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Numerous experimental, numerical and theoretical studies have shown that core
annular flows can be unstable. This instability can be convective or absolute in
different situations: miscible fluids with matched density but different viscosities,
creeping flow of two immiscible fluids or buoyant flow along a fibre. The analysis
of the linear stability of the flow equation of two fluids injected in a co-current
and concentric manner into a cylindrical tube leads to a rather complex eigenvalue
problem. Until now, all analytical solution to this problem has involved strong
assumptions (e.g. lack of inertia) or approximations (e.g. developments at long or
short wavelengths) even for axisymmetric disturbances. However, in this latter case,
following C. Pekeris, who obtained, almost seventy years ago, an elegant explicit
solution for the dispersion relationship of the flow of a single fluid, we derive an
explicit solution for the more general case of two immiscible fluids of different
viscosity, density and inertia separated by a straight interface. This formulation is
well adapted to commercial software. First, we review the creeping flow limit (zero
Reynolds number) of two immiscible fluids as it is used in microfluidics. Secondly,
we consider the case of two fluids of different viscosities but of the same density in
the absence of surface tension and also without diffusion (i.e. miscible fluids with
infinite Schmidt number). In both cases, we study the transition from convective to
absolute instability according to the different control parameters.

Key words: absolute/convective instability, core-annular flow

1. Introduction
Following the pioneering theoretical work of Hickox (1971), the hydrodynamic

stability of two-phase flows in a pipe has been extensively studied, experimentally,
numerically and theoretically (Joseph, Renardy & Renardy 1984; Hu & Joseph
1989; Joseph & Renardy 1992a,b; Joseph et al. 1997; Kouris & Tsamopoulos 2002;
Sahu et al. 2009; Selvam et al. 2009; Govindarajan & Sahu 2014). These studies
have improved the understanding of the stability of parallel shear flows. Over the past
decades, the issue of the convective or absolute nature of this instability (Briggs 1964;
Huerre & Monkewitz 1990) has been addressed in different contexts. In hydrodynamic
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open flows, this transition from a convective instability to an absolute one has been
discovered in wakes and jets (Chomaz 2005), in thin film falling along a tilted wall
(Brevdo, Laure & Bridges 1999) or on a fibre (Duprat et al. 2007). In this latter
case, the control parameters are capillarity, inertia and geometry. In microfluidics,
the need to provide calibrated droplets on demand has led to the design of micro
capillary co-flow and flow-focusing devices (Gañán-Calvo, Herrada & Garstecki 2006;
Utada et al. 2007; Hu & Cubaud 2018) in which the break-up of the liquid jet into
droplets has been accounted for by the transition from a convective instability to
an absolute one (Guillot et al. 2007; Guillot, Colin & Ajdari 2008; Herrada, Gañán
Calvo & Guillot 2008; Utada et al. 2008). In the latter case, viscous and capillary
effects are involved. In neutrally buoyant miscible core annular parallel flows, thus in
the absence of interfacial tension, a convective/absolute transition has been observed
(d’Olce et al. 2009) and analysed numerically (Selvam et al. 2009) as a function of
the control parameters, namely the viscosity ratio of the two fluids, the inertia and
the location of the pseudo-interface. It should be noted that, in such core annular
flow, the threshold of the transition between pearl and mushroom patterns (d’Olce
et al. 2008), analogous to the dripping/jetting transition for immiscible fluids, does
not correspond to the threshold of the convective/absolute transition.

However, when buoyancy is present, the instability may lead to non-axisymmetric
patterns such as corkscrew, snake, bamboo etc. (Joseph & Renardy 1992a,b;
Lajeunesse et al. 1999; Balasubramaniam et al. 2005). Without buoyancy, the
observed instability patterns are axisymmetric in both experiments (Petitjeans &
Maxworthy 1996; Gañán-Calvo et al. 2006; Duprat et al. 2007; Utada et al. 2007;
d’Olce et al. 2008, 2009) and numerical simulations (Chen & Meiburg 1996; Kouris
& Tsamopoulos 2001, 2002; Kuang, Maxworthy & Petitjeans 2003; Gañán-Calvo
et al. 2006; Guillot et al. 2007; Selvam et al. 2007; Guillot et al. 2008; Utada et al.
2008; Selvam et al. 2009). Moreover in Selvam et al. (2007), it was shown that the
axisymmetric mode is dominant over the non-axisymmetric corkscrew one for large
enough Schmidt numbers (ratio of viscous to molecular diffusivities) which is the
case for most experimental fluids. Therefore, a linear stability analysis (LSA) can
be performed assuming only axisymmetric disturbances of the core annular parallel
flow. This is of course a tremendous simplification. The LSA requires us both to
calculate, from the Navier–Stokes equation, the flow perturbations in the bulk of each
fluid and to match the boundary conditions at the interface of the two fluids. Here,
thanks to the axisymmetric geometry of the problem, we can extend the single-phase
bulk solution of Pekeris (1948) to the two-phase core annular flow. We determine
the bulk solution for each fluid using Bessel and confluent hypergeometric functions.
Using these two bulk solutions and matching the boundary conditions at the interface
between the two fluids allows us to solve the eigenvalue problem explicitly. First we
revisit the creeping flow limit (Re= 0) for two immiscible fluids. We also address the
transition from a convective instability to an absolute one, as was used in microfluidic
devices to account for the transition from dripping to jetting. Then, using the general
solution, we study the stability of two fluids with different viscosities but with the
same density in the absence of an interfacial tension; this situation is equivalent to
the pseudo-interface between two miscible fluids without diffusion (infinite Schmidt
number) which allows us to compare our results with the miscible fluids study of
Selvam et al. (2007, 2009). We determine the convective or absolute nature of the
instability as a function of the Reynolds number, Re, or the interface location h.
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FIGURE 1. (Colour online) (a) Sketch of the core annular parallel flow geometry, with
different colours for the core and the wall fluids. The x axis is the symmetry axis
of the cylinder; the radial axis is normal to it. (b) Dimensionless velocity versus the
dimensionless radius r. The dimensionless position of the interface is h= Rs/R= 0.6 and
the viscosity ratio of the two fluids is M = 10.

