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[1] We use the extended Darcy’s law, which also accounts for the Brinkman correction, to
study macrodispersion in a two-dimensional (2-D) porous medium. The former is
necessary when permeability changes fast at a relatively small scale, and in general, it is a
more complete description of flow in a heterogeneous medium. Lattice-gas methods are
ideally suited to simulate such flows. Simulations using a lattice BGK method and a small-
fluctuation approach are described for an isotropic, exponentially decaying correlation
function of the permeability field. The analytical results contain the additional parameter
Kl/l

2 (where Kl and l are the typical permeability and velocity variation length,
respectively), the sensitivity to which was studied. As expected, the contribution of the
Brinkman effect is insignificant for typical field values of this parameter, in which case, the
classical results are recovered. At larger values, for example, for heterogeneous media of a
small correlation length, and possibly in laboratory applications, the Brinkman correction
leads to a decrease in macrodispersivity, reflecting the smoothing effect of the Brinkman
correction on the velocity field. Nonetheless, for practical values of the parameters, this
reduction is no larger than 50% of the classical expression. The small fluctuation theory
was found to be in good agreement with the simulations, provided that it was consistently
applied (namely, by not mixing first-order with second-order expansions). The results also
show that lattice-gas simulations can be usefully employed to study macrodispersion in
heterogeneous porous media. INDEX TERMS: 1829 Hydrology: Groundwater hydrology; 1869

Hydrology: Stochastic processes; 1832 Hydrology: Groundwater transport; 5114 Physical Properties of Rocks:

Permeability and porosity; 5139 Physical Properties of Rocks: Transport properties; KEYWORDS: groundwater
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1. Introduction

[2] Permeability heterogeneity in porous media is a well-
recognized factor in many practical applications, in fields
such as hydrology, petroleum and environmental engineer-
ing. Heterogeneities create preferential flow channels,
which greatly enhance the spreading of pollutants, or,
conversely lead to the bypassing of targeted zones contain-
ing organic liquids (such as oil or NAPLs, in the respective
applications of oil recovery or aquifer remediation). The
influence of heterogeneity on the field-scale dispersion of
passive tracers has been studied extensively. Stochastic
continuum approaches [Dagan, 1982; Gelhar and Axness,
1983; Dagan, 1984, 1989; Rubin, 1990; Hsu, 1999, 2000],
based on Darcy’s law and the advection-dispersion equa-
tion, have provided a significant understanding of the
macroscale dispersion as a function of the statistical proper-
ties of the permeability field. These theories have compared
favorably to conventional numerical simulations [Ababou et

al., 1989; Bellin et al., 1992; Jussel et al., 1994; Tompson
and Gelhar, 1990; Chin, 1997].
[3] When the permeability fluctuation is over small dis-

tances, Darcy’s law may not adequately describe the con-
servation of momentum. It is well known that Darcy’s law
breaks down near discontinuities in permeability (for exam-
ple, across different permeability blocks or at the free liquid-
porous medium interface). To connect the resulting discon-
tinuities, an additional macroscale viscous term (the Brink-
man correction [Brinkman, 1947]) is routinely added to
Darcy’s equation, leading to

~rP ¼ � m
K
~V þ me�~V ð1Þ

where me is an effective viscosity. The Stokes-type term above
allows for a continuous solution of the velocity field for
arbitrary permeability fields. Even though (1) has not been
rigorously derived for arbitrary permeability distributions, it
contains the correct phenomenological terms and it is more
complete than Darcy’s law in the case of arbitrary hetero-
geneity (see also below). The lattice Boltzmann simulator to
be described here naturally accounts for these terms and could
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be used as a more complete model for the numerical
simulation of such processes. Accounting for this effect
may be necessary when the permeability varies significantly
over small distances in a heterogeneous medium.
[4] The macrodispersion resulting under such conditions

