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Abstract. The extension of a gravity current in a lock-exchange problem, proceeds as square root of
time in the viscous-buoyancy phase, where there is a balance between gravitational and viscous forces. In
the presence of particles however, this scenario is drastically altered, because sedimentation reduces the
motive gravitational force and introduces a finite distance and time at which the gravity current halts.
We investigate the spreading of low Reynolds number suspension gravity currents using a novel approach
based on the Lattice-Boltzmann (LB) method. The suspension is modeled as a continuous medium with a
concentration-dependent viscosity. The settling of particles is simulated using a drift flux function approach
that enables us to capture sudden discontinuities in particle concentration that travel as kinematic shock
waves. Thereafter a numerical investigation of lock-exchange flows between pure fluids of unequal viscosity,
reveals the existence of wall layers which reduce the spreading rate substantially compared to the lubrication
theory prediction. In suspension gravity currents, we observe that the settling of particles leads to the
formation of two additional fronts: a horizontal front near the top that descends vertically and a sediment
layer at the bottom which aggrandises due to deposition of particles. Three phases are identified in the
spreading process: the final corresponding to the mutual approach of the two horizontal fronts while the
laterally advancing front halts indicating that the suspension current stops even before all the particles have
settled. The first two regimes represent a constant and a decreasing spreading rate respectively. Finally we
conduct experiments to substantiate the conclusions of our numerical and theoretical investigation.

1 Introduction

The horizontal intrusion of a fluid into another, driven by
a density difference is known as a gravity current [1,2].
Following the pioneering works of [3,4] gravity currents
have been studied extensively for many decades now, pri-
marily due to their relevance to numerous industrial and
environmental setups. Engineering problems like the infil-
tration of saline water into fresh water upon the release
of a lock gate [5], mixing of miscible fluids in chemical
and petroleum refineries [6–10] and environmental haz-
ards like spreading of lava domes [11], oil spills [12] and
avalanches [1], all involve gravity currents. Among the sce-
narios mentioned, suspension gravity currents comprise a
unique variety since the origin of buoyancy is not a denser
fluid but the suspended particles. Hence, the dynamics of
the gravity current is intricately linked to the settling and
entrainment processes of the particles [13,14]. The impli-
cations can be far reaching, for instance: turbidity currents
which originate along a continental slope proceed swiftly
through submarine canyons and run out upon arriving
at the ocean basin and on occasions form large reserves
of oil [15,16]. Estimates of the run out distance of sim-
ilar particle-laden flows like avalanches and mudslides is
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equally important for assessing and mitigating the asso-
ciated risks. Thus a better understanding of suspension
gravity currents is warranted for improving environmen-
tal hazard predictions.

The investigation of the extent of spreading of an oil
spill in a calm sea, revealed the presence of three regimes
in the spreading process [12]: during the initial stages,
the gravitational force is balanced by inertia (inertia-
buoyancy phase), whilst later when the current has spread
over a distance much larger than its thickness the viscous
forces balance out gravity (viscous-buoyancy phase). The
final regime concerns long time spreading where the grav-
itational force itself is negligible and the currents spreads
under the action of surface tension and viscous forces.
However, for particle-laden flows only the inertial and
viscous-buoyancy phases are relevant due to the absence
of surface tension. A significant portion of the literature
on non-Brownian suspension gravity currents is dedicated
to inertial-buoyancy phase owing to the widespread appli-
cations like pyroclastic flows, turbidity currents, pollutant
dispersion from industrial effluents, transport of sediment
by rivers where the characteristic velocities are high [14,
17–21].

In this article we focus on suspension gravity currents
which belong to the viscous buoyancy phase. Such currents
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are pertinent to mud slurries flowing in subterranean frac-
tures, where the characteristic length-scales can be very
small (on the order of a millimeter) for inertial effects to
be of any significance. In such particle-laden currents the
buoyancy force reduces over time as the particles settle
out and as a result the current is arrested at a downstream
location. Similar observations were reported in the experi-
ments on the spreading dynamics of suspension currents in
the inertial buoyancy phase [17]. The authors found that
the high-concentration suspension currents come to an
“abrupt halt” at a location which they refer to as the run
out length. The run out length was reported to increase
for concentrations lower than a critical value and decrease
subsequently for the higher concentrations. A comparison
to the “box model” approach [14], yielded good agree-
ment with experimental data at low concentrations but
was inconclusive for high concentrations. Since the “box
model” is valid only for very dilute suspensions, the au-
thors emphasised the need for an alternative theoretical
approach. Furthermore, other pertinent questions about
the dependence of the run out length on particle size and
the properties of the interstitial fluid have not yet received
a satisfactory explanation. Therefore, our primary aim is
to gain an understanding of the physical processes gov-
erning the run out length and its dependence on various
parameters like concentration and particle size.

In order to conduct the current investigation, we de-
velop a novel modeling approach based on the Lattice-
Boltzmann (LB) method for suspension flows which qual-
itatively replicates experimental observations and yields
data for comparison with theoretical models. The LB
method is used to solve simple model equations which
retain the essential physical processes at play for exam-
ple, sedimentation, rheology and buoyancy, present in
the problem. The simplifications underlying the proposed
model are necessary because the exact constitutive laws
governing the flow of suspensions are under debate in
the scientific community. For instance, critical issues re-
lated to the precise rheology of suspensions which in-
cludes knowledge of the volume fraction at which viscos-
ity diverges, shear-thinning power law, magnitude of yield
stress and the influence of particle size and distribution are
yet to be addressed satisfactorily [22,23]. In order to avoid
these contentious issues, we incorporated a concentration-
dependent Newtonian rheology for the suspension in our
model. We adopt a three pronged approach, wherein we
perform a parametric study using two-dimensional LB
simulations, which provides the necessary insight to de-
velop a lubrication theory based one-dimensional model.
Finally, we perform experiments to confirm the observa-
tions from the numerical investigation, but make no at-
tempt to match quantitatively the experimental data be-
cause of the difference in the geometries of the two: The
experiments are performed in a three-dimensional rect-
angular Hele-Shaw cell whereas the LB simulations are
conducted for a two-dimensional tank.

A multitude of methods have been applied to model
suspensions like Stokesian dynamics [24], dissipative par-
ticle dynamics [25], Lattice-Boltzmann method [26], La-
grange multiplier fictitious domain method [27] and they

Fig. 1. A schematic of the lock-exchange between a suspension
and a clear fluid.

require varying levels of computational effort. We model
the suspension as a fluid at the macroscopic level which
obeys the laws of continuum mechanics and incorporate
the hydrodynamic forces acting on the particles using sim-
ple constitutive laws for the settling velocity [28–30] and
the rheological properties [22,31]. This approach allows us
to achieve a computationally efficient model and hence is
ideally suited for large parametric studies and construc-
tion of analytical models.

In this paper, we apply our novel approach to study
a lock-exchange flow setup by releasing a dense suspen-
sion (with density and viscosity ρB , µB respectively) into
the suspending clear fluid (with density and viscosity ρT ,
µT respectively) in a tank of height H as shown in fig. 1.
A suspension current is setup instantaneously, which is
driven by the density difference, ∆ρ ≡ ρB − ρT . Simul-
taneously, the settling of particles creates a vertically de-
scending horizontal front, h(x, t), near the top and a ver-
tically ascending sediment front, hs(x, t), at the bottom.
The evolution of these fronts is examined in the forthcom-
ing sections.

This article is structured as follows: sect. 2 describes
the numerical model and a brief summary of the solu-
tion technique. In order to demonstrate the validity of
the model we present validation cases for sedimentation
in vertical and inclined tanks. Section 3 presents the re-
sults for a lock-exchange flow between the suspension and
the clear suspending fluid in the absence of sedimentation.
We thus delineate the effects of increasing viscosity and
gravitational body force which arise from increasing parti-
cle concentration. Thereafter, we study the same problem
in the presence of sedimentation in sect. 4 and present
the effects of variation in particle size and concentration.
Finally, concluding remarks are made in sect. 5 followed
by appendix A where the derivation of the flux function
based on lubrication theory is presented.