2. Governing equations
We consider the flow of two incompressible fluids of different viscosity and density

in the absence of buoyancy. The fluids are injected co-currently and concentrically
(see figure 1) into a cylindrical pipe of radius R. A straight interface separates the two
fluids at the radial position Rs. The base flow is axisymmetric (Joseph & Renardy
1992a,b). Moreover, since the observed instability patterns are also axisymmetric
in both experiments and numerical simulations (Gañán-Calvo et al. 2006; Duprat
et al. 2007; Guillot et al. 2007; Selvam et al. 2007; d’Olce et al. 2008; Utada et al.
2008; d’Olce et al. 2009; Selvam et al. 2009), we will also assume axisymmetric
perturbations. Therefore, the Navier–Stokes equation in cylindrical polar coordinates
(x, r, ϕ), for axisymmetric flow (vϕ = 0, ∂/∂ϕ = 0), can be reduced to the radial
vr(x, r, t) and the axial vx(x, r, t) components of v(vx, vr):

ρl

(
∂vx

∂t
+ vr

∂vx

∂r
+ vx

∂vx

∂x

)
=−

∂p
∂x
+µl

[
∂2vx

∂r2
+

1
r
∂vx

∂r
+
∂2vx

∂x2

]
, (2.1)

ρl

(
∂vr

∂t
+ vr

∂vr

∂r
+ vx

∂vr

∂x

)
=−

∂p
∂r
+µl

[
∂2vr

∂r2
+

1
r
∂vr

∂r
−
vr

r2
+
∂2vr

∂x2

]
, (2.2)

where p is the pressure, l = 1 for the core fluid (0 6 r 6 ri) and l = 2 for the wall
fluid (ri 6 r 6 R), ρl and µl are respectively the density and the viscosity of the two
fluids. The continuity equation for incompressible fluids is

∂vr

∂r
+
vr

r
+
∂vx

∂x
= 0. (2.3)

On the solid boundary, r=R, the velocity is zero, v(R)= 0 and v is finite on the axis
(r= 0).

At the interface between the two fluids, r= ri, the velocity is continuous:

[[v]] = 0, (2.4)

where the jump in the quantity (.) across the interface, ri, is noted [[.]] = (.)1 − (.)2.
The components of the stress tensor σ of a viscous fluid (Guyon et al. 2001) are
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σi,j=−pδi,j+µ(∂ivj+ ∂jvi) where i, j are either x or r and ∂i≡ ∂/∂i. The shear stress
is continuous at the interface:

[[(σn)t]] = 0, (2.5)

where n is normal to the interface from liquid 1 to liquid 2, t is the tangent vector.
Due to surface tension, the normal stress is discontinuous at the interface with:

[[(σn)n]] = 2κγ , (2.6)

where γ is the surface tension coefficient and 2κ is the sum of the two principal
curvatures.

In the base flow the core fluid and the wall fluid flow concentrically and
co-currently with a straight interface separating them at a distance from the axis
r = ri = Rs sketched in figure 1. The base flow is stationary and unidirectional
along the direction of the cylinder axis U(vx, 0). As vr = 0, equation (2.3) leads to
vx(r)=U(r) and (2.2) to P(x). From (2.1), the pressure gradient is constant. The above
conditions U(0) finite, U(R)= 0, the interface conditions, [[U(Rs)]]= 0, the continuity
of the shear stress, [[µ∂rU(r)]] = 0 and the normal stress jump [[−P]] = γ /Rs, lead
to the velocity profile (Selvam et al. 2007):

U1(r)
U
=

2(1+ h2(M − 1)−M(r/R)2)
1+ h4(M − 1)

, 0 6 r 6 Rs,

U2(r)
U
=

2(1− (r/R)2)
1+ h4(M − 1)

, Rs 6 r 6 R,

 (2.7)

where M = µ2/µ1 is the viscosity ratio and h = Rs/R; U is the average velocity of
the flow. An example of such a velocity profile is given in figure 1.

3. Linear stability analysis (LSA)
To study the stability of the core–annular flow, we perturb the base flow and the

interface with the axisymmetric disturbances (Sexl 1927),

vx=U(r)+ δvx(x, r, t), vr= δvr(x, r, t), p=P+ δp, (x, r, t), ri=Rs+ ε(x, r, t),
(3.1a−d)

where the perturbations are assumed small (first order) compared to the base flow
leading to the linearized equations:

ρl

(
∂δvx

∂t
+ δvr

dU(r)
dr
+U(r)

∂δvx

∂x

)
=−

∂δp
∂x
+µl

[
∂2δvx

∂r2
+

1
r
∂δvx

∂r
+
∂2δvx

∂x2

]
, (3.2)

ρl

(
∂δvr

∂t
+U(r)

∂δvr

∂x

)
=−

∂δp
∂r
+µl

[
∂2δvr

∂r2
+

1
r
∂δvr

∂r
−
δvr

r2
+
∂2δvr

∂x2

]
. (3.3)

The continuity equation, equation (2.3) leads to

∂δvr

∂r
+
δvr

r
+
∂δvx

∂x
= 0. (3.4)

The velocity perturbation should be finite on the axis and zero on the solid boundary
of the cylinder, δvx(R)= δvr(R)= 0. At the perturbed interface, ri = Rs + ε(x, t), the
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linearized (
√

1+ (∂xε)2 ' 1) normal and tangent vectors are, n(−∂xε, 1) and t(1, ∂xε).
Therefore, the continuity of the velocity at r = ri, equation (2.4) leads, for its radial
components, to:

[[δvr(ri)]] = [[δvr(Rs)]] = 0. (3.5)

For its axial component, one needs to take into account that we have at order one:
U(ri)=U(Rs)+ (dU(r))/drε. Remembering that [[U(Rs)]] = 0 for the base flow, leads
to:

[[U(ri)+ δvx(ri)]] =

[[
dU(r)

dr
ε + δvx(Rs)

]]
= 0. (3.6)

As already noticed in Joseph & Renardy (1992a,b), it is important to stress that this
equation implies that δvx is not continuous across the interface at ri. Indeed, it is
this jump in the shear rate that destabilizes the flow (Hinch 1984). Note that, in the
Kelvin–Helmholtz interfacial instability (Kelvin 1870; Helmholtz 1890), this is the
jump in velocity, and not of its derivative, which is responsible for the instability.

