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The convective/absolute nature of the instability of miscible core-annular flow with
variable viscosity is investigated via linear stability analysis and nonlinear simulations.
From linear analysis, it is found that miscible core-annular flows with the more
viscous fluid in the core are at most convectively unstable. On the other hand, flows
with the less viscous fluid in the core exhibit absolute instability at high viscosity
ratios, over a limited range of core radii. Nonlinear direct numerical simulations
in a semi-infinite domain display self-excited intrinsic oscillations if and only if the
underlying base flow exhibits absolute instability. This oscillator-type flow behaviour
is demonstrated to be associated with the presence of a nonlinear global mode. Both
the parameter range of global instability and the intrinsically selected frequency of
nonlinear oscillations, as observed in the simulation, are accurately predicted from
linear criteria. In convectively unstable situations, the flow is shown to respond to
external forcing over an unstable range of frequencies, in quantitative agreement with
linear theory. As discussed in part 1 of this study (d’Olce, Martin, Rakotomalala,
Salin and Talon, J. Fluid Mech., vol. 618, 2008, pp. 305–322), self-excited synchronized
oscillations were also observed experimentally. An interpretation of these experiments
is attempted on the basis of the numerical results presented here.

1. Introduction
The stability of core-annular flow, the concentric flow of two different fluids

in a pipe, was first investigated by Hickox (1971). Motivated by the application
of lubricated pipelining, Chen, Bai & Joseph (1990) and Bai, Chen & Joseph
(1992) experimentally studied the effect of viscosity and density differences on the
dynamics of core-annular flow composed of two immiscible fluids. The stability of
such immiscible configurations has further been investigated by means of linear
stability analysis (Joseph, Renardy & Renardy 1984; Hu & Joseph 1989; Preziosi,
Chen & Joseph 1989; Hu, Lundgren & Joseph 1990; Boomkamp & Miesen 1992;
Hu & Patankar 1995) as well as nonlinear numerical simulation (Li & Renardy
1999; Kouris & Tsamopoulos 2001, 2002). Several unstable flow regimes have been
identified, depending on the viscosity ratio, flow rate and volume fraction of the two
fluids (see the review by Joseph et al. 1997). The case of miscible core-annular flows
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has received less attention to this day. Several authors have addressed miscible variable
viscosity displacements in capillary tubes, both experimentally and numerically
(Chen & Meiburg 1996; Petitjeans & Maxworthy 1996; Scoffoni, Lajeunesse &
Homsy 2001; Kuang, Maxworthy & Petitjeans 2003; Balasubramaniam et al. 2005).
These investigations focused on front propagation velocities, and on the fraction of
the more viscous fluid left behind on the wall. In a recent study, Selvam et al. (2007)
explored the temporal linear stability properties of miscible core-annular flow. It was
found that these flows may sustain both axisymmetric and helical instability modes,
the axisymmetric mode being dominant at high Schmidt numbers.

However, it may be expected that low-level disturbances in an experimental setting
primarily originate from the upstream injector apparatus, and subsequently experience
unstable growth as they propagate down the tube. In the context of linear stability
theory, such a situation is best described in a spatial, rather than temporal framework.
The spatial stability properties of miscible core-annular flows are investigated in the
present paper.

The companion article by d’Olce et al. (2009) (referred to as ‘part 1’ hereafter)
presents results of an experimental study of miscible core-annular flows in which
a more viscous annular fluid surrounds a less viscous core fluid. The most striking
observation from these experiments is the occurrence of synchronized oscillations, in
the form of regular vortical structures, which seem to arise naturally in the absence
of explicit forcing. The findings suggest that these oscillations may be self-sustained,
i.e. that they are the result of intrinsic flow dynamics, rather than a response to
external perturbations. Flows that undergo spontaneous transition from a steady
state to a state of intrinsic oscillations are said to be globally unstable (see Huerre
& Monkewitz 1990). It has been demonstrated for several flow configurations that
global instability is closely connected to the presence of local absolute instability
in a region of the unperturbed flow state. A brief review of such flows is given in
Chomaz (2005). In the experiments of part 1, practical limitations make it difficult
to precisely demarcate the global instability regime. Hence, the present paper aims to
complement the experimental results, and to provide the information that is required
for an interpretation in terms of nonlinear global mode theory.

The main objective of this study is to characterize for the first time the nonlinear
global instability of miscible core-annular flow. In a system with an upstream
boundary such as a nozzle, the base flow is non-parallel. As opposed to strictly
local linear theory, nonlinear global stability concepts become necessary to describe
the spatio-temporal dynamics of such flows. Nonetheless, these nonlinear global
properties may be deduced from a linear local analysis under certain conditions,
mainly the assumption that non-parallel base flow variations are slow compared to
the instability wavelength (Chomaz, Huerre & Redekopp 1991; Monkewitz, Huerre
& Chomaz 1993). An extensive theoretical framework for global modes and their
connection with linear absolute instability has been developed in the context of
Ginzburg–Landau models under both parallel and non-parallel conditions (Chomaz,
Huerre & Redekopp 1988; Couairon & Chomaz 1997a, b, 1999; Pier, Huerre &
Chomaz 2001). In the case of a semi-infinite domain with a Dirichlet upstream
boundary, Couairon & Chomaz (1997 b) have shown that self-sustained oscillations
may occur via a Hopf bifurcation, under the condition that a sufficiently large
region of local absolute instability exists near the upstream boundary. Furthermore,
Couairon & Chomaz (1997 b) demonstrated via asymptotic matching that, at the
global instability threshold, the global frequency is equal to the linear absolute
frequency at the inlet. Couairon & Chomaz (1999) further derived explicit scaling laws
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Figure 1. Principal sketch of a core-annular flow of two miscible fluids of different viscosities
and equal densities in a capillary tube of radius R. Fluid 2 of viscosity μ2 occupies the core
with a radius RI , encapsulated by the fluid 1 of viscosity μ1.

for the amplitude of nonlinear global modes, all in the context of Ginzburg–Landau
model equations. These model predictions have been found to hold true in several real
flows, such as wakes (Chomaz 2003) and hot jets (Lesshafft, Huerre & Sagaut 2007).

The paper is organized as follows. The physical problem is formulated in § 2.
The governing equations and dimensionless parameters are stated here. In § 3, the
formalism of the linear stability analysis is laid out and results are discussed, with
a focus on the convective/absolute transition. Section 4 describes the numerical
implementation of the nonlinear simulations and presents the results with a focus on
the global instability of miscible core-annular flows. Section 5 compares the numerical
results to those of the experiments in part 1. The main findings of the present work
are summarized in § 6.