2 Numerical simulations

2.1 The governing equations and boundary conditions

We first consider a suspension consisting of an intersti-
tial fluid and particles as a continuous medium which
can be represented by volume averaged velocities u ≡
(1 − ϕ)uf + ϕup and kinematic viscosity ν(ϕ). Such an
approach is valid when we consider length-scales greater
than � 100 particle diameters [32]. We assume that the
suspension is a Newtonian fluid whose viscosity depends
on the local particle concentration, ϕ. Such an assump-
tion is reasonable for particle concentrations not close to
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the packing fraction [22]. Furthermore, we assume that
Boussinesq approximation is applicable to the flow which
implies that the relative density difference between the
suspended particles and the fluid is small. The application
of this approximation to the governing equations leads to
significant simplification. For non-Boussinesq flows, addi-
tional terms arising from the relative density difference
must be retained in the momentum equations. Under these
conditions, the continuity and momentum equations can
be expressed as

▽ · u = 0, (1)

∂u

∂t
+ u · ▽u=−

1

ρ
▽ P +

ρp − ρf

ρ
ϕg + ▽ ·

(
ν(ϕ) ▽ u

)
,

(2)

where ρ ≡ (1−ϕ)ρf + ϕρp represents the density and the
subscripts p, f denote the particle and the fluid phases, re-
spectively. Since we apply the Boussinesq approximation,
ρp ≃ ρf ≃ ρ but (ρp−ρf )g may not be negligible and rep-
resents the buoyancy force. In general, the rheology of sus-
pensions depends on other factors as well for example the
particle dispersivity and shape. In this study we restrict
ourselves to suspensions comprising of monodisperse,
spherical particles with a rheology characterised by [31]

ν(ϕ) = νf

(

1 −
ϕ

ϕj

)−2

, (3)

where, ϕj ∼ 0.61 is the jamming concentration [22].
We note that accurate modeling of the rheology of a
suspension, close to the packing fraction, is still under
scientific debate [23,33,34]. However, in the vicinity of
packing fraction, the nearly compacted sediment flows
very slowly in any model, either due to the divergence of
local viscosity or because of yielding.

The sedimentation Reynolds number defined as Res ≡
u0H/ν [35] in our simulations is in the range [0.025, 0.25].
Since our interest lies in the viscous-buoyancy phase where
the inertial force is much weaker than the viscous and
gravitational body forces, we examined whether the exclu-
sion of inertial terms affects our results. We observe that
indeed the inertial terms when excluded from our compu-
tations, do not affect the spreading of the gravity current.

The particle concentration is governed by a convection-
diffusion equation,

∂ϕ

∂t
+ ▽ · (ϕu + ϕV (ϕ)) = D0∆ϕ, (4)

where, D0 is the hydrodynamic self-diffusion [36–38] and
V (ϕ) is the hindered settling velocity function which
represents the slip velocity of particles in a suspension.
Our analysis uses the well established hindrance velocity
model [39,28,40]

V (ϕ) = (1 − ϕ)5u0; ϕ < ϕs,

V (ϕ) = 0; ϕ ≥ ϕs, (5)

where

u0 ≡
2a2(ρp − ρf )g

9ρfνf
(6)

is the Stokes settling velocity of a particle with radius
a and ϕs = 0.57 is the maximum concentration of the
suspension beyond which the particles are immobile with
respect to the fluid [39]. The flux function which is de-
fined as the product ϕV (ϕ) has been determined exper-
imentally [39] and was reported to be discontinuous at
ϕs = 0.57, a value corresponding to random loose pack-
ing. It must be noted that ϕs is distinct from ϕj and the
precise values are still a subject of active research [22]. It
should also be pointed out that D0 is a function of ϕ but
the dependence has not been well established [36–38]. We
have therefore assumed D0 to be constant and its value is
typically in the range D0 ∼ 8au0 ∼ 10−4 [36].

The no-slip and no-penetration boundary conditions
are implemented at the wall and a no normal-flux condi-
tion is implemented at the boundaries for the concentra-
tion field. It is customary for simulations performed using
a LB code, that lengths are prescribed in terms of lattice
units (δx) and time in terms of unit time step (δt). There-
fore, in the following velocities are expressed in terms of
δx/δt and g in terms of δx/(δt)2.

2.2 The Lattice-Boltzmann scheme

In order to solve the momentum equation (2) and the
transport equation (4), we implement a Two-Relaxation-
Times (TRT) Lattice-Boltzmann scheme.

2.2.1 The TRT scheme for momentum equation

Modeling of the Stokes and Navier-Stokes equations with
the TRT operator is discussed in detail in [41]. In the
present work, we use the D2Q9 Navier-Stokes scheme
where the unknown variables are the 9 population vec-
tors {fq, q = 0, . . . , 8}. The Lattice-Boltzmann scheme
can be split into two steps. The collision step which re-
distributes the populations fq → f̃q and the propagation

step fq(r+cq, t+1) = f̃q which translates the populations
according to their velocity, cq, from a position, r.

The collision step definition allows us to characterise
the fluid properties. We introduce the notation cq̄ = −cq

for the direction opposite to the velocity vector cq and
we order the populations such that for all q ∈ [1; 4] are
opposite to the corresponding q ∈ [5; 8]. The TRT colli-

sion operates on the symmetric (f+
q = (fq + fq̄)/2) and

the anti-symmetric (f−
q = (fq − fq̄)/2) components for

q = 1, . . . , 4. It is performed by prescribing the two equi-
librium distributions {e±q } and two collision eigenvalues

λ± ∈]0, 2[. The eigenvalue, λ+, pertains to all symmet-
ric non-equilibrium components, {n+

q } and similarly λ−

for all anti-symmetric non-equilibrium components {n−
q }.

Hence the collision step can be expressed as

f̃0 =
[
f0(1 − λ+) + λ+e0

]
(r, t), (7)

f̃q =
[
fq − λ+n+

q − λ−n−
q + S−

q

]
(r, t), q = 1 . . . 4, (8)

f̃q̄ =
[
fq̄ − λ+n+

q + λ−n−
q − S−

q

]
(r, t), q = 1 . . . 4, (9)
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where S−
q is an external momentum source which allows

imposition of a body force F and n±
q = (f±

q − e±q ), q =
1 . . . 4.

Fluid dynamical entities are obtained by the prescrip-
tion of the equilibrium functions e±q , which in turn requires
the computation of the local macroscopic quantities: the
mass

ρ =

9∑

q=0

fq = f0 + 2

4∑

q=1

f+
q , (10)

and momentum

J =

9∑

q=1

fqcq = 2

4∑

q=1

f−
q cq. (11)

The equilibrium functions are defined as

e+
q = t⋆q

(

c2
sρ +

3(J · cq)
2 − J · J

2ρ0

)

,

e−q = t⋆q(J · cq), e0 = ρ − 2

4∑

q=1

e+
q ,

S−
q = t⋆qF · cq,

where the weights {t⋆q} are isotropic and take the value

t⋆q = { 1
3 , 1

12} for the first and second (diagonal) neighbour

links respectively in the D2Q9 model. The quantity, ρ0 is
a constant and represents the average mass of the domain.

The local pressure P = c2
sρ and the local velocity

u = 1
ρ0

∑9
q=1 fqcq + 1

2F thus satisfy the momentum equa-

tion (2) The viscosity is given by the even eigenvalue
ν = 1

3 ( 1
λ+ − 1

2 ). For improving the numerical precision [41],

the second eigenvalue λ− is chosen so as to keep the co-
efficient Λ = ( 1

λ−
− 1

2 )( 1
λ+ − 1

2 ) constant. In the present

work, we use Λ = 0.25.

2.2.2 The particle-transport equation

To implement the transport equation, we use a scheme
similar to [42]. We define another set of 9-population vec-
tors {fq, q = 0, . . . , 8}, and thereafter the propagation-
collision step is computed according to: fq(r +cq, t+1) =

f̃q and eqs. (7)–(9) with S−
q = 0.

The equilibrium distributions require the computa-
tion of the local volume fraction, ϕ =

∑9
q=0 fq = f0 +

2
∑4

q=1 f+
q and are given by

e+
q = ϕ

(

t∗qce +
1

4
(u2

x − u2
y)pxx

q +
1

4
(uxuy)pxy

q + t∗q
1

2
U2

)

,

e−q = ϕ(u + V (ϕ)) · cq,

e+
0 = ϕ

(

1 −
9∑

q=1

e+
q

)

,

Fig. 2. Sedimentation of a suspension with ϕ0 = 0.2, H = 256
δx and u0 = 10−3δx/δt, showing the evolution of two fronts:
one between suspension and clear fluid near the top wall and
another between the sediment layer and the suspension close
to the bottom wall. The leftmost snapshot is a t = 0 and each
subsequent snapshot is 1.5 × 104δt later.

where t∗q = { 1
4 , 1

8} for the first and second (diagonal)

neighbour links respectively and pxx
q = c2

qx−c2
qy and pxy

q =

cqxcqy. Thus the concentration, ϕ satisfies a convection-
diffusion equation (4) where the diffusion coefficient is

given by D0 = ce(
1

λ−
− 1

2 ). The other relaxation pa-
rameter, λ−, is chosen such that the parameters Λ =
( 1

λ−
− 1

2 )( 1
λ+ − 1

2 ) = 0.25 and c2
e = 1/3 are held fixed.

