameter,
Kl /l2, on the macrodispersion of a passive tracer in a sto-
chastic heterogeneous porous medium. The present work fo-
cused on the quantitative estimation of the stabilizing vis-
cous effects on macrodispersion. We showed that, after some
transient time, a diffusivelike mixing regime was reached,
the effective diffusion coefficient of which depended on the

so-called viscous parameterb=−sbl2/aTdsdC̄/dxd, involv-
ing the porous medium correlation lengthl, the viscosity
contrastb, the transverse dispersionaT, and the mean con-

centration gradient −sdC̄/dxd of the injected fluid, as derived
in Ref. 16. Although the assumption of a uniform mean con-
centration gradient of the model was not verified, it was
shown that the behavior of the diffusion coefficient as a func-

tion of b in the numerical simulations agreed with the model
prediction[Eq. (10)], provided that a value of about half the
maximum of the observed gradient was taken to evaluateb.

This work will be extended, in stochastic heterogeneous
porous media, to the case of viscosity unstable miscible dis-
placements, and to the interplay between the resulting vis-
cous fingering and the effect of the underlying porous me-
dium heterogeneities.
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