After linearization and taking into account the relationships, [[µU′(Rs)]] = 0 and
[[µU′′(Rs)]] = 0, the continuity of the shear stress (2.5) leads to:[[

µ

(
∂δvx

∂r
+
∂δvr

∂x

)]]
= 0. (3.7)

The linearization of the sum of the two principal curvatures for the deformed interface
is 2κ = ∂xxε− 1/(Rs+ ε)' ∂xxε− 1/Rs+ ε/R2

s ). Using the base flow relation, [[−P]]=
γ /Rs, the linearized normal stress jump (2.6) is:[[

−δp+ 2µ
∂δvr

∂r

]]
= γ

(
∂xxε +

ε

R2
s

)
. (3.8)

Moreover, from the so-called kinematic condition, the normal velocity of both fluids
must be equal to the normal velocity of the interface: v1 · n= v2 · n= ∂ri/∂t, which,
once linearized, becomes

(−∂xε)U(Rs)+ δvr(Rs)= ∂tε, (3.9)

since U1(Rs)=U2(Rs) and δvr,1(Rs)= δvr,2(Rs) from (3.5).

4. Normal modes
The axisymmetry of both the base flow and its disturbances and the incompressibility

of the fluid (3.4) allows us to use a Stokes streamfunction ψ(x, r), for the velocity
perturbation:

δvx =
1
r
∂ψ

∂r
and δvr =−

1
r
∂ψ

∂x
. (4.1a,b)

Eliminating the pressure between (3.2) and (3.3) and taking into account (4.1) leads
to (Sexl 1927):[

∂

∂t
+U(r)

∂

∂x

]
Dψ(x, r)− LU(r)

∂ψ(x, r)
∂x

=
1

Re
DDψ(x, r), (4.2)

where we have defined the operators D = ∂2/∂r2
− (1/r)(∂/∂r) + (∂2/∂x2) and

L= (d2/dr2)− (1/r)(d/dr)= r(d/dr)((1/r)(d/dr)). We have normalized lengths by R,
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748 D. Salin and L. Talon

velocities by U, time by R/U and pressures by ρU2. Hence the normalized interface
is localized at h= Rs/R and the Reynolds number is Re= ρUR/µ.

In the linear stability analysis, the perturbations of the interface, streamfunction and
pressure are analysed in term of the normal modes of wavenumber k, frequency ω= ck
and phase velocity, c: ri = h + ε0eik(x−ct), ψ = φ(r)eik(x−ct) and δp = peik(x−ct). Using
these time and space dependencies in (4.2), one gets the Orr–Sommerfeld equation
for axisymmetric flows (Sexl 1927; Pekeris 1948; Drazin & Reid 1981):

(L− k2)2φ(r)= ikRe{(U(r)− c)(L− k2)φ(r)− (LU(r))φ(r)}. (4.3)

For a parabolic Poiseuille-like base flow (2.7), LU(r) = 0 and the last term of (4.3)
vanishes. In this latter case, Sexl (1927), Pekeris (1948), Drazin & Reid (1981) have
shown that the Orr–Sommerfeld equation can be integrated to give:

(L− k2)φ(r)= f (r), (4.4)

where
(L− k2)f (r)= ikRe(U(r)− c)f (r). (4.5)

This problem is thus reducible to an inhomogeneous second-order equation. Equation
(4.3) governs the behaviour of each fluid with Stokes streamfunctions ψ1 and ψ2 for
the core and wall fluid, respectively. For the wall fluid, the rigid boundary conditions
at the wall are written φ2(1) = φ′2(1) = 0. At the interface between the two fluids
(ri = h + ε), we rewrite the five above equations (3.5), (3.6), (3.7), (3.8) and (3.9)
in a dimensionless form using (4.1) and the eik(x−ct) dependence of ε and ψ .

The kinematic conditions (3.9) and (3.5) lead to

φ1(h)= φ2(h)=−h(U(h)− c)ε0, (4.6)

where

U(h)=U1(h)=U2(h)=
2(1− h2)

1+ h4(M − 1)
(4.7)

is the dimensionless velocity of the base flow at the interface (2.7) and we define
φ(h)= φ1(h)= φ2(h).

The continuity of the axial component of the velocity, equation (3.6), is written as:

[U′1(h)−U′2(h)]h ε0 + [φ
′

1(h)− φ
′

2(h)] = 0. (4.8)

Note that ε0 can be eliminated in the latter using (4.6). The continuity of the shear
stress, equation (3.7), is written as

hφ′′1 (h)− φ
′

1(h)+ k2hφ(h)=M[hφ′′2 (h)− φ
′

2(h)+ k2hφ(h)]. (4.9)

For the jump of the normal stress (3.8), extracting the pressure δpl from (3.2), using
the kinematic condition (4.6) and keeping only the linear terms, we get

[[η(h2φ′′′(h)− hφ′′(h)+ (1− 3k2h2)φ′(h)+ 2k2hφ(h))

+ ikh2Re{ζ ((c−U(h))φ′(h)+U′(h)φ(h))}]] +
ik(1− k2h2)φ(h)
(c−U(h))Ca

= 0, (4.10)

where η1= ζ1= 1, η2=M and ζ2= ζ =ρ2/ρ1 is the density ratio of the two fluids and
Re = ρ1UR/µ1 is the reference Reynolds number. Ca = µ1U/γ is the dimensionless
capillary number which compares viscous forces to surface tension ones (γ ).