2. Problem formulation
Consider an axisymmetric pipe of radius R into which two miscible fluids are

injected at the upstream end to form two concentrically flowing streams (see figure 1).
The radial location of the interface (RI ) between these two fluids is determined by
the volume fractions of the two injected fluids. Since the two fluids are miscible, the
transition zone in the concentration profile exhibits a finite thickness (herein referred
to as interface thickness), due to the effects of diffusion. Fluid 1 forms a film of
constant thickness along the wall of the tube, while fluid 2 occupies the centre of the
tube (cf. figure 1). The two fluids are assumed to be of equal densities (ρ1 = ρ2) but
different viscosities μ1 and μ2. The axial and radial coordinates are denoted by z and
r , respectively.

2.1. Governing equations

We employ the incompressible Navier–Stokes equations, along with a convection–
diffusion equation for species conservation

∇ · v = 0, (2.1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · τ , (2.2)

δtc + v · ∇c = D∇2c, (2.3)

where v = (vr, vθ , vz) denotes the flow velocity, τ =μ
(
∇v + ∇vT

)
the viscous stress

tensor and c the concentration normalized by that of the outer fluid. The elements
of the viscous stress tensor τij are defined in the usual way in cylindrical coordinates
(Panton 1984). The diffusion coefficient D is assumed constant throughout the mixture.
In specifying a constitutive relation between viscosity and concentration, we follow
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earlier works in literature (Tan & Homsy 1986; Goyal & Meiburg 2006) and assume
the viscosity μ to be an exponential function of the concentration

μ = μ2e
Mc, M = ln

μ1

μ2

. (2.4)

Note that by definition, positive M corresponds to less viscous fluid in the core
and more viscous fluid in the annular region. To be consistent, the above governing
equations are non-dimensionalized with the same characteristic scales as in part 1.
Hence, we choose the radius of the outer tube (R) as characteristic length L∗ and
the viscosity of the inner fluid (μ2) as the characteristic viscosity μ∗. The velocity
averaged over the cross-section is employed as the characteristic velocity V ∗

V ∗ =
| Q̇ |
πR2

,

where Q̇ denotes the volumetric flow rate. Then the characteristic time and pressure
are defined as

t∗ =
L∗

V ∗ and P ∗ =
μ∗V ∗

L∗ .

Since the experimentally observed instabilities in part 1 are axisymmetric, we
assume symmetry about the centreline of the tube, thus avoiding the singularity
associated with the axis for our later nonlinear simulations. We thus obtain the
axisymmetric governing dimensionless equations of the form

∂vr

∂r
+

vr

r
+

∂vz

∂z
= 0, (2.5)

Re

[
∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

]
= −∂p

∂r
+ eMc

[
∂2vr

∂r2
+

∂2vr

∂z2
+

1

r

∂vr

∂r
− vr

r2

+ 2M
∂c

∂r

∂vr

∂r
+ M

∂c

∂z

(
∂vr

∂z
+

∂vz

∂r

)]
, (2.6)

Re

[
∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

]
= −∂p

∂z
+ eMc

[
∂2vz

∂r2
+

∂2vz

∂z2
+

1

r

∂vz

∂r

+ 2M
∂c

∂z

∂vz

∂z
+ M

∂c

∂r

(
∂vr

∂z
+

∂vz

∂r

)]
, (2.7)

Pe

[
∂c

∂t
+ vr

∂c

∂r
+ vz

∂c

∂z

]
=

[
∂2c

∂r2
+

∂2c

∂z2
+

1

r

∂c

∂r

]
. (2.8)

With the symmetry condition at the axis and no-slip at the wall, the boundary
conditions for velocity and concentration read

r = 0 :
dvz

dr
= 0, vr = 0,

dc

dr
= 0,

r = 1 : vz = 0, vr = 0,
dc

dr
= 0. (2.9)

In addition to the viscosity parameter M , two further dimensionless parameters
appear in the form of the Reynolds number Re and the Péclet number Pe

Re =
ρV ∗R

μ∗ , P e =
V ∗R

D
,
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which indicate the ratio of convective to diffusive transport in the momentum and
species conservation equations, respectively. The Péclet number and Reynolds number
are related through the Schmidt number, Sc =Pe/Re, i.e. Sc = μ∗/ρ D.

3. Linear stability analysis
3.1. Linearization

We decompose each governing variable (Φ) into a quasi-steady parallel base state (Φ̄)
and a perturbation (Φ̃) and linearize the governing equations (2.5)–(2.8) around the
parallel base state of the form (cf., Selvam et al. 2007)

c̄(r) = 0.5 + 0.5 · erf
(

r − RI

δ

)
, (3.1)

dp̄

dz
= eMc̄

[
d2v̄z

dr2
+

1

r

dv̄z

dr
+ M

dv̄z

dr

dc̄

dr

]
. (3.2)

Here, RI is the interface position (core radius) and δ denotes the interface thickness.
Since the spatial derivatives in the governing equations are second order, the
generalized spatial eigenvalue will appear nonlinearly. Therefore, it is convenient to
recast each second-order equation as a system of two first-order equations (Schmid &
Henningson 2001). The discretized perturbation equations then take the matrix form

∂zΦ̃ = AΦ̃ + B∂t Φ̃, (3.3)

where Φ̃ = (c̃, ∂zc̃, ṽr , ∂zṽr , ṽz, p̃) is the eigenvector (see the Appendix for the entries
of the matrices A and B).

We perform a normal mode analysis by assuming that the perturbation is of the
form

Φ̃(r, z, t) = Φ̂(r) ei(kz−ωt), (3.4)

where k is the complex spatial wavenumber and ω denotes the complex frequency.
Substituting (3.4) into (3.3), we obtain a generalized eigenvalue problem satisfying the
dispersion relation D(k, ω) = 0. In a temporal stability framework, the perturbations
are assumed to be periodic in the axial direction, i.e. for a given real wavenumber kr , we
seek a complex frequency ω = ωr +i ωi . In the spatial framework, the perturbations are
time-periodic, i.e. for a given real ωr , we seek a complex spatial wavenumber k = kr +
i ki . In a spatio-temporal setting (as required for determining the absolute/convective
nature of the instability), both the frequency and wavenumber may take on complex
values. Note that both the temporal and the spatial analysis can be performed using
(3.3) without changing the matrices A and B. The generalized eigenvalue system (3.3)
has been validated with the temporal stability results of Selvam et al. (2007). Further
validation will be provided by means of comparison with direct numerical simulation
results described below.

3.2. Convective and absolute instability

We refer the reader to Huerre & Rossi (1998) for an introduction to the basic concepts
of convective and absolute instability. A detailed description with mathematical
definitions and applications can also be found. Here, we briefly describe the numerical
procedure to identify the transition from convective to absolute instability.