2.3 Validation

2.3.1 Vertical tank

The settling of particles in a suspension with homogeneous
initial concentration, ϕ(x, y) = ϕ0 in a vertical tank was
simulated using the numerical procedure presented in sub-
sect. 2.2. The settling of the particles can lead to the for-
mation of multiple shock fronts, that is localised regions of
discontinuous or sharp gradients in particle concentration,
due to the hindered settling velocity eqs. (5) [29]. One such
front exists between the suspension and the clear fluid at
the top as illustrated by fig. 2. The front descends towards
the bottom at a constant velocity uT (ϕ). Another front
develops due to the deposition of particles at the bottom
of the tank that gradually ascends upwards also at a con-
stant velocity uB(ϕ). Figure 2 shows the accretion of this
sediment layer at various instants of time. The front how-
ever is not as sharp as the top front due to hydrodynamic
diffusion.

The velocity of a shock front at a height, h, can be
determined from the particle transport equation (4) [29]

V(ϕ) =
ϕ(h+)V (ϕ(h+)) − ϕ(h−)V (ϕ(h−))

ϕ(h+) − ϕ(h−)
, (12)

where h± denote y locations just above and below the
shock respectively. In the presence of small but finite
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Fig. 3. Comparison of experimental data, theoretically predicted and numerically obtained shock front velocity of (a) suspen-
sion layer, uT (ϕ), and (b) sediment layer, uB(ϕ), for various initial concentrations ϕ0. theoretical curve from eq. (12),
+ numerical simulation with H = 256 and u0 = 10−3, ◦ experimental data [39].

hydrodynamic diffusion, although the shock front is regu-
larised, the front velocity remains unaltered [43]. The lo-
cation of the shock front between the suspension and clear
fluid was traced by computing the contour associated with
ϕ0 which is largely horizontal except near the walls. The
velocity of the top shock front, uT (ϕ), is computed and
compared to the theoretical curve V(ϕ0) (12) for various
ϕ0 in fig. 3(a). There is a very good agreement between
the two curves.

The rate of ascent of the sediment layer, uB(ϕ0), was
computed from the concentration contour level, ϕ = ϕs,
and compared to eq. (12) which predicts the front velocity
as V(ϕ0)

ϕ0

ϕs−ϕ0
. There is a reasonable match for low con-

centrations (ϕ0 < 0.2) between the data from the Lattice-
Boltzmann simulations and eq. (12). At higher concen-
trations there is a small discrepancy which is due to the
thickening of the front as opposed to a self-sharpening
shock front [29]. Therefore eq. (12) is not strictly applica-
ble and only provides an approximation of the ascent of
the sediment layer in this case. In contrast, our simulation
results match well with the experimental data [39] for the
entire range investigated.

2.3.2 Inclined tank

The velocity of a shock wave is constant over time in a
vertical tank but a slight inclination of the tank results in
a significant enhancement of the settling velocity due to
the well-known Boycott effect [44]. The sedimentation of
the particles was simulated in an inclined tank in order
to test the ability of the numerical code to replicate the
enhancement in settling velocity.

The tilting of the tank leads to an increase in the area
over which the particles can settle when compared to the
vertical tank. However, the area available for the down-
ward displacement of the interface remains fixed. Hence
the additional clear fluid generated due to the settling of
particles necessitates an enhancement in the shock front
velocity in order to ensure conservation of mass [35]. Fig-
ure 4 shows the evolution of the concentration field with
time for a suspension in an inclined tank. A shock front

y
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g

Fig. 4. The evolution of two fronts: one between the clear
fluid and the suspension and the accretion of the sediment
layer in an inclined tank. The leftmost snapshot is a t = 0
and each subsequent snapshot is 2.29 × 105δt later. ϕ0 = 0.3,
u0 = 2 × 10−3, H = 256 and α = 40◦.

demarcates the clear fluid from the suspension. A part
of the front is perpendicular to the gravity whereas the
rest of the front separates a tiny layer of clear fluid ad-
jacent to the downward facing wall from the suspension.
The Ponder-Nakamura-Koruda (PNK) model [45,46] hy-
pothesizes that the thickness of this layer, denoted by δ,
remains nearly constant with time. As a consequence the
clear fluid generated underneath the shock front must ap-
pear above the downward moving interface thus enhancing
the settling velocity. A similar physical process can be ob-
served in our simulations as well. Figure 5(a) compares
the thickness of the clear fluid layer at different instants
of time and it remains nearly constant and matches well
with the analytical prediction of [35].

Based on the physical argument of PNK theory the
shock front velocity is enhanced according to,

dh

dt
= −V(ϕ)

(

1 +
h

b
sin α

)

, (13)

where h is the location of the front, b is the tank width,
α is the angle of inclination and V(ϕ) is the shock front
velocity in a vertical tank. However if the height of the
suspension is comparable to the sediment layer at the bot-
tom, the increasing thickness of the sediment layer must
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Fig. 5. (a) Comparison of theoretically predicted [35] ( ) and numerically obtained thickness of the clear fluid layer at
different instants of time. Starting from t = 2 × 105 onwards to t = 4.5 × 105 every 5 × 104δt and the arrow points in the
direction of increasing time. ϕ0 = 0.1, u0 = 10−4, H = 512 and α = 20◦.

be accounted for, in the settling velocity calculations [35].
The presence of the sediment layer inhibits the settling
velocity since the effective height is only h− hs, where hs

is the height of the sediment layer. Therefore eq. (13) is
rewritten as

v = −v0

(

1 +
h − hs

b
sin α

)

. (14)

In addition, conservation of mass of the particles requires,

d

dt

(
(h − hs)ϕ0 + hsϕb

)
= 0, (15)

where ϕb is the concentration of the sedimentation layer.
Equations (14) and (15) can be reduced to an ordinary
differential equation for h − hs, to which the solution is

h − hs =

(
b

sin α
+ h(0) − hs(0)

)

e−
ϕb
ϕ0

v0t

b
sin α −

b

sin α
.

(16)
We make a quantitative comparison by tracking the

contours of the shock fronts at the top, ϕ = 0.5ϕ0, and
at the bottom, ϕb = 0.45. The difference of these heights,
h − hs is plotted against time in fig. 6 for three different
angles of inclination. The data obtained from the simu-
lations agree with the analytic solution (16). In previous
experiments [35], ϕb increased with time due to the com-
paction of the sediment layer. Furthermore, the authors
found that ϕb typically lies in the range [0.43, 0.53]. In
our computations we find that a unique value ϕb = 0.45
gives good agreement with the simulation data and lies in
the experimental range of [35].

3 The lock-exchange problem with only

viscosity contrast

The previous section demonstrated the effect of particle
concentration on the settling velocity of sedimentation
fronts and the aggrandisement of the sediment layer. In
addition, the variation in concentration also affects the
flow characteristics of the suspension by altering its vis-
cosity and the gravitational body force acting per unit
volume. Therefore, the overall effect of increase in ϕ on
the extension of particle-laden gravity current is not ev-
ident. To gain a better understanding we distinguish, in
this section, the effects of concentration variation on the
flow characteristics only by examining the lock-exchange

0 1e+06 2e+06 3e+06 4e+06
−100

0

100

200

300

t
h
 −

 h
s

20°35° 10°

Fig. 6. The difference between the heights of two shock fronts,
h − hs as a function of time for different angles of inclination.

numerical simulation; analytical solution (16).
ϕ0 = 0.3, u0 = 2 × 10−4, H = 256.

between two pure fluids of distinct density and viscosity. In
order to simulate the lock-exchange flow, we set, u0 = 0,
which is equivalent to setting the particle size equal to
0 and hence the suspension represents the heavier and
more viscous fluid. Therefore, in this section, we deter-
mine the combined effect of varying the reduced gravity,
Δρg
ρT

=
ϕ(ρp−ρf )g

ρf
, and the viscosity ratio, µBT ≡ μB

μT
=

(1 − ϕ
ϕj

)−2, by changing the concentration, ϕ, of the sus-

pension.