Before addressing the general case of two immiscible fluids at any Re number, let
us focus on the creeping flow limit (Re→ 0).
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5. Immiscible case in the creeping flow limit (1/Ca 6= 0, Re= 0)
As discussed above, the dispersion relation for immiscible fluids has been

investigated in the literature in several studies. We note however that Herrada et al.
(2008) did not use the correct expressions (3.6) and (4.8) for the continuity of
the axial component of the velocity at the interface. In their work Guillot et al.
(2007, 2008) used the correct boundary conditions but their approach is based on the
perturbation of the lubrication equation, assuming hence a long wave approximation.
To compare with these different approaches we compute now the complete solution.
In the creeping flow limit (Re= 0), the Orr–Sommerfeld equation (4.3) reduces to:

(L− k2)2φ = 0, (5.1)

the solution of which is a linear combination of Bessel functions (Abramowitz &
Stegun 1964), rI1(kr), rK1(kr), r2I0(kr) and r2K0(kr). (The Bessel functions In(z) and
Kn(z) are solutions of the differential equation z2d2w/dz2

+ z dw/dz− (z2
+ n2)w= 0.)

For the core fluid, the regularity of the velocity at the r= 0, implies

φ1 = A1rI1(kr)+C1r2I0(kr) (5.2)

and for the wall fluid, we have:

φ2 = A2rI1(kr)+ B2rK1(kr)+C2r2I0(kr)+D2r2K0(kr), (5.3)

where the solid boundary condition, zero velocity at the wall (r= 1, φ2(1)=φ′2(1)= 0)
leads to two equations relating A2, B2, C2 and D2. Using these two equations and the
four interfacial conditions (4.6), (4.8), (4.9) and (4.10) (with Re= 0), we obtain the
dispersion relation from the compatibility conditions of these six equations as the zero
of the 6× 6 determinant:

0=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1(kh) I0(kh) I1(kh) K1(kh) I0(kh) K0(kh)

khI′1 −
β

∆
I1 (I0 + khI′0)−

β

∆
I0 khI′1 khK ′1 (I0 + khI′0) (K0 + khK ′0)

khI1 khI0 + I′0 MkhI1 MkhK1 M(khI0 + I′0) M(khK0 +K ′0)

2k2h2I′1 −
iΓ
∆

I1 2k2h2I′0 −
iΓ
∆

I0 2Mk2h2I′1 2Mk2h2K ′1 2Mk2h2I′0 2Mk2h2K ′0
0 0 hI1(k) hK1(k) I0(k) K0(k)
0 0 khI′1(k) khK ′1(k) I0(k)+ kI′0(k) K0(k)+ kK ′0(k),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.4)

where

∆= c−U(h), β = h(U′2(h)−U′1(h))=
4h2(M − 1)

(1+ h4(M − 1))
, Γ =

(1− k2h2)

Ca
.

(5.5a−c)
The interfacial velocity, U(h) is given in (4.7). When not mentioned, the variable
of any In is kh (In = In(kh), I′n = I′n(kh), etc.). It should be noticed that the above
determinant is a polynomial of second degree in terms of ∆. Moreover, by considering
the second and fourth lines, it appears that ∆ = 0 is a root of the polynomial.
(Multiplying the second and fourth lines by ∆ and then making ∆ = 0 leads to a
determinant with two proportional lines; hence the determinant is equal to 0.) This
leaves only one non-trivial root. Noting that the only term involving Ca, iΓ /∆, is
imaginary, the solution can be written in a compact form:

c=U(h)− βs(M, h, k)+
i(1− k2h2)

Ca
q(M, h, k), (5.6)

where s(M, h, k) and q(M, h, k) are real when k is real.
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Ca
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0.5 1.0

(a) (b)

FIGURE 2. (Colour online) Creeping flow, Re = 0. (a) Phase velocity, cr, versus the
dimensionless wave vector kh. (b) Product Caωi of the capillary number and the growth
rate versus the dimensionless wave vector kh. M = 25 and h = 0.5. In both figures, the
full blue curves correspond to the phase velocity and growth rate from the creeping flow
dispersion equation, equation (5.6). The green short dotted lines correspond to the same
items from Guillot et al. (2007, 2008). In (a) the top horizontal short dotted green line
is the long wave phase velocity, ṼLW , the horizontal large dashed red line at the bottom
corresponds to the short wave phase velocity.

In figure 2, we have plotted the phase velocity, cr = Re(c), as a function of the
wavenumber kh. As expected, the phase velocity varies smoothly from its long wave
limit,

ṼLW =
2(1− h2)(1+ (M − 1)h2)

(1+ (M − 1)h4)
2 , (5.7)

to its short wave one, which is the interface velocity U(h). This is a classical result
(Charru & Fabre 1994) for a temporal instability (k real). The zero-order phase
velocity, ṼLW , can be obtained by differentiating the relative flux with respect of h,
ṼLW = ∂(hU1(h))/∂h (Charru & Fabre 1994; Lajeunesse et al. 1999). Note that, when
M = 1, β = 0 and the second term vanishes: the phase velocity is constant.

The temporal growth rate of the instability is related to the imaginary part of
the dispersion relation, ωi = Im(ck) = cik, and is given by the last term of (5.6). It
is inversely proportional to the capillary number. Moreover, we have checked that,
for arbitrary values of M, h and k, q(M, h, k) is positive. Therefore, the stability
is determined by the sign of (1 − k2h2). More specifically, the interface is unstable
for long waves and stable for small ones. This is physically intuitive as shorter
wavelength increases the area between the two fluids and hence its surface energy
promoting stability like for the Rayleigh–Plateau instability of a static liquid column
(Rayleigh 1899). In figure 2(b), the plot of the product Caωi of the capillary number
and the growth rate versus the dimensionless wavenumber kh for a given viscosity
ratio (M = 25) shows the change from instability to stability at kh= 1.