Absolute instability can be identified numerically by Briggs’ method (Briggs 1964),
which represents a mapping procedure involving the identification of the pinching
or saddle point of the two spatial branches in the complex k plane. If we define
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the corresponding frequency at the pinching point as ω0, then the flow is absolutely
unstable (AU) if the imaginary part ω0,i is positive. Hence, ω0,i represents the absolute
growth rate. Though rigorous, the practical problem with Briggs’ method is that
it involves the mapping of the complex ω plane to the complex k plane. If we
are interested only in finding the pinching point, iterative algorithms can be used
(Deissler 1987). These make use of the fact that at the pinching point, the group
velocity (vg = ∂ω/∂k) is zero. By constructing a complex quadratic function for vg

with k as an independent parameter, it is possible to find the saddle point efficiently.
Here, we follow the iterative procedure outlined in Yin et al. (2000) to find the
absolute growth rate. For four wavenumbers kj (j = 1, . . . , 4) obtained via an initial
guess, the interpolating polynomial for the complex frequency ω is constructed by

ω(k) =
a

3
(k − k4)

3 +
b

2
(k − k4)

2 + c(k − k4) + d, (3.5)

where a, b, c and d are constants that are to be determined. This is accomplished
once the eigenvalue ωj is found for each of the four kj s by solving the generalized
eigenvalue problem (3.3). Upon finding the constants, an improved value for k is
found using the saddle point criterion that ∂ω/∂k =0

0 = a(k − k4)
2 + b(k − k4) + c. (3.6)

Taking the root of the above quadratic equation closest to k4, we form a new set of
four kj s and the above procedure is continued until convergence. The corresponding
converged ω in the complex plane is the absolute frequency. This algorithm is
computationally efficient in that, once the saddle point is found for one parameter,
the values for other parameters can easily be tracked through continuation. However,
whether or not such a pinching point indeed identifies an absolute mode (pinching of
a k+ with a k− branch, see Huerre & Rossi 1998), must formally be ascertained via
Briggs’ method. It has indeed been verified for selected cases, denoted in figure 2(b,c)
as black squares, that the saddle point tracked in the present calculations corresponds
to the pinching of a k+ with a k− branch.

3.3. Linear stability results

Our objective is to find the absolute growth rate ω0,i as a function of five
parameters, viz. Reynolds number Re, Schmidt number Sc, viscosity ratio M ,
interface position RI and interface thickness δ. We choose the reference case as
(M, Re, Sc, RI , δ) = (3.22, 48, 7500, 0.48, 0.02), which is close to the experimental
parameter values of d’Olce et al. (submitted). A parametric study will be presented
below by varying the governing parameters with respect to the reference case. Note
that the interface thickness is treated as a free parameter here, since it cannot be
reliably measured in experiments. However, it is reported in part 1 that the interface
thickness in the experimental setting was less than the measurement resolution of 0.03.

Figure 2(a) shows the contour maps of constant absolute growth rate (ω0,i = const.)
in the (Re, RI )-plane with all other parametes retained from the reference case. Since a
positive growth rate denotes absolute instability, the marginal stability curve of ω0,i = 0
corresponds to the CU/AU transition in the (Re, RI )-plane. The flow is convectively
unstable at all Reynolds numbers for smaller core radii (RI < 0.4). As the core
thickness increases, the flow becomes absolutely unstable for a range of Reynolds
numbers (ω0,i > 0). The transition map shows an island of absolute instability in the
(Re, RI )-plane, with both narrower and wider cores being convectively unstable.
When the system is absolutely unstable, there exists an interface position with
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Figure 2. (a) Contour maps of constant absolute growth rate ω0,i in Re–RI plane. Each
contour is plotted as a fraction of the maximum growth rate in the Re–RI plane. The neutral
curve, ω0,i = 0 marks the transition from CU to AU. (b) Absolute real frequency ω0,r and
absolute wavenumber k0,r as functions of RI at Re = 48. (c) The same quantities as functions
of Re at RI = 0.48. The other parameters are (M,Sc, δ) = (3.22, 7500, 0.02). In (b) and (c), the
black squares denote the selected points that have been verified by the application of Briggs’
method to ascertain that the saddle point found in the complex k -plane indeed corresponds
to the pinching of a k+-branch with a k−-branch.

maximum absolute growth rate for each Reynolds number. Along with the absolute
real frequency (ω0,r ), figure 2(b) shows the absolute wavenumber (k0,r ) as a function
of RI at fixed Re =48. While the absolute frequency decreases with the interface
position at a given Re, the opposite is true for the wavenumber. However, for a given
interface position, both the absolute real frequency and wavenumber increase with Re

(cf. figure 2c). These observations are in qualitative agreement with the experimental
findings in part 1 and will be further discussed in § 5.

We remark that the observed CU/AU transition is not accompanied by a
qualitative change in the eigenfunctions (not shown here). Close inspection reveals
that the characteristic shape remains the same in both parameter regimes: vorticity
perturbations peak very near the interface, on the side of the less viscous fluid. This is
in agreement with earlier observations by Goyal & Meiburg (2004), Payr, Vanaparthy
& Meiburg (2005) and Goyal & Meiburg (2006) for density-driven instabilities in
variable viscosity flows in Hele–Shaw cells and pipes.
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Figure 3. Absolute growth rate ω0,i and absolute frequency ω0,r for different values of δ as
functions of interface position at Re = 48 (a, b). The same quantities as functions of Reynolds
number at RI =0.48 (c, d ), when M =3.22 and Sc = 7500. Thicker interfaces uniformly stabilize
the flow (complete stability is obtained for δ > 0.06). The interface thickness has a negligible
effect on the absolute frequency.

Figure 3 shows the absolute growth rate for varying interface thickness δ. The
absolute growth rate is found to decrease monotonically for increasing values of δ.
While the interface thickness has significant influence on the growth rate, its effect on
the absolute frequency is minimal (figures 3b and 3d ). Since diffusion increases δ in the
streamwise direction, the flow transitions from locally AU to locally CU, and finally
to locally stable (for the parameters in figure 3, complete stability is obtained for
δ > 0.06). Therefore, if an absolutely unstable region exists in the spatially developing
core-annular flow, this region must start at the inlet. This excludes the scenario
studied in synthetic wakes (Pier & Huerre 2001) and jets (Lesshafft et al. 2006),
where a spatially developing flow that is convectively unstable at the inlet can exhibit
absolute instability further downstream.

The effect of the Schmidt number is analysed for the reference case by varying Sc in
the range 500–5×104 (cf. figure 4). The figure shows that the change in the maximum
absolute growth rate in the parameter range considered is less than 6 %. Across this
range, the Schmidt number has little influence on the stability characteristics.

Figure 5 shows the CU/AU transition in the (Re, RI )-plane for different viscosity
ratios M . An increase in the viscosity ratio is seen to result in a larger domain of
absolute instability. For viscosity ratios M < 2.9, the island of absolute instability
vanishes and the flow becomes convectively unstable everywhere. Thus, viscosity
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Figure 4. Absolute growth rate ω0,i as a function of RI for Re = 48, M = 3.22, δ = 0.02 and
various values of Sc.
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Figure 5. CU/AU transition map for different values of viscosity ratio M , when
(Sc, δ) = (7500, 0.02).

ratios in excess of (e2.9 = 18) are necessary to make the flow absolutely unstable. For
the sake of completeness, we carried out additional calculations for the case of less
viscous fluid in the annulus (M < 0). Our results indicate that those systems are not
absolutely unstable in the linear framework, though they can be convectively unstable.
For the remainder of the paper, we will focus on positive viscosity ratios (less viscous
core).