has not been analyzed previously in the literature. It is the
purpose of this paper to study this effect in 2-D, by
considering both a small-fluctuation expansion and numer-
ical simulation. First, we provide a small-fluctuation
approach, by extending the well-known theory of Gelhar
and Axness [1983]. Then, we present numerical results
using an appropriate lattice Boltzmann simulation of tracer
displacement based on the lattice BGK (Bhatnagar, Gross
and Krook) model [Bhatnagar et al., 1954; Qian et al.,
1992]. Here the Darcy viscous force is expressed as a body
force. A lognormal hydraulic conductivity will be distrib-
uted to the lattice nodes which provide the mesoscopic
scale, according to log (K) = �f + f 0, where f 0 is a gaussian
perturbation. The macroscopic properties of the resulting
porous medium will be measured at the scale of the lattice.
It will be shown that theory and simulations agree well in
the small fluctuation limit. As expected, the effect of the
Brinkman correction is insignificant when the correlation
length is not very small (for example, in typical field
applications), in which case the classical results are
obtained. In the opposite case, the macrodispersivity is
found to decrease as the Brinkman effect becomes more
important, reflecting the smoothing effect of the macroscale
viscous effects on the velocity fluctuations.
[5] The paper is organized as follows: In section 2 we

present an extension of the stochastic approach theory of
Gelhar and Axness [1983] to the more general case of the
Brinkman equation shown above. The flow simulation
using the lattice BGK model is described in section 3.
Theory and simulation are compared in section 4. The
possible implications of the Brinkman correction on macro-
dispersion are discussed as a function of the correlation
length.

2. Stochastic Analysis of Macrodispersion
Using a Stokes-Darcy Equation

[6] We consider stationary viscous flow, described by the
Stokes-Darcy (or Brinkman) equation

~q ¼ �K

m
~rP þ K�~q ð2Þ

Here ~q is the volume-averaged fluid velocity or specific
discharge, K is the spatially varying permeability and P
denotes pressure. In postulating (2) we made the widely-
used assumption that me = m. In actuality, a rigorous
derivation of the Brinkman correction has not appeared in
the literature for arbitrary heterogeneity porous media. For
example, Dagan [1979] derived a similar model but with
the different coefficients

~q ¼ �K

m
~rP þ r 2ð Þ K

n
�~q ð3Þ

where r(2) � 2.25 (1-n2)/n2 for a certain case, and r(2)K/n �
d2/80 for another. In (3), n is porosity, K the permeability

and d a typical pore size. In a more recent study, Martin et
al. [2002] analyzed more rigorously the Brinkman term in a
Hell-Shaw cell. They found, however that the averaged flow
is well approximated by (3) with r(2)/n = 6/5.
[7] In this paper, and without significant loss, we will use

(3) with r(2)/n = r(2) = 1. Different values of the latter
parameter can be readily incorporated in the final result, as
will be shown below. As noted, the permeability will be
lognormally distributed, as commonly done,

log K ~rð Þð Þ ¼ f ~rð Þ ¼ f þ f 0 ~rð Þ ; logKl ¼ f ð4Þ

where f 0 is a perturbation of zero mean and variance sf
2. As

various spatial correlation laws give rather similar macro-
scopic behavior [Hsu, 1999, 2000], we choose an isotropic
exponential covariance function with correlation length l,
hence

Rff
~z
� �

¼ E f 0 ~rð Þf 0 ~r þ~z
� �� �

¼ s2f exp �
~z
��� ���
l

0
@

1
A ð5Þ

The transport of the tracer is described by the classical
advection-dispersion equation,

@C

@t
þ~q 	 ~rC ¼ Dm�C ð6Þ

with a local mesoscopic diffusion coefficient, Dm. In the
above, we assumed isotropic mesoscale dispersion, leading
to longitudinal and transverse dispersivities

aL ¼ aT ¼ Dm

q
ð7Þ

where q is the mean flow velocity, the direction of which
defines the x-axis (note that with this choice we have �qy = 0).
We also incorporated without loss of generality the porosity
(assumed constant and uniform) into a rescaled time.
[8] For the small-fluctuation analysis, we will proceed

following closely the approach of Gelhar and Axness
[1983] and Welty and Gelhar [1991]. Small, random per-
turbations about the mean are assumed for the concentra-
tion, the specific discharge and the pressure: C = �C + C0,
qb = �qb + q0b (where b = x, y) and P = �P + P0. The
perturbation expansion is inserted in the advection-disper-
sion equation, the mass conservation equation and the
Stokes-Darcy equation. To first-order in perturbations, we
then obtain a set of equations, which are solved using the
Fourier-Stieltjes representation. It is straightforward to show
that the spectrum of the perturbations in velocity and
concentration, dZqb and dZC, are related to the spectrum
of f 0, dZf, as follows:

dZqbð~kÞ ¼ KlJx
k2dbx � kbkx

k2 1þ Klk2ð Þ

� 	
dZf ~k

� �
b ¼ x; yð Þ ð8Þ

where Jx is the mean hydraulic gradient which is in the x-
direction (taking the mean value of (2) leads to Jy = 0), and

dZC ¼ � 1

q ikx þ k2ð Þ dZqx
@ �C

@x
ð9Þ
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[9] It is evident that the effect of the Brinkman correction
in (8) is the term Kl k

2 (the conventional Darcy result is
recovered in the limit Kl/l

2 ! 0). Note also that if r(2)/n 6¼ 1,
the coefficient Kl simply needs to be multiplied by r(2)/n.
[10] Using the identity

a0b0 ¼
Z 1

�1
dZa*dZb ð10Þ

we then obtain, after appropriate substitutions, the following
expressions for the first-order velocity variances q0bq

0
b:

s2qx
q2

¼ q2x
q2

¼ 3

8

s2f
g2

Z 1

0

udu

1þ u2ð Þ3=2 1þ Kl

l2
u2

� 	2
ð11Þ

and

q2y

q2
¼ 1

3

q2x
q2

ð12Þ

Here we introduced g = Keff /Kl, the so-called flow factor
[Gelhar and Axness, 1983], which to second-order in
perturbations reads

g ¼ q

KlJx
¼ 1�

s2f
4

Kl

l2

Z 1

0

u3du

1þ Kl

l2
u2

� 	
1þ u2ð Þ3=2

ð13Þ

The classical result, g = 1, for 2-D using Darcy’s equation
[Renard and de Marsily, 1997] is retrieved in the limit Kl/l

2

! 0.
[11] The mean dispersive flux, q0xc

0, leads to the macro-
dispersivity. Taking into account the isotropic mesoscopic
dispersivity, the longitudinal macrodispersivity, a = (D –
Dm)/q, where D is the macroscale dispersion coefficient, is

a ¼
l2s2f
2pg2

Z 1

�1

k4yaLd~k

k2x þ a2
Lk

4
� �

1þ Klk2ð Þ2 1þ l2k2
� �3=2

k2
ð14Þ

which in the limit of infinitely small mesoscopic dispersiv-
ity (aL/l = aT/l ! 0), reads

a ¼
ls2f
g2

Z 1

0

1

1þ Kl

l2
u2

� 	2

1þ u2ð Þ3=2
du ð15Þ

We need to point out that as s2qx and a are calculated to first-
order in perturbations, the term g in (11) and (15) must also
be replaced by its first-order expression, g = 1, thus leading
to the final results:

s2qx
q2

¼ q2x
q2

¼ 3

8
s2f

Z 1

0

udu

1þ u2ð Þ3=2 1þ Kl

l2
u2

� 	2
ð16Þ

and

a ¼ ls2f

Z 1

0

1

1þ Kl

l2
u2

� 	2

1þ u2
� �3=2 du ð17Þ

Equations (16) and (17) are the final expressions for the
variance of the velocity and the macrodispersivity, when the

flow field is generalized to also account for a macroscopic
viscous (Brinkman) effect. In the limit where the correlation
length is sufficiently large, the above reduces to the
classical. In the more general case, the macrodispersivity
can be expressed with the following functional dependence

a
l
¼ g

Kl

l2

� 	
s2f ð18Þ

where in the small-fluctuation theory, the function g
Kl

l2

� �
is

equal to the integral in (17). The above relation is in fact,
general, and applies to arbitrary dimensions and without the
limitation of the small fluctuation. Again, for a different
Brinkman model, with r(2)/n 6¼ 1, the terms containing Kl in
the above expressions simply need to be multiplied by r(2)/n.
[12] The above results will be compared to the numerical

simulations described in the following section.