5.1. Comparison with results from the literature
We compare these results with those of the literature. In Herrada et al. (2008),
the approach is very similar to ours, with same (5.2) and (5.3), but the authors
assume that the longitudinal velocity perturbation, δvx, is continuous at the interface,
in contradiction to (3.6) and (4.8) and with Joseph & Renardy (1992a,b). This
assumption leads to φ′1(h)=φ

′

2(h), which, using (4.8), is formally equivalent to putting
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Revisiting the linear stability analysis of two fluid core annular flow 751

β= 0 in our creeping flow determinant, leading to c=U(h)+ i(1− k2h2)q(M, h, k)/Ca.
The only difference with (5.6) is the phase velocity which becomes independent of
the wave vector and equal to U(h), the interfacial velocity of the base flow. In
Guillot et al. (2007, 2008), the boundary conditions are the same as ours, but
the use of a lubrication approximation, i.e. a development at long wavelengths,
leads to an oversimplified dispersion relationship that is written in our notations:
c= ṼLW + ikh(1− k2h2)f (M, h)/Ca. Compared to the development at long wavelengths
of (5.6): c= ṼLW + c2(M,h)k2h2

+ ikhf (M,h)(1−g(M,h)k2h2)/Ca+· · · , the frequency
dispersion is neglected. In figure 2, the short green dotted lines correspond to Guillot
et al. (2007, 2008). As expected, the two curves are in agreement in the long wave
limit.

5.2. Convective–absolute transition for creeping flows
We refer the reader to the chapter of Huerre and Rossi in Godreche & Manneville
(1998) and to Huerre & Monkewitz (1990) for an introduction to the basic concepts of
convective and absolute instabilities. Here, we briefly describe the numerical procedure
to identify the transition from convective to absolute instability. When an unstable
open flow is locally perturbed by a small disturbance, the growing wave packet can
display two different types of evolution (Briggs 1964; Godreche & Manneville 1998).
For a convectively unstable flow (CU), the disturbances are amplified and advected
away from their initial location. Such a convectively unstable flow behaves like a noise
amplifier. For an absolutely unstable flow (AU), although advected, the wave packet
is so strongly amplified that it invades the whole space (downstream and upstream).

In a temporal stability framework, the perturbations are assumed to be periodic
in the axial direction, i.e. for a given real wavenumber k = kr, we seek a complex
frequency ω = ωr + iωi. In the spatial stability framework, the perturbations are
time periodic, i.e. for a given real frequency ω = ωr, we seek a complex spatial
wavenumber k = kr + iki. In a spatio-temporal setting (as required for determining
the absolute/convective nature of the instability), both the frequency and wavenumber
may be complex. In the case of an absolutely unstable flow, one frequency mode will
prevail at long times and the system will behave like a self-sustained resonator (see
Godreche & Manneville (1998) for more details). The transition from a convective
instability to an absolute one can be determined from the dispersion relation (Huerre
& Monkewitz 1990) considering complex wavenumbers k= kr+ iki as well as complex
frequencies ω = ωr + iωi. For instance, the transition corresponds to the pinching of
two spatial branches of the dispersion equation. Therefore, the transition can be
determined directly, in our problem, from the dispersion relation. This is readily
done using the following procedure of Godreche & Manneville (1998): the transition
between a convective instability and an absolute one corresponds to a complex critical
wavenumber kc and frequency ωc for which the group velocity vg(k) = ∂ω/∂k and
the temporal growth rate ωi are both zero, namely:

vg(kc)=
∂ω

∂k

∣∣∣∣
k=kc

= 0 and ωi(kc)= 0. (5.8a,b)

Using the above dispersion equation (5.6), we can analyse the convective–absolute
transition. For a given h and a given M, the complex frequency is a function of k and
Ca: ω(k,Ca)= c(k,Ca)k. For a range of values of Ca, we compute the wave vectors
k0(Ca) which have a zero group velocity vg(k0(Ca))= 0. We then compute ω(k0(Ca)).
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FIGURE 3. (Colour online) The transition from convective instability to absolute instability
in a log–log plot of the capillary number, Ca, versus the viscosity ratio, M. The instability
is absolute below the curve associated with the corresponding interface location h and
convective above. The full blue curves correspond to our full calculation using (5.6) and
(5.8), with the corresponding h given on the right of the figure. The red monotonic dashed
lines correspond to the approximated solution of Guillot et al. (2007, 2008), with the
corresponding value of h on each curve (0.4, 0.5, 0.6, 0.75).

The transition between a convective instability and an absolute one corresponds to Ca∗
such that ωi(k0(Ca∗)) = 0. For kc = k0(Ca∗), equation (5.8) is then fulfilled. (When
there are multiple roots for kc, we choose the one for which the plot ωi(ωr) pinches
at ωi = 0. As Ca is changed, we follow this root through continuity.)

In figure 3, we plot a series of convective–absolute transition curves, Ca versus M
for different h values (full blue lines). The instability is absolute below the curves and
convective above. Moreover, for large value of h � 0.45, the curves are monotonic,
meaning that on increasing M at constant Ca, there is only a transition from absolute
to convective instabilities. For smaller values the curves exhibit a minimum, meaning
that the instability is absolute below a certain viscosity ratio Mmin and above another
one Mmax whereas it is convective in the range Mmin < M < Mmax. The dashed lines
correspond to the results of Guillot et al. (2007, 2008) where the dispersion term was
discarded, as discussed above. We note that unlike our results, variations obtained by
these authors are all monotonic. For h = 0.75 the two sets of curves are very close.
The discrepancy is significant for smaller values of h and especially for large M values
where it can reach one order of magnitude.

6. General case (1/Ca 6= 0, Re 6= 0)
Now, we seek to extend this analysis to the more general case of the two immiscible

fluids of different viscosity, density and inertia. In order to get φ1(r) and φ2(r), we
have to solve the Orr–Sommerfeld equations (4.4) and (4.5) The solution of the
homogenous part of (4.4), with f = 0, is a combination of Bessel functions of
the first kind, I1(kr) and K1(kr). Moreover, the solutions f of (4.5), for a parabolic
Poiseuille flow in a circular pipe (U(r) ≡ A + Br2), can be expressed in terms of
confluent hypergeometric functions, i.e. Kummer functions (Pekeris 1948; Drazin &
Reid 1981). (Kummer functions, M(a,2, z) and U(a,2, z) are solutions of the confluent
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hypergeometric differential equation: zd2w/dz2
+ (2− z) dw/dz− aw= 0 (Abramowitz

& Stegun 1964). Equation (4.5) becomes identical to this latter differential equation
after simple variable changes such as f (r)= z exp(−z/2)M(a, 2, z) and z= br2 (Pekeris
1948).) Using these solutions, f (r) of (4.5), we integrate the full equation (4.4) to
obtain the streamfunction for each fluid expressed in term of Bessel functions of the
first kind and Kummer functions. Each solution requires us to fulfil the appropriate
boundary condition, namely a zero velocity at r = 1 for the wall fluid and the
regularity at r= 0 for the core fluid velocity.