3.1 LB Simulations

A comparison of the evolution of the gravity current is
made for two different viscosity ratios, µBT = 1 and
µBT = 100. Figure 7(a) shows that the interface is sym-
metric about the origin when the two fluids have equal
viscosities. This observation is in agreement with previ-
ous studies [47,48]. However, at a higher viscosity ratio
µBT = 100, the evolution of the interface is markedly dif-
ferent as shown in fig. 7(b). The qualitative differences
in the evolution of the two gravity currents can be sum-
marised as follows:

1) The gravity current spreads much slower for µBT =
100 than µBT = 1. It is worth noting that the cur-
rent slows down despite an increase in the gravita-
tional body force, which in principle increases the lat-
eral spreading rate. Since the viscosity ratio is the only
other factor which is affected by changing the concen-
tration, the slowing down must be due to an increase
in µBT .
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Fig. 7. Evolution of the concentration field with time ((a) T =
316, 630, 945, 1260; (b) T =2177, 4355, 6532, 8709), in coordi-
nates normalized by H. (a) µBT = 1, Dg = 1.74, (b) µBT =
100, Dg = 10.06, where the parameter Dg is defined after
eq. (5).

2) The edges of the gravity current are sharp nosed in
fig. 7(a). Contrarily, in the case of µBT = 100 we
observe that the trailing edge is blunt while the the
leading edge is pointed. The leading edge is also more
diffused than the trailing edge.

3) There exists, although thin, a layer of the heavier fluid
adjacent to the top wall which leads to gravitational,
Rayleigh-Taylor (RT) instabilities behind the trailing
edge in fig. 7(b). Such a wall layer is not prominent in
fig. 7(a) where viscosities of the two fluids are equal.

Although the interface is markedly different in the two
cases, the leading and trailing edges are nearly equidis-
tant from the center for both viscosity ratios. This curious
result motivated us to conduct a comparative study with
an existing theoretical model based on the classical lu-
brication approximation [49,47,48]. By assuming a single-
valued function, h(x, t) = yi/H with a small streamwise
(x) gradient, to represent the pseudo-interface, where yi

is the wall normal distance of the interface from the bot-
tom wall, an evolution equation for conserving mass can
be obtained,

∂h

∂t
+

∂q

∂x
= 0, (17)
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Fig. 8. Evolution of the interface with time obtained from the
lubrication model for (a) µBT = 1 and (b) µBT = 100. The
thick curve corresponds to the initial condition and the rest
correspond to different instants of time, 166 time units apart.

where the flux q(h, µBT ) [47],

q ≡

Dgh
3(1 − h)3(h(−1 + µBT ) − µBT )∂h

∂x

(h4 − 2(−1 + h)h(2 + (−1 + h)h)µBT + (−1 + h)4µ2
BT )

,

(18)

and Dg ≡ ΔρgH3

3μT
. Hence Dg has the units (δx)2/δt. We

chose to non-dimensionalise eq. (17) by the viscosity of the
lighter fluid, µT , for the latter part of the article which
addresses suspensions, where the exact rheology is model
dependent.

We solve eq. (17) numerically using an explicit march-
ing scheme. The spatial discretisation was performed us-
ing fourth-order central difference scheme and the time
marching was performed using the 4th order Runge-Kutta
method. The initial condition chosen was a hyperbolic

tangent function profile, h(X, 0) = − tanh(X/δx0)−1
2 with

δx0 = 10−4. The code was validated by comparing with
the results reported by [47].

The numerical solutions of eq. (17) are plotted in
fig. 8(a) and (b) for viscosity ratios µBT = 1 and 100,
respectively. We plot the results in the non-dimensional

coordinates X ≡ x/H and T ≡
Dgt
H2 . The interface is sym-

metric when the two fluids are of equal viscosities as can
been seen in fig. 8(a), an observation concordant with the
numerical simulations. However, fig. 8(b), reveals that al-
though the interface is asymmetric for µBT = 100, the
trailing edge travels significantly faster than the leading
edge. In addition, the nose at the trailing edge appears
sharper than that of the leading edge. These qualitative
observations are in contradiction with the numerical simu-
lations and therefore a quantitative comparison is required
to estimate the extent of discrepancy between the 2D sim-
ulations and the 1D lubrication model. Quantitatively, the
leading and trailing edges are defined as follows: We first
binarize the concentration map by evaluating the condi-
tion ψ ≥ 0.5ψ0. Then, we determine the position at which
the vertically averaged concentration map equals 5% and
95% of the total height for the leading and trailing edges
respectively.

Figure 9(a) compares the displacement of the leading
edge in the lubrication model to the LB simulations. The
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Fig. 9. Comparison of leading edge (a) and trailing edge (b) location obtained from 1D lubrication model [47] (dashed lines)
and 2D simulations (solid lines). µBT = 1 and Dg = 1.74 ( ), µBT = 10 and Dg = 7.65 ( ), µBT = 100 and Dg = 10.06
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Fig. 10. Comparison of (a) diffusion coefficient for different viscosity ratios and (b) velocity profile obtained from 2D Lattice-
Boltzmann simulation ( ) and 1D lubrication model ( . ) where h = 0.58 for µBT = 100.

leading edge travels at the same velocity in the lubrica-
tion model and the LB simulations for µBT = 1 and 10.
At long time however, the numerically obtained data de-
viates slightly from the curve predicted by the model ow-
ing to hydrodynamic diffusion. In the case of µBT = 100,
an initial transient is observed during which the gravity
current does not follow a diffusive law, X2 ∝ T , in the
simulations. The transient corresponds to an initial phase
of the gravity current where the interface has a streamwise
length-scale comparable to the tank height. The lubrica-
tion theory is therefore not applicable, thus explaining the
mismatch at short time between the 1D lubrication model
and the 2D simulations. However, the slopes of the two
curves are approximately equal at long time, implying that
the lubrication model predicts accurately the leading edge
displacement.

The trailing edge on the other hand, shows agreement
only for µBT = 1 in fig. 9(b). At higher viscosity ra-
tios µBT = [10, 100] the trailing edge travels significantly
slower in the simulations than predicted by the model and
the agreement worsens as the viscosity ratio is increased.
This observation is further elucidated by fig. 10 which ex-
hibits the variation in the proportionality constant, D, in

X2 = DT. (19)

The proportionality constant obtained from numerical ex-
periments nearly coincides for the leading edge. Moreover,

the proportionality constant D, corresponding to the trail-
ing edge in simulations also concurs with the leading edge
curve. The 1D model systematically overpredicts the dis-
placement of the trailing edge as the viscosity ratio, µBT ,
is increased.

It is curious that the simulation data indicate that
the leading edge travels according to the lubrication
model prediction but not the trailing edge. In order to
understand the discrepancy, the assumptions underlying
eq. (17) must be reassessed. We propose a plausible expla-
nation based on the presence of a layer of the more viscous
fluid adjacent to the wall as shown in fig. 7(b). This wall
layer contradicts the key assumption of the model [47] that
the interface height h(X,T ) is a single-valued function at
any given X location. As a consequence of the shape of
the interface, the assumed velocity profile is also not ac-
curate. The velocity profiles scaled by the local maximum
velocity, umax, from the lubrication model and the LB sim-
ulation for the same value of h are compared in fig. 10(b).
The figure reveals that the simulation velocity profile in
the upper fluid is definitely different from that assumed by
the model. Since the two velocity profiles are significantly
different, the expression of the volume flux for a given
pressure gradient (and thus interface gradient) evolves dif-
ferently than in the case where the layer is absent. On the
other hand, the wall layer is much thinner at the leading
edge to have any significant effect on the spreading rate.
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Fig. 11. (a) Snapshots of a gravity current in experiments at
an interval of 5 seconds in 8 × 8 mm2 cell. (b) Comparison of
the leading ( ) and trailing ( ) edge displacements ob-
tained from the lubrication model (thin lines) and experiments
(thick lines) in a quasi 2D cell. H = 3 mm and spanwise depth
50 mm, µBT ≈ 100.