3.4. Linear impulse response

The absolute growth rate presented in the previous section characterizes the growth/
decay of the perturbation at the zero group velocity (vg = 0), i.e. along the z/t = 0 ray.
However, it provides no information regarding the growth rate of the perturbation
along other z/t rays. We need to calculate the spatio-temporal growth rate along
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Figure 6. (a) The spatio-temporal growth rate σ , and (b) the real frequency ωr , as functions
of the group velocity vg , for (M,Re, Sc, δ) = (3.22, 48, 7500, 0.02). The trailing edge velocity
(v−

g ) and the leading edge velocity (v+
g ) are the group velocities at which the spatio-temporal

growth rate is zero on the upstream and downstream side, respectively.

each z/t ray to fully characterize the evolution of the wave packet. The trailing
and leading edge velocities of the wave packets, often designated by v−

g and v+
g are

also of particular interest, as they determine the upstream and downstream extent of
the perturbation. In this section, we calculate the linear impulse response in order
to analyse the asymptotic behaviour of the system subject to initial perturbations,
following the procedure outlined in Lesshafft & Huerre (2007). The growth rate along
each z/t = vg ray can be obtained efficiently by calculating the absolute growth rate
in a moving frame of reference (z̃ = z − vgt) and then transforming the results back
to the laboratory frame of reference (z). The spatio-temporal growth rate along each
z/t ray is then given by σ (vg) = ω̃0,i and the variables in the two frames of reference

are related accordingly by ω(vg) = ω̃0 + k̃0vg and k(vg) = k̃0 (Lesshafft & Huerre 2007).
Figure 6 shows the spatio-temporal growth rate σ (vg), along with the real frequency
(ωr ) as a function of the group velocity. The trailing and leading edge velocities of the
wave packet, v−

g and v+
g , are given by the group velocities at which the spatio-temporal

growth rate becomes zero (shown in the figure for RI = 0.3). Since the spatio-temporal
growth rate at zero vg determines the absolute instability, i.e. σ (0) = ω0,i , a positive
σ (0) implies that the trailing edge velocity v−

g is negative. Hence, v−
g will be negative

for AU, with the opposite being true for CU. Figure 6 shows that v−
g changes sign

from a positive value if the core radius is increased from RI =0.3 to 0.45. Hence,
RI ≈ 0.45 is the critical interface location at which the flow starts to exhibit absolute
instability. For RI = 0.5, the trailing edge velocity of the wave packet is negative, and
any initial perturbations from the source location would propagate upstream too,
invading the entire flow field. However, for a much wider core (RI =0.75), the trailing
edge front velocity becomes positive again and the system is convectively unstable,
as already seen in figure 2(b). We further discuss the front velocities in detail in § 4.3.
We note that the peculiar shape at high vg found for RI = 0.5 is also present at other
values of RI , but only at negative values of σ .

4. Nonlinear numerical simulation
So far, we have analysed the linear stability properties of miscible core-annular

flows. in this section, direct numerical simulations (DNS) of such flows will be
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presented in order to study how nonlinear effects modify the stability characteristics,
and to what extent linear predictions apply to nonlinear situations.

4.1. Numerical method

The incompressible Navier–Stokes equations (2.5)–(2.8) in primitive variables are
solved using a modified fractional step method (Rai & Moin 1991; Verzicco &
Orlandi 1996). It employs a three-step hybrid Runge–Kutta (RK)/Crank–Nicolson
(CN) scheme for time advancement, with an explicit RK method for convective terms
and an implicit CN method for viscous terms. The implicit treatment of the viscous
terms is necessary to avoid the severe time-step restriction of low-Reynolds-number
flows. Though the general methodology is as outlined in the above references, some
differences arise due to variable viscosity. The implicit viscous terms in the axial
and radial momentum equations (2.6) and (2.7) are now coupled. In our numerical
implementation, decoupling is achieved via a method proposed by Li & Renardy
(1999). This modification necessitates further changes in the pressure correction
equation of Verzicco & Orlandi (1996). These modifications yield

v̂r − vl
r

Δt
= γlH

l
r + ρlH

l−1
r + αl

[
−∂pl

∂r
+ (Arr + Arz)

v̂r + vl
r

2

]
, (4.1)

v̂z − vl
z

Δt
= γlH

l
z + ρlH

l−1
z + αl

[
−∂pl

∂z
+ (Azr + Azz)

v̂z + vl
z

2
+ Bz

v̂r + vl
r

2

]
, (4.2)

vl+1
i − v̂i

Δt
= −αl

∂φl+1

∂i
, i = r, z (4.3)
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1
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Here v̂ = (vr, vz) denotes the velocity field at intermediate RK substeps, φ is a scalar
that is used to enforce continuity, l = 1, 2, 3 corresponds to the three substeps of RK
method and γl, ρl, αl are the coefficients of the time advancement scheme (Rai &
Moin 1991). The other operators defined in the above notation are
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Figure 7. Comparison of linear stability results with nonlinear, axisymmetric simulation data
for (M,Re, Sc, RI , δ) = (3.22, 48, 7500, 0.5, 0.02). (a) Time evolution of the maximum radial
velocity in the field (�). Dashed line is the linear fit with a slope of 0.76. (b) Power spectrum
measured from the radial velocity at (z, r) = (1, 0.5), with a maximum peak at frequency
ωr = 5.23. The corresponding linear results are (ωi, ωr ) = (0.766, 5.37).

The momentum equations are discretized in a staggered form using second-order
stencils on a non-uniform stretched mesh (Govindarajan 2004) in the r-direction and
a uniform mesh in the z-direction. The direct cosine transform method (Kim &
Moin 1985) is used to solve the Poisson equation (4.4). The Péclet number in the
concentration equation (2.8) is (O(105)) in the present case, requiring very high
accuracy for resolving the sharp gradients. The diffusion terms in the concentration
equation are discretized using sixth order spectral-like resolution compact finite
difference scheme (Lele 1992), while the convective terms are discretized using a
Hamilton–Jacobi WENO scheme (Osher & Fedkiw 2003). For the velocity, we impose
a no-slip condition at the wall and a symmetry condition at the axis. The concentration
satisfies Neumann boundary conditions both at the wall and the axis, so as to enforce
zero diffusive flux. The inflow and outflow as well as the initial conditions vary
depending on the situation under consideration and will be mentioned when we will
describe specific flows. The required grid resolution is established by means of test
runs. Typically, we employ 301 × 1025 points in the radial and the axial directions,
respectively.