For the core fluid (U(r)=U1(r)) the solution which is regular at the origin, r= 0
Pekeris (1948) is:

φ1(r)= A1rI1(kr)+ B1r
∫ r

0
(I1(kr)K1(kt)− I1(kt)K1(kr))m1(t) dt

with m1(r)= r2e−b1r2/2M(a1, 2, b1r2),

b1 =
√

kRe1e3iπ/4, a1 = 1−
b1

4

(
1− c

1+ (M − 1)h4

2M
−

M − 1
M

(1− h2)

)
+

k2

4b1
.


(6.1)

Re1 = Re(2M)/(1+ (M − 1)h4) is a modified Reynolds number (Re= ρ1UR/µ1).
Taking into account the boundary conditions at r= 1 (δv2(1)= 0, φ2(1)=φ′2(1)= 0),

the solution for the wall fluid (U(r)=U2(r)) is:

φ2(r)= A2r
∫ 1

r
(I1(kr)K1(kt)− I1(kt)K1(kr))u2(t) dt

+B2r
∫ 1

r
(I1(kr)K1(kt)− I1(kt)K1(kr))m2(t) dt,

with u2(r)= b2r2e−b2r2/2U(a2, 2, b2r2), m2(r)= r2e−b2r2/2M(a2, 2, b2r2),

Re2 = Re1/M2, b2 =
√

kRe2e3iπ/4, a2 = 1−
b2

4

(
1− c

1+ (M − 1)h4

2

)
+

k2

4b2
.


(6.2)

We note that, due to the form of the Orr–Sommerfeld equation (4.3), the wavenumber
k is involved both alone and through the combination kRe which in the present case of
confluent hypergeometric function appears as

√
kRe. With these two streamfunctions,

we are left with four unknown constants (A1, B1, A2, B2) which will be determined
together with ε0 by the physical conditions at the interface between the two fluids
located at ri = h+ ε0eik(x−ct).

They are linked by the four equations (4.6), (4.8), (4.9) and (4.10). For a non-
trivial solution of this system of equations, the 4× 4 determinant corresponding to the
compatibility of these four unknowns must be equal to zero, leading to the dispersion
relation given by the complex phase velocity function c(M, ζ , h, k, Re,Ca).

After tedious calculations, but with numerous simplifications due to the many
properties of Bessel and Kummer functions (Abramowitz & Stegun 1964), the bulk
equations (6.1) and (6.2) and the interface conditions lead to the 4 × 4 determinant
corresponding to:

0=

∣∣∣∣∣∣∣∣∣
I1(kh) p1 p21 p22

1khI′1(kh)− βI1(kh) 1khq1 − βp1 1khq21 1khq22

2(M − 1)k2h2I1(kh) 2(M − 1)k2h2p1 − hm1(h) Mhu2(h) Mhm2(h)
2k3h3I′1(kh)− iγ1 2k3h3q1 − h2m′1(h)− iπ1 M(2k3h3q21 + h2u′2(h)) M(2k3h3q22 + h2m′2(h))

∣∣∣∣∣∣∣∣∣
(6.3)
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with

γ1 =
kh(1− k2h2)I1(kh)

1Ca
+ kh2Re(ζ − 1)[∆(I1(kh)+ khI′1(kh))+ hU′1(h)I1(kh)], (6.4)

π1 =
kh(1− k2h2)p1

1Ca
+ kh2Re(ζ − 1)[1khq1 + hU′1(h)p1] (6.5)

and ∆, U(h) and β given above in (5.5).
The determinant is written in order to avoid divergence at k= 0 and using only a

Bessel function of the first kind and its first derivatives (I1, I′1, K1, K ′1). The many
different other terms involve Bessel and confluent hypergeometric functions, namely:

p1(k, h)= I1(kh)
∫ h

0
K1(kt)m1(t) dt−K1(kh)

∫ h

0
I1(kt)m1(t) dt,

q1(k, h)= I′1(kh)
∫ h

0
K1(kt)m1(t) dt−K ′1(kh)

∫ h

0
I1(kt)m1(t) dt,

p21(k, h)= I1(kh)
∫ 1

h
K1(kt)u2(t) dt−K1(kh)

∫ 1

h
I1(kt)u2(t) dt,

q21(k, h)= I′1(kh)
∫ 1

h
K1(kt)u2(t) dt−K ′1(kh)

∫ 1

h
I1(kt)u2(t) dt,

p22(k, h)= I1(kh)
∫ 1

h
K1(kt)m2(t) dt−K1(kh)

∫ 1

h
I1(kt)m2(t) dt,

q22(k, h)= I′1(kh)
∫ 1

h
K1(kt)m2(t) dt−K ′1(kh)

∫ 1

h
I1(kt)m2(t) dt.



(6.6)

In the determinant, we can identify different contributions. The effect of the
capillarity is present in the two terms, γ1 and p1, involving Γ = (1− k2)/Ca as for the
above creeping flow limit (5.5). These two terms account for the Rayleigh–Plateau
instability (Rayleigh 1899). The term β characterizes the jump in the shear rate
accounting for the pseudo Kelvin–Helmholtz instability mechanism (Kelvin 1870;
Helmholtz 1890; Hinch 1984).

Equating the above determinant to zero represents thus an implicit dispersion
function which relates k and c for a given set of parameters (M, ζ , h, Re, Ca).
It is important to note that this dispersion relationship is exact, as it involves no
approximations such as a short (or long) wavelength. The equation represents thus
the central result of this paper. It is also very general as it takes into account a
contrast of density or viscosity and a surface tension. This relationship is however
cumbersome to manipulate because of its implicit form and it involves non-trivial
functions, although they are present in many software libraries. It should be noted,
however, that a numerical problem must be solved all the same. But solving the
determinant is quite simple without any particular ‘numerical’ knowledge being
required to discretize the linear disturbance equations and solve a problem with
eigenvalues as in Selvam et al. (2007, 2009).