The wall layer is thinner plausibly because the strain rate
is very high in order to maintain shear stress continuity at
the interface with the more viscous fluid, thereby prevent-
ing any significant accumulation of the less viscous fluid.
Thus the displacement rate of the leading edge predicted
by the model is accurate but not of the trailing edge.

3.2 Experiments

In order to ascertain the results of the LB simulations, we
studied, experimentally, the lock-exchange flow between
pure water and an aqueous solution of water-glycerine
mixture; the viscosity ratio of the two fluids was regulated
by adjusting the percentage weight of glycerine in water:
the viscosity ratio is then µBT = 100 ± 10 corresponding
to a density contrast ∆ρ = (225 ± 5)Kg m−3 at room
temperature. We use two rectangular cross section cells of
dimensions 8mm× 8mm and 3mm× 50mm respectively;
the square section one is used for the sake of visualisa-
tion: Figure 11(a) shows the evolution of a viscous gravity
current with a viscosity ratio, µBT ≈ 100. The qualitative
behavior is similar to those observed in our numerical sim-
ulations, for instance the nose at the leading edge is sharp
while that of the trailing edge is blunt. In addition, we
observe a wall layer adjacent to the top wall (marked by
the ellipse in the first snapshot of fig. 11(a)) which sub-
sequently initiates the Rayleigh-Taylor (RT) instability.
The fingers associated with the RT instability are clearly
visible in the second (marked by the ellipse) and the third
snapshot of fig. 11(a) behind the trailing edge. The large
aspect ratio cell of height, H = 3mm, has a large enough

Fig. 12. Three phases in the temporal evolution of a particle-
laden gravity current. (a) Concentration field in each phase.
(b) Displacement of the leading edge with time. The dashed
line corresponds to the slope of displacement curve of a gravity
current in the absence of sedimentation. ϕ0 = 0.25, H = 128,
u0 = 8 × 10−4.

spanwise depth (50mm) to be comparable to the LB sim-
ulations [48]: a quantitative comparison of the lubrication
model predictions and experimental spreading rates of the
leading and trailing edges is made in fig. 11(b). Similar to
the LB simulations we observe an initial transient in the
data from experiments. However, at long time the dis-
placement curves obey the law x2 = Dt. The slope of the
leading edge in the experiment was (0.35±0.05) cm2/s and
that for the trailing edge has a slope of, (0.4±0.05) cm2/s,
which is nearly equal to that of the leading edge. The lubri-
cation model predicts a leading edge diffusion coefficient
(0.3± 0.05) cm2/s, which is in reasonable agreement with
the experimental value. Hence we conclude that the ob-
servations of the LB simulation are concordant with the
experiments and that the lubrication model overpredicts
the spreading rate of the trailing edge.

4 Suspension gravity currents

4.1 LB Simulations

The previous section demonstrated that the viscosity of a
suspension alone affects the gravity current significantly
by altering the shape of the interface and modifying the
characteristic velocity of spreading of the gravity current.
In the presence of sedimentation, two additional fronts
are created due to the settling and deposition of particles
and thus the shape of the interface differs significantly
from those in the previous section. Figure 12(a) presents
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Fig. 13. (a) Reduction in the displacement of the leading edge versus time with increase in sedimentation velocities. (b) Increase
in the displacement of the trailing edge versus time with increase in sedimentation velocities. ϕ0 = 0.3, H = 128. u0 = 0
( • ); u0 = 1.0 × 10−4 (. . . .�. . . .); u0 = 4.0 × 10−4 ( ⋄ ); u0 = 6.0 × 10−4 ( . ▽ . );
u0 = 8.0 × 10−4 ( △ ); u0 = 1.0 × 10−3 ( ).

the evolution of the concentration field when a suspen-
sion is released into the suspending clear fluid. There are
two competing physical phenomena occurring simultane-
ously, a laterally spreading gravity current and a hori-
zontal shock front due to the settling of particles which
descends vertically as shown in fig. 12(a). As a result of
this competition we observe three distinct phases in the
spreading process. At short time, the settling front of par-
ticles is yet to be formed and the interface appears iden-
tical to a gravity current between pure fluids (Henceforth
we shall refer to such currents as pure gravity currents).
During the subsequent phase the particle settling front
descends while the gravity current spreads, and therefore
the characteristic height of the gravity current reduces
thereby reducing the spreading rate compared to the pre-
vious phase. This phenomenon is elucidated by fig. 12(b)
which shows the change in slope of the leading edge dis-
placement curve compared to that of a gravity current in
the absence of sedimentation. In the final stage, the lead-
ing edge nearly comes to a halt while the settling front at
the top and the sediment layer continue to approach one
another.

Since the extent of spreading depends on the time-
scale of sedimentation, we investigated the effect of Stokes
velocity on the displacement characteristics. In practice,
such a numerical experiment is akin to increasing the par-
ticle size in a suspension keeping the volume fraction con-
stant. In fig. 13(a) we observe that during the first phase,
the effect of sedimentation is minimal and the leading edge
travels like a pure gravity current for all the cases. As the
sedimentation velocity increases the displacement curve
departs from the pure gravity current marginally earlier
in time, indicating that the duration of the first phase
also reduces slightly. Increasing the Stokes velocity cur-
tails the displacement in the second phase and the time of
transition to the third regime reduces significantly. At low
u0 the transition between the three phases is gradual and
becomes increasingly sharp as the sedimentation velocity
increases.

It is instructive to consider the behaviour of the trail-
ing edge, which we define as the streamwise location where
the interface height is 0.95 its maximum value. The trail-
ing edge also departs from the pure gravity current and
the instant of departure is hastened with an increase in u0

as shown in fig. 13(b). The displacement velocity of the
trailing edge increases with u0, which is contrary to the
effect of sedimentation on the leading edge. The enhance-
ment in the front velocity of the trailing edge is due to
the formation of a greater amount of clear fluid which is
lighter and less viscous. As a consequence the trailing edge
also travels faster with increment in the Stokes velocity.

The displacement of the leading and trailing edges de-
pends not only on u0 but also on the initial concentration
of particles which governs the rate at which the settling
front and the sediment layer approach each other. Fig-
ures 14(a) and (b) compare the spreading rates for the
leading and trailing edges respectively for different values
of ϕ0. The results are plotted in physical coordinates since
the non-dimensional coordinates (X,T ) depend on ϕ0 and
hence mask the true behaviour of the gravity current. At
this point, we recall that an increase in the particle con-
centration leads to reduced settling velocity of the shock
front at the top. Hence the amount of clear fluid generated
will also be less and therefore the rate of displacement of
the trailing edge should slow down as ϕ0 increases. This
prediction is confirmed by fig. 14(b).

Figure 14(a) reveals that the displacement of the lead-
ing edge does not follow a monotonic trend like the trailing
edge. During the first regime itself, the displacement is re-
duced significantly as ϕ0 increases. However during the
second phase we observe that the distance to which the
leading edge spreads initially increases with the particle
concentration and then reduces. Furthermore, the time of
transition from the second to the third regime also in-
creases initially and finally drops sharply. These obser-
vations are more evident in fig. 15(a) which shows the
stoppage time, ts, that is time of transition from phase II
to phase III and the distance traversed by the leading
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Fig. 14. (a) Leading edge and (b) trailing edge displacements at various particle concentrations. u0 = 0.001, H = 128. ϕ0 = 0.1
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Fig. 15. (a) Stoppage time (ts) and (b) stoppage distance xs as a function of initial concentration ϕ0, u0 = 0.001, H = 128.

edge, xs when t = ts. The underlying cause of the non-
monotonic behaviour of ts and xs is not obvious and there-
fore we attempt to obtain a better insight into this process
by deriving a simple model based on the lubrication ap-
proximation in the following subsection.