4.2. Validation

We validate the DNS method with the temporal linear stability results for the
case (M, Re, Sc, RI , δ) = (3.22, 48, 7500, 0.5, 0.02). The maximum temporal growth
rate for this parameter case is ωi = 0.766 and the corresponding real frequency is
ωr = 5.37. In the simulation, the flow is assumed to be spatially periodic with the
most amplified wavelength of the linear analysis. As initial condition, the simulation
employs the base state of the linear stability analysis, superimposed with a sinusoidal
interface perturbation of amplitude 0.001. Figure 7(a) shows the time evolution of
the maximum radial velocity in the simulation. The field variable initially increases
exponentially with a growth rate of 0.76 and then saturates due to nonlinear effects.
The corresponding power spectrum (frequency distribution) measured from the radial
velocity at (z, r) = (1, 0.5) (cf. figure 7b), shows a peak at the frequency ωr =5.23.
These quantities lie within 3 % of the linear stability results.
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Figure 8. Snapshots of the nonlinear evolution of the concentration fields for core radii
RI = 0.3 (left) and RI =0.5 (right), at times t = 3, 6 and 9 (from top to bottom). The
dashed line shows the location where the initial Gaussian spike is introduced. The dark
fluid represents the less viscous core fluid, encapsulated by a more viscous annular fluid
(white). In both cases, the initial perturbation amplifies to give rise to nonlinear rolled-up
structures. However, the amplified perturbations still grow at the initial location for RI = 0.5
(absolute instability), while they get advected downstream for RI = 0.3 (convective instability).
Note: only a portion of the z-axis is shown (actual domain length is 80). The other parameters
are (M,Re, Sc, δ) = (3.22, 48, 7500, 0.02).

4.3. Results: spatio-temporal stability of periodic flows

In this section, we analyse nonlinear core-annular flows with periodic boundary
conditions. The parallel base state used in the linear analysis (3.1) and (3.2) is
prescribed as initial condition. We introduce a Gaussian spike of the following form
(Delbende & Chomaz 1998) as an initial perturbation to the otherwise parallel
interface:

Rp(z) = RI + Ap · exp

(
− (z − zp)2

δ2
p

)
. (4.7)

Here, RI denotes the parallel interface position, Ap the amplitude of perturbation,
zp the location of the spike and δp the width of the Gaussian spike. In the present
case, we choose these values as (Ap, zp, δp) = (0.001, 5, 0.2). Note that the interface
perturbation Rp effectively results in a concentration perturbation through (3.1).

Figure 8 presents snapshots of the evolution of the concentration field for the two
core radii RI = 0.3 and 0.5. In both the cases, the flow is unstable and the initial
pulse develops into nonlinear rolled-up structures. However, in the case of RI =0.3,
all amplified perturbations get advected downstream. This is typical of convective
instability, wherein the perturbations amplify but are swept downstream. For RI =0.5,
the perturbations amplify but remain at the location of the source, demonstrating
absolute instability. Recall that RI = 0.3 is CU and RI = 0.5 is AU from the linear
analysis (figure 2b). These arguments can be seen more comprehensively in a spatio-
temporal (z, t)-diagram of the perturbation enstrophy (η) of the field, which is defined
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Figure 9. z, t-diagrams corresponding to the cases in figure 8. The arrows point in the
direction of propagation of the trailing edge of the wave packet. (a) In the convective case,
the trailing edge velocity is positive and the perturbations are swept downstream; RI = 0.3. (b)
When the flow is absolutely unstable, the trailing edge of the wave packet travels upstream;
RI = 0.5.

as

η(z, t) =

∫ R

0

Ω2(r, z, t) r dr, Ω =
∂vr

∂z
− ∂vz

∂r
. (4.8)

z, t-diagrams of η for the above two cases are presented in figure 9. The figure shows
that the propagation direction of the trailing edge of the wave packet is positive for
the convective case RI = 0.3, while it is negative for the absolute case of RI = 0.5.
However, although RI =0.5 is AU, the upstream propagation of the wave packet
is negligible, compared to the downstream propagation. This shows that the trailing
edge velocity of the wave packet v−

g is quite small, in agreement with the results in
figure 6. To quantify v−

g , we first construct the amplitude function A(z, t) encapsulating
the perturbation wave packet (cf. figure 10a). As demonstrated in Delbende & Chomaz
(1998), the amplitude function A(z, t), when re-plotted in terms of the scaled variable
z/t = vg , can be used to retrieve the spatio-temporal growth rate given by

σ (vg) ≈
ln

[
t
1/2
2 A(vgt2, t2) / t

1/2
1 A(vgt1, t1)

]
t2 − t1

. (4.9)

By definition, v−
g and v+

g are the group velocities at which the spatio-temporal growth
rate σ (vg) is zero. From (4.9), this would correspond to the group velocities at which
the quantity t1/2A(vgt, t) remains constant for all times. In figure 10(b), we plot
this quantity at different times in terms of the scaled variable z/t = vg . In order to
easily identify the linear and nonlinear regimes, we also plot the spatially averaged
enstrophy η̄(t) in figure 10(c). The perturbation amplitude initially grows exponentially
demonstrating linear growth until t ∼ 6. In the linear regime, the front velocities v−

g

and v+
g are given by the crossing of the two curves (t = 4, 6 in figure 10b), as the

amplitude remains constant at the intersection point. Of particular importance is v−
g ,

since it determines the convective/absolute nature of the system. The figure shows
that the linear v−

g determined from the procedure above is −0.09 and thus the flow is
absolutely unstable. This value is to be compared to −0.1, obtained from the stability
analysis in § 3.4. In general, we get an agreement between the two results for all other
parameters within 5–10 %. Given our choice of constructing the amplitude function,
this is a reasonably good agreement.
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Figure 10. (a) Growth of the perturbation wave packet with time: Enstrophy η as a function
of z for the core radius RI = 0.5 at t = 4 (dashed) and t = 5.5 (dotted). The solid line shows
the amplitude function A(z, t), constructed by the piecewise cubic interpolation of the points
joining the maxima of the wave packet lobes. (b) Scaled amplitude function in terms of
z/t = vg . The front velocities are given by the crossing point of the curves (see text for
details). (c) Spatially averaged enstrophy η̄(t) ((1/Lz)

∫ Lz

0 η dz), demonstrating the initial linear
exponential growth until t ∼ 6, followed by nonlinear saturation.