3. Lattice BGK Simulation of Flow and
Displacement in a Porous Medium

[13] Since the pioneering work of Frisch et al. [1986],
who demonstrated the ability of lattice gases to recover the
full Navier-Stokes equations, an extended literature has
become available [Rothman and Zaleski, 1997]. In the
kinetic gas theory, simple collisions, preserving mass and
momentum, give rise to gas transport properties, such as
viscosity, mass and thermal diffusion. Statistical physics
taking into account multiple collisions and interactions lead
to a more elaborate description of the fluid state. By
performing such statistical physics on a lattice with enough
degrees of symmetry and freedom, the macroscopic behav-
ior of the fluid is obtained.
[14] Following the classical lattice gas models, additional

models have been developed. Here we will use one such
version, namely the lattice BGK (Bhatnagar, Gross and
Krook) model [Bhatnagar et al., 1954], which uses popu-
lation densities instead of particles, and contains the relax-
ation parameter wv at the collision step. The time evolution
of the mass density, Ni ~r; tð Þ, at the node ~r and in the
direction ~ci of the neighboring node ~r þ~ci, is given by
the relaxation equation

Ni ~r þ~ci; t þ 1ð Þ ¼ 1� wvð ÞNi ~r; tð Þ þ wvN
eq
i ~r; tð Þ wv 2�0; 2½ð Þ

ð19Þ

where Ni
eq is the equilibrium distribution [Qian et al.,

1992]. In the particular version of the model used in this
work (the so-called D2Q9 model), the kinematic viscosity v
is related to the relaxation parameter using the relation

v ¼ 1

3

1

wv

� 1

2

� 	
ð20Þ

Although, strictly speaking, developed to simulate flow of a
homogeneous fluid, lattice gas models can readily be
adapted to account for flow in a porous medium by
introducing the Darcy viscous force as an external force
[Spaid and Phelan, 1997; Martin et al., 2002]. This inno-
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vative method to account for porous media effects, leads to
the Navier-Stokes-Darcy (NSD) equation

@~V

@t
þ ~V 	 ~r
� �

~V ¼ �
~rP

r
� v

K
~V þ v�~V ð21Þ

While it does not necessarily rigorously describe the flow in
a porous medium at arbitrary Reynolds numbers, this
equation does lead to the widely used Brinkman correction
at conditions of a stationary state and at low Reynolds
numbers,

~rP ¼ � m
K
~V þ m�~V ð22Þ

The macroscale viscous effect (the Laplacian �~V ) allows to
smooth velocity discontinuities associated with Darcy’s law
in places of permeability changes. In the general form of the
Brinkman equation (1), the relative weight of the two
friction terms may be tuned with the help of me. In our
case, where me = m, this may be done by adjusting the value
of the ratio K/l2, where l is the characteristic length of the
velocity variations (i.e. the correlation length, l, of the
stochastic distribution).
[15] Mesoscopic diffusion is implemented in such a way

that the advection-dispersion equation for the tracer con-
centration, C ~r; tð Þ, is recovered from the relaxation equation
of the lattice values of Ci ~r; tð Þ with a relaxation parameter
wD [Flekkøy, 1993; Rakotomalala et al., 1997]. We then
obtain the conventional advection-dispersion equation,
where the mesoscopic diffusion coefficient, Dm, is related
to wD by

Dm ¼ 1

3

1

wD

� 1

2

� 	
ð23Þ

In the lattice BGK simulations, the typical size of the lattice
was 256 � 512, with 256 nodes in the x-direction. Quanti-
tative measurements may be obtained from the simulations,
using as time and length scales the time step and the lattice
mesh, respectively. The velocity is therefore in units of
lattice mesh per time step.
[16] The permeability field was generated by convolving

a white noise with an ad-hoc correlation function, namely

h x; yð Þ ¼ exp x2=d2 þ y2=d2
� �1=3h i

ð24Þ

where d is a parameter ranging in the interval [0.1, 0.9]. This
function provides a nearly exponential correlation function
in the range of correlation lengths used. Figure 1 shows a
typical permeability field. The corresponding measured
covariance function is shown in Figure 2. By best-fitting the
covariance function in a semi-log plot using a straight line
with slope �1/l, as dictated by (5), the value of l can be
obtained. The solid line in Figure 2 is the resulting
exponential. In the analysis we took ~V ¼~q. The computa-
tional method has the advantage of being very fast (5 s CPU
time for a mesh of size 256 � 512). The resulting
computational savings enable us to use a different porous
medium for each simulation point.