4.2 1D lubrication model

In order to derive a model which captures the underlying
physics, we assume that the flow domain can be divided
into three regions of homogeneous concentration: the clear
fluid, the suspension and the sediment layers. Separating
these layers are two interfaces: one between the clear fluid
and the suspension at a height h from the bottom and
another marking the edge of the sediment layer, denoted
here by hs as shown in fig. 1. This view is supported by our
numerical simulations as can be seen in fig. 12(a). Hence
we can write the following concentration profile,

ϕ(x, y, z, t) = 0; y > h(x, t),

ϕ(x, y, z, t) = ϕ0; hs(x, t) < y < h(x, t),

ϕ(x, y, z, t) = ϕs; y < hs(x, t). (20)

The assumption of a three layered profile is strictly valid
for an initial condition with homogeneous concentration,
ϕ0. The assumption might seem to constrain the applica-
bility of the model, but inhomogeneities in the initial con-
centration field are rapidly removed by “small-scale mix-
ing motion” which occur immediately after the settling
process commences [35]. Thus a uniform initial concentra-
tion field is a close approximation to a physical initial con-
dition. It should be noted that the model derived in this
section is valid only in the first and second phases. The
spreading of a gravity current in the final phase will re-
quire the knowledge of the precise rheology of the suspen-
sion and is beyond the scope of this article. We intend to
derive an equation governing the evolution of these fronts,
for which we consider the particle transport equation (4)
in the absence of hydrodynamic diffusion

∂ϕ

∂t
+

∂

∂x
(uϕ) +

∂

∂y
(vϕ + V ϕ) = 0. (21)

The effect of diffusion can be ignored, as long as the
time-scale of hydrodynamic diffusion, H2/D0, is much
larger than that of sedimentation, H/u0, thus yielding
the criterion, u0H/D0 ≫ 1. Integrating eq. (21) across
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Fig. 16. (a) Velocity profiles at different locations at t = 2 × 105. All the velocity profiles have been scaled up by a factor 103.
ϕ0 = 0.25 and u0 = 8× 10−4, H = 128. (b) Pressure distribution at t = 2× 105. The sediment layer is marked by the solid line
(hs, ) and the top interface by the dashed line (h, ).

the interface, y = h, we have

∫ h+

h−

∂ϕ

∂t
dy +

∫ h+

h−

∂

∂x
(uϕ)dy +

∫ h+

h−

∂

∂y
(vϕ+V ϕ)dy = 0.

(22)
Using Leibniz’s rule we arrive at

∂h

∂t
+ u(h)

∂h

∂x
− (v(h) + V(ϕ0)) = 0, (23)

where V(ϕ0) is given by eq. (12). Similarly we can write
an evolution equation for hs,

∂hs

∂t
+ u(hs)

∂hs

∂x
− (v(hs) + V(ϕs)) = 0. (24)

Subtracting eq. (24) from eq. (23) we have,

∂

∂t
(h − hs) + u(h)

∂h

∂x
− u(hs)

∂hs

∂x
− v(h) + v(hs)

︸ ︷︷ ︸

T1

=

V(ϕ0) − V(ϕs). (25)

In order to evaluate, the term T1 we integrate the conti-
nuity equation 1 from hs to h

∫ h

hs

∂u

∂x
dy +

∫ h

hs

∂v

∂y
dy = 0

⇒
∂q

∂x
= u(h)

∂h

∂x
− u(hs)

∂hs

∂x
− v(h) + v(hs), (26)

where q(h−hs, µBT ) ≡
∫ h

hs
udy. In order to derive the flux

function, we assume that wall boundary conditions are ap-
plicable at y = hs. Such an assumption can be justified
based on the fact, that the sediment layer is extremely
viscous and therefore spreads on a time-scale much larger
than the suspension (or has yielded in which case it does
not flow). The sediment layer is also assumed to be com-
pacted enough to prevent any vertical penetration We
can verify that applying a no-slip condition is justified
at the edge of the sediment layer from fig. 16(a) which
shows the velocity profiles at different locations obtained
from our numerical simulations. Thus the expression for

flux q(h − hs, µBT ) reduces to the expression (18) in this
case (see appendix A for more details). Substituting (26)
into (23) leads to

∂

∂t
(h − hs) +

∂

∂x
q(h − hs, µBT ) = V(ϕ0) − V(ϕs). (27)

It must be noted that, the source term in eq. (27) depends
on the Stokes velocity, u0 as can be seen from eq. (12)
which in turn depends on eq. (5). Furthermore, in deriv-
ing the flux function, we assumed that the lubrication ap-
proximation is valid. The velocity profiles obtained from
our numerical simulation shown in fig. 16(a) appear to be
a solution to the momentum equations under the lubrica-
tion approximation. In addition, the pressure distribution
shown in fig. 16(b) reveals that the local pressure field is
varying linearly inside in each layer in accordance with the
lubrication approximation.

Defining non-dimensional coordinates, h̃ ≡ (h−hs)/H,

τ ≡ |V(ϕ0)−V(ϕs)|t
H and ξ≡ x

H

√
|V(ϕ0)−V(ϕs)|H

D′
, where D′ =

(ρp−ρf )ϕ0gH3

3μT
leads to

∂h̃

∂τ
+

∂

∂ξ

(

f(h̃, µBT )
∂h̃

∂ξ

)

= −1. (28)

In addition we need to impose, two boundary conditions

lim
ξ→−∞

∂h̃

∂ξ
(ξ, τ) = 0; (29)

h̃(ξ, τ) ≥ 0. (30)

The first boundary condition (29) ensures that the sedi-
mentation front remains flat as ξ → −∞, while the weak
condition (30) implies that the height of the sediment
never exceeds that of the suspension. It is instructive to
consider the physical implications of the scaling ξ, which
appears somewhat complicated. A closer examination re-

veals that the pre-factor, |V(ϕ0)−V(ϕs)|H
D′

is the ratio of two

time scales: the time-scale, H2/D′, decides the rate of lat-
eral spreading whereas the quantity, H/|V(ϕ0)−V(ϕs)| is
the time required for the two interfaces h and hs to meet
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Fig. 17. Evolution of the interface with time computed from (a) 1D model (b) LB simulation for ϕ0 = 0.4, u0 = 10−3, H = 128.
The thick curve corresponds to the initial condition and the rest correspond to different instants of time, 0.02 time units apart.

and hence it decides when the process of sedimentation ar-
rests. Therefore the pre-factor, indicates the displacement
of the gravity current over the settling period of the sus-
pension. It is quite noteworthy that eq. (28) has quite the
same form as in the pure gravity current equation (17)
except for sink term in the right hand side which takes
into account the “loss” by sedimentation of particles con-
tributing to gravity current.

The numerical solution of eq. (28), presented in
fig. 17(a) reveals that the evolution of the interface be-
tween the suspension and the clear fluid is qualitatively
similar to the numerical simulations in fig. 17(b) for the
same parameters. The displacement of the trailing edge in-
creases with time and that of the leading edge reduces. We
also notice that the 1D lubrication model spreads faster
initially than the LB simulations. This discrepancy arises
because the streamwise extent of the gravity current is
not much larger than the characteristic height and there-
fore the lubrication approximation is not valid. However,
the agreement improves at the leading edge as time in-
creases and the predicted stopping locations are in rea-
sonably good agreement. The flat settling front on the
left descends faster in the 1D model compared to the sim-
ulations. The cause of this incongruity is the reduced as-
cent velocity of the sediment layer, as was pointed out in
fig. 3(b).

It should be noted that there exists a unique curve in
our model for a given initial concentration, ϕ0 and it is
invariant with respect to the Stokes settling velocity u0,
which affects the shock front velocities, |V(ϕ0) − V(ϕs)|
through eq. (12). In order to confirm this assertion we
plot the displacement of the leading edge, ξl, for different
u0 in the non-dimensional coordinates ξ, τ in fig. 18(a).
Indeed all the curves for leading edge displacement col-
lapse in the first two phases of spreading for different u0.
Figure 18(b) demonstrates that the ξl predicted by the 1D
lubrication model is in agreement with the data obtained
from the 2D LB simulations for various concentrations.
The displacement of the leading edge reduces significantly

with increasing initial concentration due to the increment
in the viscosity of the suspension.