We have already considered the case of immiscible fluids in the creeping flow
regime corresponding to Re = 0. (The solution of the creeping flow could have
been addressed from the general case, but it is a very heavy calculation requiring
a considerable amount of asymptotics.) We will now apply our general approach to
the case of iso-dense fluids (ζ = 1) with a straight interface between the two fluids
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2
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FIGURE 4. (Colour online) Comparison between our full calculation of the growth rate,
ωi, versus the dimensionless wave vector kh (full red line) with the results (blue dots) of
Selvam et al. (2007) (dashed line in their figure 5a) for M = exp(1), Re = exp(1) and
h= 0.5.

but without significant interfacial tension (1/Ca = 0) which leads to γ1 = π1 = 0 in
(6.4)–(6.5). This interface may also be understood as the pseudo-interface between two
miscible fluids in the absence of diffusion, i.e. at high Schmidt number (Sc=∞). The
analogy between these two situations has been already applied to the displacement
of one fluid by another one in a capillary tube (Chen & Meiburg 1996; Petitjeans
& Maxworthy 1996). We will investigate the stability of this system but also the
convective or absolute nature of this instability and compare our results to the
literature.

7. Matched density without surface tension (ζ = 1 and 1/Ca= 0).
As discussed above, the determination of the dispersion function requires us to

determine the zero of the determinant which relates c and k for a given set of
parameters, (M, h, Re). In this procedure to find numerically the dispersion function,
for each value of k, we scan the real and imaginary parts of c until reaching a zero
value of the determinant (for both its real and imaginary parts). As a benchmark,
we compare our full calculation with the numerical study of Selvam et al. (2007).
In figure 5(a) of their paper, the authors display the temporal growth rate versus
the dimensionless wave vector kh for two miscible fluids in the absence of diffusion
(Sc = ∞), i.e. a sharp interface without surface tension with the set of parameters
M = exp(1), Re = exp(1) and h = 0.5 in our notations. The comparison is shown in
figure 4: our results are 5 % smaller, but there is not enough detail on the calculations
used in Selvam et al. (2007) to find the origin of this, although small, difference.

Figure 5 displays a set of variations of the phase velocity, cr (a), and of the
imaginary part of the velocity, ci=ωi/k (b) versus the dimensionless real wave vector
kh for M = 30 and h = 0.35 at different Reynolds numbers. It worth noting that in
the long wave limit, the mode remain stable for thin enough core fluid h = 0.35 as
already noticed by Hickox (1971).

7.1. Long wave expansion
For calculation purposes, it could be useful to have a simpler expression for the
dispersion relation. We note again that, due to the form of the Orr–Sommerfeld
equation (4.3), the wavenumber k is involved both alone and through the combination
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kh
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0.1
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(a) (b)

FIGURE 5. (Colour online) Phase velocity, cr (a), and imaginary part of the velocity, ci=

ωi/k (b) versus dimensionless wave vector kh for M = 30 and h = 0.35. The different
continuous lines correspond to different Reynolds numbers: red, Re = 1; brown, Re = 5;
green, Re= 10 and blue, Re= 20. The dashed lines close to the low kh parts of the full
curves, correspond to the long wave expansion (7.1). The dashed line in (a) corresponds
to the phase velocity in the creeping flow limit (Re= 0), equation (5.6).

k Re in the different hypergeometric functions. Therefore it is possible to perform
a long wave expansion, i.e. series expansion of the Bessel and hypergeometric
functions at small values of both k and k Re. Using the Mathematica software, we
get the following explicit development to order four of the complex velocity:

c(M, h, k, Re) = c0,0 + ikRec1,1 + k2(c2,0 + c2,2Re2)

+ ik3Re(c3,1 + c3,3Re2)+ k4(c4,0 + c4,2Re2
+ c4,4Re4)+O(k5). (7.1)

The coefficients cn,m(M, h) are real and depend only of the viscosity ratio M and
of the location of the interface h. The leading term, c0,0 = ṼLW (5.7) as expected.
We note that, the coefficient of the even powers of k and kRe are real whereas
the odd ones are imaginary. The O(1) term appears in the temporal growth rate
ωi = Im(ck) = Rec1,1k2

+ · · · and thus determines the long wave stability of the
problem. The O(2) term appears in the expression of the dispersion of the phase
velocity and so on. We note that, the O(0) and O(1) results are in agreement with
the long wave expansion obtained by Renardy (1987) and Joseph & Renardy (1992b).
Figure 6 shows the variation with h of six of these coefficients for a viscosity ratio
M= 30. The coefficients c2,0 and c4,0 are the same as those obtained above for Re= 0
(c2 = c20.). We note that the long wave coefficient c1,1 changes sign as function of h
which shows that long wave modes are stable for a thin enough core fluid for M> 1.
It is worth mentioning that the third-order term also becomes positive, which means
that the system could be unstable at a lower h than predicted only by the first order.
For a given couple (M, h), we obtain the explicit complex velocity to the fourth order
and therefore the dispersion relationship to the fifth order (ω = ck). In figure 5 we
have plotted the comparison with the full solution. The agreement is quite good, as
expected for low values of kh. However, the discrepancy becomes very significant for
kh> 1 even including the fifth-order terms.