4. Results and Discussion

[17] The first results obtained from the simulations per-
tain to the effective permeability, Keff, as a function of the
porous medium characteristics. This effective permeability
was obtained by postulating a macroscopic Darcy law
across the two boundaries of the porous medium, and using
the relationship between the mean flow rate and pressure
drop between the two boundaries. In the simulations, we
varied the exponential of the log permeability, Kl, in the
range [0,20], the RMS, sf, in the range [0,1.5] and the
correlation length, l, in the range [1,4].
[18] It was found that the flow factor, g = Keff /Kl, obeys

the prediction given by (13), over the range of parameters
used. This is illustrated in Figure 3, which displays the
simulation values for g (as dots) versus sf, while keeping
Kl/l

2 constant, equal to 0.09 (circles) and 1 (squares),

Figure 1. Gray-level map of the permeability field of one
realization of a porous medium, characterized by a
lognormal isotropic distribution of mean �f = �1, root-mean
square (RMS) sf = 0.8 and correlation length l = 3.4 in
lattice units.

Figure 2. Measured covariance function (dots) of the
lognormal isotropic distribution in Figure 1. The value of l
was obtained by an exponential fit (line) using equation (5).
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respectively. The simulated flow factor is in good agreement
with the theory (solid lines), not only at low values of sf,
which is as expected, but also at larger values. Parameter g
decreases with sf, the decrease being less pronounced when
the Darcy regime (Kl/l

2 ! 0, dashed line) is approached.
[19] Subsequently, we considered the spreading of a tracer

in the disordered velocity field resulting from the hetero-
geneity of the porous medium. The macroscopic dispersion
coefficient,D, was determined at different distances from the
inlet, as a function of time [de Arcangelis et al., 1986]. The
dispersivity, a = (D – Dm)/q, is the quantity of interest for
tracer dispersion. In the present simulations, the local mesos-
copic dispersivity is isotropic, aL = aT = Dm/q = 0.025.
[20] Figure 4 displays the dispersivity, a, normalized by

the correlation length, l, as a function of the distance from

the inlet: As expected, the macrodispersivity increases
with distance, until the tracer samples the heterogeneity
field. The coefficient eventually stabilizes to an asymptotic
value, provided that the sample is large enough. In the
simulations, this asymptotic behavior is obtained after a
distance approximately greater than 120 nodes (which is
about half of the length of the samples used).
[21] To test the prediction on the behavior of a, given by

(18), we varied sf and/or the ratio Kl/l
2. Figure 5 shows a

plot of the dispersivity, a, normalized by the correlation
length, l, versus the RMS, sf, for Kl/l

2 = 0.09. Figure 5
shows that a quadratic law fits reasonably well our data over
the range of variances used. The line through the data is
given by a/l = 0.8 s2f, where the factor 0.8 is close to the
value g(0.09) = 0.84.
[22] The effect of the parameter Kl/l

2, which measures
the importance of the Brinkman correction, was investi-
gated, next. Figure 6 shows a plot of the ratio of the

Figure 3. Flow factor, g, i.e., the ratio of the simulated
permeability, Keff, to the exponential of the mean log
hydraulic permeability, Kl = exp ( �f ), versus the RMS, sf,
for Kl/l

2 = 0.09 (circles) and 1 (squares). The lines
through the data are given by the theoretical equation
(13). The dashed line corresponds to the Darcy’s law
regime, Kl/l

2 ! 0.

Figure 4. Normalized macrodispersivity, a/l, versus the
distance, x, from injection, for q = 0.004, �f = �1, sf = 0.4
and l = 2.

Figure 5. Normalized macrodispersivity, a/l, versus the
RMS, sf, for Kl/l

2 = 0.09. The solid line is a quadratic fit to
the data, a

l ¼ 0:8 s2f .