The stoppage time, τs, computed from the model is
compared to the data from numerical simulations over a
range of initial concentrations in fig. 19(a). We observe
that there is reasonable agreement between the two curves.
The stoppage time is governed by the balance of two vol-
ume fluxes: First the horizontal flux driven by buoyancy
which increases the height of the suspension over a cer-
tain length of the current. Second, the flux lost due to
sedimentation which reduces the height of the suspension
over the entire length of the current. Therefore, there is
a location where the the two fluxes cancel each other out
and the rate of change of the height of the suspension is
instantaneously zero (∂h̃/∂t = 0). When the leading edge

and the location where ∂h̃/∂t = 0, coincide the current
is arrested. This implies that the increase in height due
to buoyancy is no longer sufficient to overcome the loss
due to settling of particles. From fig. 19(a) we note that
τs ≈ 0.25 and nearly constant over most of the range of
concentrations investigated, indicating that

ts ≈ 0.25
H

|V(ϕ0) − V(ϕs)|

⇒ ts ≈ 0.25
ϕs − ϕ0

ϕs(1 − ϕ0)5
. (31)

We re-examine fig. 15(a) in light of the expression (31). At
low concentrations, ts tends towards a constant, since the
sediment layer velocity is negligible and the stopping time
depends solely on the settling velocity of the shock front
at the top. At concentrations ϕ0 → ϕs the suspension is
close to the packing fraction and therefore the sediment
layer rises very quickly as shown in fig. 3(b). Thus we
find that ts → 0 in this limit. In the intermediate range
t̃s increases initially as the settling velocity of the shock
front at the top decreases while the sediment layer velocity
is nearly constant. However for ϕ0 > 0.45, the function
reduces drastically due to the steep rise in the velocity of
the sediment layer.
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Fig. 18. (a) Comparison of the displacement of the leading edge for various Stokes velocity. 2D LB simulations: u0 = 2.0×10−4

( ); u0 = 4.0×10−4 ( . ); u0 = 6.0×10−4 ( ); u0 = 8.0×10−4 (. . . .); u0 = 1.0×10−3 ( ). 1D lubrication model
( ) ϕ0 = 0.4, H = 128. (b) Comparison of the displacement of the leading edge for various particle concentrations: ϕ0 = 0.2
( ), ϕ0 = 0.3 (. . . .), ϕ0 = 0.4 ( ). 1D lubrication model (thin lines), 2D LB simulations (thick lines) u0 = 4.0 × 10−4,
H = 128.
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Fig. 19. Comparison of the stoppage time τs (a) and location ξs (b) from 1D lubrication model ( ) with LB simulations
( ). u0 = 0.001, H = 128 for the LB simulations.

Figure 19(b) compares the stoppage distance ξs ob-
tained from the LB simulations to the 1D lubrication
model and the two match closely. In concordance with
fig. 18(b) we see that ξs reduces as the concentration in-
creases. The particle concentration affects the displace-
ment in three ways: increases gravitational body force,
alters the sedimentation velocity and increases the viscos-
ity of the suspension. However, the non-dimensional plot
fig. 19(b) already accounts for increasing gravity, and we
also noticed that the stopping time, τs is nearly constant
over the range of ϕ0 considered. Therefore, the decrease in
displacement in these coordinates can only be attributed
to the increasing viscosity of the suspension. We revisit
fig. 15(b) and discuss the observed behaviour of xs in
terms of the insight gained from the 1D lubrication model.
In the limit ϕ0 → 0, the density difference is negligible and
hence the gravity current barely spreads. Whereas when
ϕ0 → ϕs, the suspension is nearly packed and behaves
like a granular medium which resists spreading unless the
driving force exceeds a certain minimum, implying that
xs → 0. Furthermore, the stopping time, ts, also reduces
as we approach the limits ϕ0 → 0 or ϕ0 → ϕs and thus
limits the extent of spreading. Therefore a maxima can
be expected in the intermediate range where the density

difference is sizable, the viscosity ratio is not too large and
the stopping time is close to its maximum. Indeed, such
a peak exists for ϕ0 ≈ 0.3, as demonstrated by the LB
simulations in fig. 15(b).

4.3 Experiments

In order to verify the predictions of the 1D lubrication
model and the observations in our Lattice-Boltzmann
simulations, we conducted experiments on particle-laden
gravity currents. The experiments were performed in a
rectangular cell of height H = 20mm and depth e =
2mm; with such an aspect ratio, we are likely to be un-
der the so-called Hele-Shaw cell regime [50], in which case
it turns out that the diffusion coefficient of the gravity
current can be obtained by replacing [48] H3 by e2H.
Moreover, recent experiments [48] have demonstrated the
lubrication model for the 2D problem can indeed predict
the spreading rate of gravity currents in rectangular cells
by multiplying the diffusion coefficient D with a prefactor
f(e/H). The prefactor f(e/H) is determined theoretically
by accounting for the boundary effects of the side walls
and was substantiated by experiments [48].
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Fig. 20. (a) Schematic of the experimental setup. Snapshots
(b) and the displacement of the leading edge at t = 3 s,
t = 27 s and t = 177 s (from top to bottom respectively)
(c) of a particle-laden gravity current in experiments showing
the three phases of spreading. The gray dashed line denotes
the slope corresponding to a pure gravity current. ϕ0 ≈ 0.4,
uf = 0.0058mm/s, u0 = 0.11 mm/s, H = 20 mm, ρp − ρf =
1300 kg/m3, ρf = 2500 kg/m3, µf = 27 mPa s.

We used glass beads as suspended particles of which
95% were in the range of 63–74µm and have a density
of 2500 kg/m3 approximately. The fluid in which particles
were suspended was an aqueous glycerine solution with
71% glycerine by weight. The suspending fluid had a den-
sity of (1185±5) kg/m3 and a viscosity (27±5)m Pa s at
room temperature; hence, ρs−ρf = (1300±20) kg/m3 and
the Stokes velocity, u0 = (0.11± 0.001)mm/s. In order to
achieve a well defined concentration, we use the sedimen-
tation cell in the configuration of a fluidized bed [38,40]:
the cell is held vertically with an upwards fluid flow uf bal-
ancing the downwards buoyancy (as sketched in fig. 20).
The desired concentration, ϕ0, is achieved by adjusting the
flow rate (uf ) of the fluidised bed; after sufficient time, a
homogeneous concentration field is achieved over the en-
tire bed which satisfies the constraint V (ϕ0) = (1−ϕ0)uf .
We then stop the flow and close both ends while keeping
the cell vertical, and thereafter the suspension starts to
settle with two fronts as shown in figs. 2 and 20(a). When

the top front reaches the middle of the cell, we rotate the
cell smoothly but rapidly by 90◦ to align it with the hori-
zontal. A suspension gravity current is now set up and we
record the temporal evolution.

Figure 20(b) shows the three phases of spreading of
the gravity current (ϕ0 ≈ 0.4). During the first phase,
the interface imitates a pure gravity current. However, we
find that there are particles suspended in the clear fluid
behind the trailing edge which is due to the side walls and
the incomplete formation of the shock front between the
suspension and the clear fluid. As time proceeds these sus-
pended particles are removed by sedimentation. The sec-
ond and the final phases are qualitatively similar to the
numerical simulations. A quantitative measure is provided
by fig. 20(c) which presents the three regimes of spread-
ing by considering the displacement of the leading edge.
A series of experiments were performed for different set-
tling velocities of particles which correspond to different
concentrations fixed by the fluid flow rate in the fluidized
bed configuration. It must be noted that the suspension
settling velocity decreases drastically as the concentration
increases (as shown by fig. 3(a)), and therefore higher set-
tling velocities correspond to lower concentrations. The
leading edge displacement is presented in fig. 21(a). We
observe that all the curves, except those for very high
concentrations, are linear initially which implies that the
spreading process is similar to pure gravity currents. Fig-
ure 21(b) shows that almost all the displacement curves
stop at τs ∈ [0.2, 0.3] when plotted in the non-dimensional
coordinates ξ, τ indicating that the 1D lubrication model
is applicable to the experimental results as well.

Finally, we present the stoppage time and location of
the gravity current in figs. 22(a) and (b) respectively; it is
worth noting that as we use the upward flow velocity uf

of the initial vertical fluidized bed as the control parame-
ter, the low concentration are on the right, and the ones
close to the packing fraction are on the left (a plot against
the tentative concentration is provided in the inset of each
figure). Both figures exhibit a maximum for intermediate
concentration which is in agreement with the above 1D
lubrication model. Moreover, the experiments allow us to
investigate the vicinity of the packing fraction; the last
point on fig. 22(a) and (b) corresponds, taking into ac-
count our accuracy, to ϕ0 = 0.54±0.02. An analysis of this
vicinity of the packing deserves an extensive experimental
study that we have postponed. The observed behaviour of
ts and xs are similar to that in our numerical simulations.