At this juncture, the natural question arises as to what the upstream front velocity
is when the flow is in the nonlinear regime. Two theories have been proposed in
the past. One is the ‘pushed front’, in which the nonlinear front moves faster than
the linear front (van Saarloos 1989), while the other one is the ‘pulled front’, in
which the nonlinear wave packet moves with the linear front velocity (Delbende &
Chomaz 1998). Figure 10(b) shows that in the nonlinear regime (t = 16, 17.5), the
wave packet saturates in amplitude. However, the crossing of the curves takes place
at the same point as the linear front velocity v−

g before, demonstrating a ‘pulled
front’. As noted by Chomaz (2003), instabilities in fluid mechanics mainly fall into
this category, including wake flows, Taylor–Couette instability (Büchel et al. 1996)
and Rayleigh–Bénard instability (Müller et al. 1992).

4.4. Nonperiodic simulations: nonlinear global modes

We now relax the assumption of spatial periodicity and proceed to analyse nonlinear
core-annular flows with a fixed upstream boundary (sketched in figure 11a), in
configurations similar to the experiments of part 1. A direct comparison between
these simulations and experimental results is attempted in § 5.
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Figure 11. (a) Schematic of the non-periodic flow domain with a prescribed inlet condition.
The diffused interface thickness between the core fluid and the annular fluid is drawn out
of proportion for illustration. (b) Actual streamwise variation of the interface thickness
from the simulation, relative to the inlet thickness δ0 = 0.02. The initially parallel interface
at t = 0 relaxes to a non-parallel steady state for t > 17. (c) At t = 25, the axial velocity
(vz) profile at both the inlet (z = 0) and the outlet (z =15). The change in the centreline
velocity is within 0.15 % (figure inset showing the minor change). The other parameters are
(M,Re, Sc, RI ) = (3.22, 48, 7500, 0.3).

As spurious reflections from the downstream numerical boundary may lead to
unwanted forcing in the interior of the domain (see Buell & Huerre 1988), a clean
numerical treatment of the outflow boundary is essential for the simulation of intrinsic
flow dynamics. We use a convective outflow condition, as described in Ruith, Chen
& Meiburg (2004). In the present simulations, the numerical outflow is placed at a
downstream location of 15 times the tube radius. Tests with various domain lengths
have confirmed that this boundary treatment does not influence the interior flow
behaviour. All simulations are initialized with the same parallel base states as used in
the periodic configurations described in § 4.3. At the inlet, these profiles are fixed for
all times as Dirichlet conditions.

In the inital stage of the simulation, the system will relax to a non-parallel base state
under the influence of diffusion. In order to estimate typical rates of streamwise base
flow variations, a convectively unstable configuration is run without external forcing:
as expected, the flow is found to settle into a steady non-parallel state. Figure 11(b, c)
display the observed variations in the interface thickness and in the flow velocity
profile. Across the whole domain, the interface thickness varies by 11 %, which causes
a decay of the centreline velocity of less than 0.15 %. The non-parallelism of the base
flow due to diffusion may therefore be considered weak.
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Figure 12. Contour plot of the power spectra in the z–ω plane, when the inlet interface
position is perturbed with a forcing frequency ωf of amplitude 10−3: (a) RI = 0.35,
ωf = 6.28 ( = 2π); (b) RI = 0.35, ωf = 12.57 ( = 4π); (c) RI = 0.45, ωf = 12.57 ( = 4π) and (d )
RI = 0.5, ωf = 12.57 ( = 4π). The other parameters are (M,Re, Sc, δ) = (3.22, 48, 7500, 0.02).

4.4.1. Continuous inlet forcing

Many systems exhibiting absolute instability (e.g. bluff body wakes) are known
to sustain intrinsic oscillations, and to be insensitive to low levels of external noise.
Such a spontaneous bifurcation from a steady state to a state of self-excited periodic
oscillations defines a globally unstable flow situation. In contrast, convectively unstable
systems respond to external noise, thus acting as noise ampifiers (Huerre & Monkewitz
1990). In order to characterize the global stability of the present core-annular flow
configurations, the flow response to external forcing will be investigated first. Such
forcing is provided in the simulations by prescribing sinusoidal perturbations of the
inlet interface position at a single frequency ωf , with a small amplitude of 10−3. The
flow is allowed to develop over a sufficiently long time, until all transient oscillations
have left the computational domain. The asymptotic response to forcing is then
measured as a function of z: at each streamwise station z and at each time step, we

evaluate
∫ 1

0
vr r dr . The power spectrum at each z is then obtained via FFT of the

temporal signal.
Contour plots of such power spectra for three-flow configurations are presented

in figure 12. According to the linear stability analysis presented in § 3.3, a base
flow with RI =0.35 (figure 12a, b) is convectively unstable everywhere, whereas flows
with RI = 0.45 and 0.5 (figure 12c, d ) exhibit absolute instability near the inlet.
The responses to forcing in CU and AU settings are seen to be fundamentally
distinct: in the convectively unstable case, perturbations at the forcing frequency and
its harmonics are amplified in the streamwise direction until nonlinear saturation
occurs. In the absolutely unstable cases, in contrast, the flow oscillations synchronize
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Figure 13. (a) Frequency response (ω) of the system for various core radii and several values
of the forcing frequency (ωf ). For RI � 0.4, the flow responds to low-level external forcing for a
certain range of forcing frequencies (symbols connected by lines). The unconnected symbol (◦)
for RI = 0.4 at ωf = π, 5π represents the case where a preferred ‘natural’ frequency is observed
near the end of the computational domain. The two-flow configurations with RI = 0.45 and
0.5 always synchronize to ω = 6.9 and 5.4, respectively, regardless of the forcing frequency. (b)
Spatial growth rate (−ki) calculated from the spatial linear stability analysis as function of the
real frequency (ωr ). The other parameters are (M,Re, Sc, δ) = (3.22, 48, 7500, 0.02).

at ω = 6.9 (figure 12c) and ω =5.4 (figure 12d ), whereas the forcing input is at
ωf = 4π. Corresponding simulations have been performed for various core radii
(RI = 0.3, 0.35, 0.4, 0.45, 0.5) and several values of the forcing frequency. The results
are summarized in figure 13(a), where the dominant frequency of flow oscillations near
the outlet is plotted against the forcing frequency. Only the fundamental frequencies
are considered here – it should be understood that harmonics are always present as
soon as the oscillations reach nonlinear amplitude levels.

It is found that flows with RI � 0.4 synchronize to low-level inlet forcing within a
certain frequency band. For instance, a flow with RI = 0.35 displays nonlinear roll-up
of vortices at the imposed forcing frequency in the range 2π � ωf � 5π. At forcing
outside this range, two scenarios are observed: typically, only low-level amplitude
fluctuations in the linear regime persist near the outlet. These cases have been omitted
in figure 13(a). In two configurations, for RI = 0.4 with ωf = π and 5π, noticeable
oscillations at a preferred frequency ω =8.6 are observed to emerge near the end of the
computational domain. Although the oscillation amplitudes do not reach nonlinear
saturation within the domain, these two cases are reported in figure 13(a).