7.2. Convective–absolute transition
The main characteristics of convective and absolute instability have already been
described in the subsection on creeping flow. Absolute instability can be identified
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0.5 1.0
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c3,1
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h
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h

h

h

h

FIGURE 6. (Colour online) Coefficients cn,m(M, h) of the long wave expansion of the
complex instability velocity c(M, h, k, Re), equation (7.1), versus h for M = 30. First
column from top to bottom, coefficients of the real part of c: c0,0, c2,0, c2,2. Second
column, coefficients of the imaginary part of c: c1,1, c3,1, c3,3.

numerically by Briggs’ method (Briggs 1964), which presents a mapping procedure
involving the identification of the pinching or saddle point of two spatial branches
in the complex k plane. If we define the complex frequency corresponding to the
pinching point as ω0, then the flow is absolutely unstable (AU) if the imaginary part
ω0, i is positive. Thus, ω0, i represents the absolute growth rate. Although rigorous,
the practical problem with Briggs’ method is that it involves mapping the complex
plane ω to the complex plane k. If only the pinching point is of interest, iterative
algorithms can be used (Deissler 1987). These use the fact that, at the pinching point,
the group velocity vanishes (vg = ∂ω/∂k = 0). By interpolating a complex quadratic
function for vg with k as an independent parameter, it is possible to find efficiently
the saddle point. Here, we follow the iterative procedure described in Yin et al.
(2000) to find the absolute growth rate. For four wavenumbers (kj, j= 1− 4) obtained
by an initial estimate, we compute a polynomial interpolation of the variations of the
complex frequency ω,

ω(k)=
a
3
(k− k4)

3
+

b
2
(k− k4)

2
+ c(k− k4)+ d, (7.2)
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FIGURE 7. (Colour online) Variations of the absolute frequency ω0 and absolute
wavenumber k0 versus Reynolds number, Re for M= 25 and h= 0.48 in a semi-log plot.
(a) Imaginary part of the absolute frequency ω0,i: positive ω0,i corresponds to an absolute
instability whereas ω0,i < 0 corresponds to convective instability; the transition between a
convective instability and an absolute one occurs for ω0,i= 0. (b) Real part of the absolute
frequency, ω0,r, real part of the absolute wavenumber, kr and opposite of the imaginary
part of the absolute wavenumber, −ki. The open squares correspond to the values of ω0,i
(a) and of ω0,r (b) from Selvam et al. (2009) for a miscible pseudo-interface of thickness
δ = 0.008 and for weak diffusion Schmidt number, Sc=µ/(ρDm)= 7500.

where a,b, c and d are constants to be determined. To do this, ωj is calculated for each
of the four kj from the above determinant. From the constants found, an improved
value for k is determined using the saddle point criterion ∂ω/∂k= 0,

a(k− k4)
2
+ b(k− k4)+ c. (7.3)

Taking the root of this quadratic equation as close as possible to k4, a new set of
four kjs is produced and the above procedure is repeated until convergence is achieved.
The corresponding ω in the complex plane is the absolute frequency. This algorithm
is computationally efficient in the sense that, once the saddle point is found for one
parameter, the values of the others can easily be followed through continuation.

Figure 7 displays, on the left, the imaginary part of the absolute frequency ω0,i and,
on the right, its real part, ω0,r,, the real part of the absolute wavenumber, k0,r and the
opposite of its imaginary part −k0,i versus Re for M= 25 and h= 0.48. The absolute
frequency ω0,i is positive over a range of Re values from Remin ' 8.0 to Remax ' 281
denoting absolute instability in that range. In figure 8, we plot the same quantities
versus h for M = 25 and Re= 48. For h> 0.40 and h< 0.78, ω0,i is positive hence
the instability is absolutely unstable in that range.

Our formalism applies to fluids that are inherently immiscible. It is expected that
immiscible fluids within the zero surface tension limit will be equivalent to miscible
fluids with zero diffusion. Indeed, in both cases, the interface remains sharp and is
only subjected to viscous forces. Our results can therefore be qualitatively compared
to experiments (d’Olce et al. 2009) and simulations (Selvam et al. 2009) that studied
the absolute convective transition of miscible fluids.

Due to diffusion, the interface between the two fluids is always turbid, leading to a
pseudo-interface of thickness δ. The numerical analyses have shown (Chen & Meiburg
1996; Kouris & Tsamopoulos 2001, 2002; Kuang et al. 2003; Selvam et al. 2007,
2009; Talon & Meiburg 2011) that this thickness δ also has a strong influence on
the stability. One should thus consider the limit of no diffusion and also of a sharp
interface, i.e. δ→ 0 and Dm→ 0.
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FIGURE 8. (Colour online) Variations of the absolute frequency and absolute wavenumber
versus the position of the interface, h for M = 25 and Re = 48. (a) Imaginary part of
the absolute frequency ω0,i. (b) Real part of the absolute frequency, ω0,r, real part of the
absolute wavenumber, kr and opposite of the imaginary part of the absolute wavenumber,
−ki. The open squares correspond to the values of ω0,i (a) and of ω0,r (b) from Selvam
et al. (2009) for a miscible pseudo-interface of thickness δ= 0.008 and for weak diffusion
Schmidt number, Sc=µ/(ρDm)= 7500.

In the figures 7 and 8, we added the numerical results obtained by Selvam et al.
(2009) for their smallest interface thickness δ = 0.008 and their lowest molecular
diffusion, defined by the number Schmidt, Sc = µ/(ρDm) = 7500. The figures show
that the temporal characteristics are qualitatively similar. We however remark on
the difficulty of extrapolating the numerical results due to the nonlinearity of the
diffusion effect. Indeed, it has been demonstrated by Talon & Meiburg (2011) that
the miscibility might contribute to an increase of the instability but that this increase
varies non-monotonically with each of the two parameters δ or Dm. The extrapolation
is thus difficult to achieve as it requires us to decrease simultaneously δ and Dm

toward zero.

8. Conclusions

We performed a linear stability analysis of the flow of two fluids injected
simultaneously and concentrically into a cylindrical tube. We have given all the
details of the calculation, in particular regarding the boundary conditions, in the
very general case of two immiscible fluids of different viscosity, density and inertia.
First, we re-examined the creeping flow limit (Re= 0) of two immiscible fluids and
studied the transition from convective to absolute instability. We compared our results
to various approximations in the literature. Then, taking advantage of C. Pekeris’
elegant solution, which provides an explicit solution for the dispersion relationship of
the single-fluid flow, we obtained an explicit solution for the more general case of
two immiscible fluids of different viscosity, density and inertia. This formulation is
well suited for implementation in commercial software. Using this complete solution,
we addressed the question of the transition from convective instability to absolute
instability in the case of two fluids of different viscosities but of the same density
in the absence of surface tension and without diffusion (infinite Schmidt number).
We studied the dependence of the convective–absolute instability transition on the
Reynolds number and the location of the pseudo-interface and compared it to the
available simulations.
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