5 Conclusion

In this article, we analysed the lock-exchange problem for
a fixed volume of suspension during the viscous-buoyancy
phase. In order to study the dynamics of spreading, we de-
veloped a novel numerical method to model suspensions
based on laws of continuum mechanics, accounting for
hydrodynamic interactions which result from increasing
particle concentration. The validity of our approach was
demonstrated by reproducing the enhanced sedimentation
velocities observed in inclined settling chambers [44,51].
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Fig. 21. (a) Experimental displacement of the leading edge for various upwards fluid velocity, uf (mm/s), for the experimental
conditions of fig. 20. (b) Displacement of the leading edge in non-dimensional coordinates.
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Fig. 22. (a) Stoppage time as a function of the upward flow velocity uf of the initial vertical fluidized bed. (b) Variation in
stoppage location. The inset shows the variation with ϕ0 for both figures. The experimental conditions are identical to those of
fig. 20.

The simplified lock-exchange between two fluids of un-
equal viscosities was examined numerically, to understand
the effects of viscosity and gravitational body force on the
spreading rates in the absence of sedimentation. It was
found that the increasing the viscosity of the heavier fluid
decreased the lateral spreading rate despite the increase in
the body force. A comparison with the previous study [47]
revealed that the current theory predicts the displacement
of the leading edge fairly accurately but fails for the trail-
ing edge. We proposed a plausible argument explaining the
discrepancy, based on the presence of an additional layer
of the heavy fluid adjacent to the top wall. This conclu-
sion was further substantiated by our experiments, where
such a layer was indeed found to exist.

Our numerical investigation of suspension gravity cur-
rents, demonstrated a three phase spreading process, the
first being identical to lock-exchange between pure flu-
ids. During the second phase, sedimentation controlled
the spreading and the current decelerated faster than pure
gravity current until it nearly came to a halt. In the final
phase the sediment layer continued to flow at a relatively
much slower pace than the suspension. We found that only
two physical parameters, the particle size and the concen-
tration, affect the suspension gravity current. An increase
in the former keeping the concentration constant resulted

in reduction of the duration of the first two phases. The
effect of the latter was more complicated and a 1D lubrica-
tion model relying on the lubrication approximation was
developed to gain insight. The lubrication model indicated
that the extent of spreading depended on the time-scale of
sedimentation and lateral diffusion coefficient (Dg) of the
suspension current. This in turn implied that there exists
an initial concentration ϕ0 ≈ 0.3 at which the stoppage
distance was the maximum. This result is curiously simi-
lar to the previous experimental investigation on suspen-
sion gravity currents in the inertial-buoyancy regime [17].
We also conducted experiments in order to corroborate
the findings of our numerical investigation and the results
are in qualitative agreement. Future investigations will be
dedicated to the studying different non-symmetric parti-
tions [13], bidispersed suspensions [52] and evaluating the
influence of the Boussinesq approximation for the inertial
buoyancy currents [53,9].
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Appendix A. The flux function under

lubrication approximation

The derivation of the flux function described in this ap-
pendix is a special case of the derivation in appendix A.
of [47], nevertheless we have included it for the sake of
completeness. Under the lubrication approximation the
velocity profile, u(Y ), can be assumed to be parabolic in
each fluid, where Y ≡ (y−hs)/H. The associated pressure
field is hydrostatic in the y direction and its streamwise
gradient depends on height of interface, h̃ ≡ (h − hs)/H.
We can therefore write

uT =
1

2µT

dPT

dx
(Y − 1)(Y − aT ), (A.1)

uB =
1

2µB

dPB

dx
Y (Y − aB), (A.2)

where subscripts T,B refer to the clear fluid and sus-
pension respectively. It should be noted that the velocity
profiles (A.1), (A.2) already satisfy no-slip conditions at

Y = 1 and Y = 0 respectively. The unknowns,
dpT,B

dx , aT,B

are determined from the interfacial boundary conditions
and conservation of mass. At the suspension-clear fluid
interface, Y = h̃, continuity of velocity, tangential stress
and pressure are imposed,

uT − uB = 0, (A.3)

µT
duT

dy
− µT

duB

dy
= 0, (A.4)

dPT

dx
−

dPB

dx
= (ρp − ρf )ϕ0g

∂h̃

∂x
(A.5)

and local conservation of mass requires

qT + qB = 0, (A.6)

where qB ≡
∫ h̃

0
uBdY and qB ≡

∫ 1

h̃
uT dY . Solving eqs. (A.3)-

(A.6) we get

qT =
(ρp − ρf )ϕ0gH3

3µT
. . .

h̃3(1 − h̃)3(h̃(−1 + µBT ) − µBT )

(h̃4 − 2(−1 + h̃)h̃(2 + (−1 + h̃)h̃)µBT + (−1 + h̃)4µ2
BT )

×
∂h̃

∂x
.

The same derivation holds true for the flux function in
eq. (18) if we put hs = 0.
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19. F. Necker, C. Härtel, L. Kleiser, E. Meiburg, J. Fluid Mech.

545, 339 (2005).
20. M. Ungarish, An Introduction to Gravity Currents and In-

trusions (Chapman & Hall/CRC, 2009).
21. L. Rondon, O. Pouliquen, P. Aussillous, Phys. Fluids 23,

073301 (2011).
22. S. Mueller, E. Llewellin, H. Mader, Proc. R. Soc. A: Math.

Phys. Eng. Sci. 466, 1201 (2010).
23. G. Ovarlez, F. Bertrand, S. Rodts, J. Rheol. 50, 259

(2006).
24. J. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111

(1988).
25. P. Hoogerbrugge, J. Koelman, Europhys. Lett. 19, 155

(1992).
26. S. Chen, G. Doolen, Annu. Rev. Fluid Mech. 30, 329

(1998).
27. R. Glowinski, T. Pan, T. Hesla, D. Joseph, Int. J. Multi-

phase Flow 25, 755 (1999).
28. J. Richardson, W. Zaki, Chem. Eng. Sci. 3, 65 (1954).
29. G.J. Kynch, Trans. Faraday Soc. 48, 166 (1952).
30. W. Schneider, J. Fluid Mech. 120, 323 (1982).
31. S.H. Maron, P.E. Pierce, J. Colloid Sci. 11, 80 (1956).
32. J. Stickel, R. Powell, Annu. Rev. Fluid Mech. 37, 129

(2005).
33. A. Fall, F. Bertrand, G. Ovarlez, D. Bonn, Phys. Rev. Lett.

103, 178301 (2009).
34. F. Blanc, F. Peters, E. Lemaire, J. Rheol. 55, 835 (2011).
35. A. Acrivos, E. Herbolzheimer, J. Fluid Mech. 92, 435

(1979).
36. E. Guazzelli, J. Hinch, Annu. Rev. Fluid Mech. 43, 97

(2011).
37. J. Martin, N. Rakotomalala, D. Salin, Phys. Fluids 6, 3215

(1994).
38. J. Martin, N. Rakotomalala, D. Salin, Phys. Rev. Lett. 74,

1347 (1995).
39. J.C. Bacri, C. Frenois, M. Hoyos, R. Perzynski, N. Rako-

tomalala, D. Salin, Europhys. Lett. 2, 123 (1986).



Page 18 of 18 Eur. Phys. J. E (2013) 36: 85

40. J. Martin, N. Rakotomalala, D. Salin, Phys. Fluids 7, 2510
(1995).

41. I. Ginzburg, F. Verhaeghe, D. d’Humières, Commun. Com-
put. Phys. 3, 427 (2008).

42. I. Ginzburg, D. d’Humières, A. Kuzmin, J. Stat. Phys.
139, 1090 (2010).

43. G. Whitham, Linear and Nonlinear Waves (John Wiley &
Sons, 1999).

44. A.E. Boycott, Nature 104, 532 (1920).
45. E. Ponder, Q. J. Expt. Physiol. 15, 235 (1925).
46. H. Nakamura, K. Kuroda, Keijo J. Med. 8, 235 (1937).

47. S.M. Taghavi, T. Seon, D.M. Martinez, I.A. Frigaard, J.
Fluid Mech. 639, 1 (2009).

48. J. Martin, N. Rakotomalala, L. Talon, D. Salin, J. Fluid
Mech. 673, 132 (2011).

49. H. Huppert, J. Fluid Mech. 121, 43 (1982).
50. J. Zeng, Y.C. Yortsos, D. Salin, Phys. Fluids 15, 3829

(2003).
51. A. Acrivos, E. Herbolzheimer, J. Fluid Mech. 92, 435

(1979).
52. M. Hoyos, J.C. Bacri, J. Martin, D. Salin, Phys. Fluids 6,

3809 (1994).
53. V.K. Birman, J.E. Martin, E. Meiburg, J. Fluid Mech.

537, 125 (2005).