The two base flows with RI =0.45 and 0.5 always settle into periodic oscillations
at ω = 6.9 and 5.4, respectively, regardless of the forcing frequency applied at the
inlet. Test calculations indicate that these flows can only be brought to synchronize
to an externally imposed frequency if the interface position at the inlet is perturbed
with amplitudes of the order of 1% of the tube radius. According to the present
simulation results, flows with 0.3 � RI � 0.4 clearly act as noise amplifiers over a band
of frequencies, whereas flows with RI = 0.45 and 0.5 display intrinsic oscillations.
This change of behaviour between RI = 0.4 and 0.45 precisely coincides with the
transition from local convective to local absolute instability at the inlet, which occurs
at RI ≈ 0.425.

For the sake of completeness, we point out that intrinsic oscillations in certain
absolutely unstable flows may be suppressed and replaced by externally forced
oscillation modes. The theoretical investigation of Pier (2003) provides controllability
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criteria for flows with a transition point from convective to absolute instability, which
however is absent in core-annular flows. Recent experiments with low-density jets
(Hallberg & Strykowski 2008) suggest that the presence of such a transition point
may not be a necessary condition for controllability. An absolutely unstable flow may
then respond to forcing at sufficiently high amplitudes, just as it has been observed
in the present simulations.

The noise amplification in flows with RI � 0.4 may be interpreted in a classical
fashion on the basis of spatial linear stability analysis. Spatial growth rates −ki are
plotted as functions of real frequency ωr in figure 13(b) for all three convectively
unstable inlet profiles. It is easily verified that the ranges of spatially amplified
frequencies in figure 13(b) for all three base flows correspond precisely to the intervals
in figure 13(a) at which synchronization at the forced frequency is observed in the
simulations. Furthermore, the preferred frequency (ω = 8.6) for RI = 0.4 at ωf = π
and 5π is found to be that of the most unstable spatial mode. The selection of the
intrinsic oscillation frequencies in the AU regime will be investigated in detail in the
following section.

4.4.2. Initial impulse perturbations

The intrinsic oscillations of absolutely unstable miscible core-annular flows, different
from the forcing frequency, suggest that they might bifurcate to nonlinear global
modes (Huerre & Monkewitz 1990). The nonlinear global mode solution is defined as

Φ(z, r, t) = φ(z, r)e−iωGt . (4.10)

Here, ωG is the global frequency. In the case of semi-infinite flows with an upstream
boundary, Couairon & Chomaz (1997 b) have shown, in the context of a Ginzburg–
Landau model, that the global frequency (ωG) agrees with the linear absolute real
frequency (ω0,r ) at the marginal threshold of absolute instability. To extend these
theoretical analyses to core-annular flows, we initialize our simulation with a parallel
base state and a Gaussian spike at z = 2, as in § 4.3. In accordance with the theory,
we fix the inlet condition at z = 0 for all times, i.e. with fixed interface thickness
(δ = 0.02), and let the flow evolve without further forcing.

Figure 14 shows the measured global frequencies from the power spectrum of
radial velocity, integrated over r, at z =4, as compared with the linear absolute
frequencies from the stability analysis for two different Reynolds numbers Re =48
and 200. Note that the parameters for the linear stability calculations are the same
as those prescribed at the inlet of the domain for the nonlinear simulation. The
nonlinear global frequencies agree with the linear absolute frequencies not only at
the marginal threshold but for the whole set of parameters. Such an agreement is
also reported in the case of parallel wake flows (Chomaz 2003). Chomaz further
noted that in the case of weakly non-parallel wakes, the selected frequency is still
the absolute frequency at the inlet, though the threshold condition is altered. Thus
the linear theory is successful in predicting the global stability properties in our
system. This further confirms the findings of § 4.3 that the nonlinear dynamics are
dictated by linear mechanisms. As mentioned in the previous section, the wave
packet in an absolutely unstable medium spreads both upstream and downstream.
However, in a semi-infinite domain, the perturbation amplitude has to go to zero at
the inlet because of the imposed Dirichlet boundary. As a result, the propagation
of the wavefront in the upstream direction is constrained and the wavefront gets
saturated at some distance from the inlet (cf. figure 15a). To quantify this effect, the
saturation distance generally known as healing length (Hl) is defined (Chomaz 2003)
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the inlet profile, when (M,Sc, δ) = (3.22, 7500, 0.02). Nonlinear global frequencies are in close
match with the absolute real frequencies. Note that for each Re, only the interface positions
for which the flow is absolutely unstable are shown.
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Figure 15. (a) z, t-diagram of the enstrophy in the case of an absolutely unstable system
(RI = 0.55) in a semi-infinite domain. The upstream propagation of the wavefront is constrained
by the presence of the inlet boundary and the wavefront saturates at a distance, known as
healing length, from the inlet. (b) Healing length (Hl) as a function of the interface position,
shown along with the absolute growth rate (dashed line).

to be the distance from the inlet where the magnitude of the enstrophy becomes
one. Figure 15(b) shows the healing length along with the absolute growth rate
as a function of the interface position. When the absolute growth rate approaches
zero, i.e. for a convective case, the healing length diverges. The presence of the
upstream boundary does not affect the convectively unstable system (in case of no
external forcing), since there is no upstream propagation of the perturbation. Hence,
the saturation distance is infinite. When the flow becomes absolutely unstable, the
upstream boundary is being felt by the system and the healing length decreases, with
the saturation distance moving close to the inlet. We note that, unlike for parallel wake
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Figure 16. Qualitative comparison of the flow structures in (a) the experiment and (b) the
DNS, for (M,Re, Sc, RI , δ) = (3.22, 38, 7500, 0.48, 0.02).

flows, for core-annular flows the absolute growth rate and hence the healing length
are non-monotonic functions of the control parameter (RI ), and consequently the
scaling-law behaviour observed in parallel wake flows (Chomaz 2003) is not observed
in this case.

5. Comparison with experiments
In this section, we compare the numerical results with those of the experiments

in part 1. The simulations start from an initial parallel core-annular flow with a
given core radius. The parallel state core radius is determined by the relative mass
flow rate between the inner and the outer fluids, as described in part 1. During the
entire run time of the simulation, we perturb the interface position at the inlet with
random white noise of small amplitude (10−3) to mimic the continuous feeding of
randomness in the experiment. Figure 16 shows a snapshot of the flow system in the
experiment and the simulation. From the figure, it can be seen that the flow structures
downstream remain qualitatively the same for both the cases, demonstrating the
core-annular nature of instability. Note the presence of an initial entry length in the
experiment, before the flow becomes parallel. Since the simulation starts with an
initial parallel core-annular flow with a prescribed core radius, the entry length is
not present. Figure 17 presents the power spectra obtained from the experiment and
the nonlinear simulation for two representative cases. Note that the power spectrum
in the experiment was obtained from measurements of the instantaneous interface
position, whereas in the present simulations it is based on the transverse velocity (see
§ 4.4.1). When the core radius RI is 0.3, both results depict a broadband spectrum,
confirming the convective instability. Since the convectively unstable system acts as
noise amplifier, all of the frequencies present in the random noise at the inlet are
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Figure 17. Power spectrum obtained from the experiment and the simulation at z = 4 for
two representative core radii, when (M,Re, Sc, δ) = (3.22, 48, 7500, 0.02). (a) When the flow is
absolutely unstable (RI = 0.57), the spectrum peaks at single frequency, whereas for (b) the
convective case (RI =0.3), the spectrum is broadband and sensitive to external noise.

amplified. Nonetheless, it should be kept in mind that the dominant frequency will be
the one with a maximum spatial growth rate. However, for RI = 0.57, the spectrum
peaks at single frequency demonstrating absolute instability with intrinsic oscillations.