Figure 6. Ratio of the normalized macrodispersivity to the
variance, a/ls2f, versus the normalized permeability, Kl/l

2,
for sf = 0.8. The line through the data is the theoretical
result (17).
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normalized dispersivity, a/l, to the variance, s2f, versus
Kl/l

2. For small values of Kl /l
2, we approach the classical

Darcy limit a/l sf
2 � 1. Given that typical field values are

of the order of 10�4 or smaller, the importance of the
Brinkman correction to field dispersivities should be negli-
gible, therefore. The correction becomes important as Kl/l

2

increases, requiring very small correlation lengths, which
are possible in laboratory applications. The plot shows that
the dispersivity decreases with increasing values of Kl/l

2,
namely inclusion of the Brinkman effect leads to smaller
spreading. We physically interpret this trend by noting that
the Brinkman correction leads to smoother velocity fields,
hence to a decrease of the velocity variance and macro-
dispersion. The results of Figure 6 should not be extrapo-
lated too liberally. When the ratio Kl/l

2 becomes larger than
an O(1) value, it is questionable that the problem can be
described by the continuum formalism we used above. In
the range where this continuum formalism is expected to be
valid, the macrodispersivity does not become smaller than
about half of its classical value. Thus, in practical terms, the
Brinkman correction is expected to have a negligible effect
for field conditions and an effect of less than a factor of two
when the effect is most pronounced (very small correlation
lengths). Figure 6 also shows the comparison of the simu-
lations with the theoretical result

g
Kl

l2

� 	
¼

Z 1

0

1

1þ Kl

l2
u2

� 	2

1þ u2
� �3=2 du ð25Þ

The two are found in good agreement. Equation (15) seems
to be valid for a range of values of sf greater than expected,
provided that we take g = 1. We find analogous results for
(11): Figure 7 displays the velocity fluctuations, sqx and sqy,
normalized by the mean flow velocity, q, versus the RMS, sf.
We note that sqx increases linearly with sf in a large range of
sf values. Thus, provided that g = 1, (11) seems to be valid
over a large range of values of the perturbation. This result is

consistent with Chin ([Chin, 1997]), who found that Gelhar’s
calculations are robust for large sf, provided that g = 1. We
conclude that the theory at the first-order approximation in
pertubations is more robust than expected.
[23] For completeness, Figure 8 shows the velocity dis-

tribution (dots) in the mean flow direction, for a mean
velocity q = 0.004 and a variance s2qx = 0.36 q2. The shape
of the distribution is not very different from a lognormal
(line). Lognormal velocity distributions were measured
experimentally by Lebon et al. [1996] in a glass-bead pack.
Therefore one may think of heterogeneous porous media
simulations, as good candidates to model dispersion phe-
nomena in glass-bead packs, which are often considered as
the paradigm of homogeneous model porous media.

5. Conclusions

[24] We studied macrodispersion in porous media by
extending Darcy’s law to also account for the Brinkman
correction. The latter is necessary when permeability
changes fast at a relatively small scale, and in general is a
more complete description of the underlying flow. A small-
fluctuation expansion was derived. The theoretical results
were then compared to numerical simulations using a lattice
BGK method, which proved to be quite efficient for that
application. Using an isotropic exponentially decaying
correlation function, we calculated the effective permeabil-
ity, the variance of the longitudinal and transverse velocity
fluctuations, and the tracer dispersivity as a function of
parameters, including the correlation length, l, and the
mean, Kl, and variance, s2f, of the lognormal permeability
field. The results contain the additional parameter Kl/l

2, the
sensitivity to which was studied. When the latter takes small
values, the classical results were obtained. Field conditions
are under this limit, hence the Brinkman effect on the field
macrodispersivity is negligible. As the value of Kl/l

2

increases (for example, for small correlation lengths), the
macrodispersivity decreases reflecting the smoothing effect
of the Brinkman correction on the velocity field. For
practical values of the parameters, this reduction in macro-
dispersivity would be no larger than 50% of the classical
expression. The small fluctuation theory was compared to
the simulations and found to be quite accurate, provided that

Figure 7. Normalized RMS, sqx and sqy, of the velocity
fluctuations in the directions parallel (circles) and transverse
(squares) to the mean flow direction, versus sf. The lines
through the data correspond to the theoretical first-order in
sf approximation of the stochastic theory ((12) and (16)).

Figure 8. Distribution of the x component of the velocity,
for a mean velocity q = 0.004 and a variance s2qx = 0.36 q2

(dots). The lognormal function (line) is a guide to the eye.
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it was consistently applied (namely by not mixing first-
order with second-order expansions).
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