Figure 18 shows the maximum peak frequency (ωr ) and the phase velocity
(cph = ωr/kr ) measured from the experiment and the simulation, along with the
linear stability predictions. In comparing the experimental and simulation results
with the linear stability analysis, we have adopted the following procedure for the
representation of the linear frequency. When the system is linearly AU, the linear
frequency is unambiguously defined by the absolute frequency at the pinching point
of the spatial branches. However, when the system is CU, the spatial branches do
not pinch and it becomes necessary to explicitly state the frequency chosen for
representation. Since the mode with the maximum spatial growth rate will dominate
the flow, we have chosen the frequency corresponding to the dominant mode for
comparison. Figure 18 shows that the numerical results agree with the experimental
findings, i.e. for a fixed Re = 48, both the frequency and the phase velocity exhibit
a strong decrease with the increasing core radius, while for a fixed RI = 0.48, the
frequency increases with Re and the phase velocity remains almost constant.

Despite this general agreement in behaviour, one can note that both the linear
analysis and the simulation somewhat overpredict the frequency. Possible reasons
for the difference could be related to the initial entry length and/or experimental
uncertainties at the inlet. Furthermore, in the experiments the interface position
varies rapidly in the initial entry region before the flow converges to a parallel state
(cf. figure 16a). Hence, the interface position which dictates the global mode cannot
be ascertained. However, the observation that the experimental frequencies are lower
than those of the numerical results (which employ the parallel core radius) can
be explained from figure 14. In the range of interface positions considered in the
experiment (RI � 0.57), the curve for Re = 48 in figure 14 slopes downward steeply
with a 10 % reduction in frequency for every 0.02 increase in RI . Since larger RI -values
result in lower frequencies, we can reason that the interface radius in the experiment
which dictates the global mode might be larger than the parallel core radius. This,
however, cannot be ascertained through the theoretical global mode analysis.
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Figure 18. Comparison of the frequency (ωr ) and the phase velocity (cph) obtained from
the linear stability analysis, DNS and the experiment (corresponding to figure 5 in part 1).
The dashed line in the above figures denotes the CU/AU transition obtained from the linear
stability analysis, with the parameters to the left of the line being CU. The other parameters
are (M,Sc, δ) = (3.22, 7500, 0.02).

6. Summary and conclusion
In the present study, we investigated numerically convective and absolute

instabilities of miscible core-annular flows. When the viscosity ratio is above a critical
value, miscible core-annular flows are found to be absolutely unstable. The linear
stability analysis shows that a thicker interface decreases the absolute instability, while
the Schmidt number is found to have little influence on the stability characteristics. It
should be noted that in the stability analysis, the Schmidt number and the interface
thickness are varied independently. In real flows, on the other hand, the Schmidt
number has an influence on the interface thickness and hence is expected to change
the stability properties.

The long-time behaviour of the edge velocities of the wave packets are characterized
from the linear impulse response. When the core radius is increased, its effect on
the trailing edge velocity is non-monotonic, in that it changes from positive to
negative and back to positive. Thus, both narrower and wider core radii exhibit
convective instability. DNS in an infinite domain with periodic boundary conditions
are performed to analyse the nonlinear impulse response of the system. Similar to
parallel wake flows (Chomaz 2003), the moving front is a pulled front, where the
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nonlinear front velocities match with the linear counterpart. The numerical results
demonstrate that the frequency response of the intermediate core radius (RI =0.5)
is insensitive to the external forcing and the oscillations are intrinsic. On the other
hand, the narrower core behaves as a noise amplifier, typical of convective instability.
In a semi-infinite domain with an upstream boundary, the absolutely unstable system
gives rise to self-sustained oscillations with a global frequency. The observed global
frequency matches with the linear absolute frequency for the parameters prescribed
at the upstream boundary. This is in accordance with the theoretical predictions of
Couairon & Chomaz (1997 b). The numerical convective/absolute characteristics of
miscible core-annular flow are compared with the experimental findings of d’Olce
et al. (submitted). Both the numerical results and the experiments show a broadband
spectrum for narrower core and a sharp single frequency peak for the intermediate
core. The DNS results show good agreement with predictions obtained on the basis
of nonlinear global theory. Synchronized oscillations in convectively unstable flows,
in the presence of random inlet forcing, may therefore be interpreted as being noise
driven, whereas synchronized oscillations in absolutely unstable flows appear to be
due to an intrinsic nonlinear global mode. These numerical results suggest that the
synchronized behaviour observed in the experiments (part 1) is governed by the same
mechanisms.

We wish to thank Professor D. Salin and Drs J. Martin, N. Rakotomalala and
M. d’Olce for many fruitful discussions and for sharing their experimental results.
Support from the National Science Foundation under the contract CTS-0456722 is
gratefully acknowledged.

Appendix: Matrix entries of the eigenvalue problem
Upon linearization of (2.5)–(2.8), the perturbation equations take the matrix form

∂zΦ̃ = AΦ̃ + B∂t Φ̃, (6.1)

where Φ̃ = (c̃, ∂zc̃, ṽr , ∂zṽr , ṽz, p̃) is the eigenvector, A is a 6 × 6 differential matrix
with the following entries

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
−D2 Pe v̄z P e ∂r c̄ 0 0 0

0 0 0 1 0 0
0 −M∂rv̄z A43 Re v̄ze

−Mc̄ 0 e−Mc̄D1

0 0 −(r−1 + D1) 0 0 0
A61 0 0 A64 eMc̄(D2 + M∂rc̄D1) 0

⎞
⎟⎟⎟⎟⎟⎠

and B is a 6 × 6 algebraic matrix with zero entries except B21 = Pe, B43 = e−Mc̄Re and
B65 = −Re. In the above notation, D2 = ∂rr+r−1∂r , D1 = ∂r , A43 = −D2+r−2−2M∂rc̄ ∂r ,
A61 = M eMc̄

(
∂rr v̄z + r−1∂r v̄z + M∂rc̄ ∂r v̄z + ∂r v̄zD1

)
and A64 = eMc̄(−r−1 −D1 +M∂rc̄).
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