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Abstract – Using lattice Boltzmann simulations, we analyze the different regimes of propagation
of an autocatalytic reaction front in heterogenous porous media. The heterogeneities of the porous
medium are characterized by the standard deviation of its log-normal distribution of permeability
and its correlation length. We focus on the situation where chemical reaction and flow field act in
opposite directions. In agreement with previous experiments we observe upstream, downstream
fronts as well as static, frozen ones over a range of flow velocity which depends drastically on the
heterogeneities of the flow field. The transition between the static regime and the downstream
one account for large enough low-velocity zones, whereas the transition from static to upstream
regime is found to be given by a kind of percolation path.

editor’s  choice Copyright c© EPLA, 2013

Introduction. – Reactive front propagations are rele-
vant to a wide range of dynamical systems such as
population balance [1,2], chemical reactions [3], plasma
physics [4], epidemics [5], and chemotaxis [6] to mention a
few of them. The dynamics of autocatalytic chemical reac-
tions in stagnant fluids is now well understood [1–3]: the
front propagates at a constant velocity Vχ with a width lχ
resulting from a balance between molecular diffusion and
reaction rate. In the present paper, we are interested in
third-order autocatalytic reactions which can be described
by an advection-reaction-diffusion equation for the concen-
tration c of the reactants,

∂c

∂t
+ ��.(c �U) =D0∆c+αc2(1− c), (1)

where the mixed second-third order kinetics corresponds
to the iodate-arsenous acid reaction used in the corre-
sponding experiments [3,7,8]; D0 is the molecular diffusion

coefficient, α the reaction rate and �U is the flow velocity. In
the absence of flow, the front thickness reaches a constant
finite value lχ =

√
2D0/α and a chemical wave velocity

Vχ =
√
D0α/2.

Such propagation in simple flows has been addressed
recently [7,9]. In more complex situations from the
point of view of either the chemistry [10,11] or the flow
field [8,12–14], it has been reported that when the flow

is opposing the chemical front, frozen, i.e., static, fronts
can be observed not only for a particular flow intensity,
but also over a wide range of flow intensity values. Those
frozen states have been observed experimentally but
not fully understood. Hereby, we analyse those states in
the light of numerical simulations and a model porous
medium which offer the main advantage of controllability
of the velocity field. We analyze the different regimes
of propagation of an autocatalytic reaction front in
heterogenous porous media. We model these hetero-
geneities, using a log-normal distribution of permeability
(i.e., flow resistance) of standard deviation, σ and corre-
lation length, λ [15,16]. These two parameters control the
heterogeneities of the flow field in the porous medium,
another important parameter is of course the adverse flow
intensity U wich must be compared to the reaction which
propagates at the velocity Vχ. We will demonstrate later
that the chemical length lχ is also a relevant parameter.
In the simulations we do observe behaviors analogous to
those in the experiments [8,14], the front propagating
upstream, downstream and especially the static state
over a wide range of U . We analyze the dependence of
the range of static fronts with σ and λ. These “frozen
states” can be understood as the consequence of the flow
field heterogeneities. An algorithm, based on percolation
theory, is developed to predict the boundaries of this
static regime in the parameter space.
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Fig. 1: Stochastically generated permeability field.

Porous medium and chemical numerical simu-
lations. – Figure 1 shows a typical permeability field
used in our simulations [16]. The heterogeneous porous
medium was stochastically generated with a permeability
field distribution following a correlated log-normal distrib-
ution [17]. Therefore, the probability distribution function
(PDF) of the permeability logarithm, f = ln(K) reads as
follows:

PDF(f)∝ exp
(
− (f − f0)

2

2σ2f

)
, (2)

f̂ f̂∗(�k) =
2σ2f
πk20
exp

(
−2 |k|

2

k20

)
, (3)

where .̂ refers to the Fourier transform and .∗ the complex
conjugate. The heterogeneities of the porous media are
characterized by the harmonic mean permeability K0 =
exp(f0), the standard deviation σf and the correlation
length λ= π/k0. A pressure gradient, applied along the
x-direction, generates a flow field of mean velocity U . The
chemical reaction is initiated (t= 0) at a location x0 with
reactants on the left and products on the right. The flow
field and the reaction diffusion equation were solved using
the lattice Boltzmann method (for general references, see
[18–20], for reaction diffusion systems [21–23]). The
methods have been succesfully applied for flow in
heterogeneous porous media and reactive transport
(e.g., [16,24–27]). The simulations are performed in two
steps: First, we solve the flow transport by solving the
Darcy-Brinkman equation. Once the flow has reached
its steady state, the chemical reaction propagation is
then simulated. In the following we analyze the case of
flow adverse to the chemical reaction; we normalize all
the velocities by the chemical wave velocity Vχ and the
lengths by lχ; as U is negative compared to Vχ, we use
u=−U/Vχ as the flow intensity control parameter. In the
simulations, it is observed that the reaction front travels
at a constant velocity, Vf , either downstream, upstream
or remains static depending on u; hence vf = Vf/Vχ is
either negative, null or positive, respectively. We also
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Fig. 2: (Colour on-line) Front velocity vf = Vf/Vχ vs. average
flow velocity u=−U/Vχ revealing the different regimes: U and
D correspond, respectively, to a regime of front propagation
upstream and downstream, whereas the plateau corresponds to
static, i.e., frozen, fronts (F ). σ= 0.5 and lχ/λ= 0.126. σ= 0.5
and lχ/λ= 0.126. The bottom figures shows the evolution
of the reaction front every 20000 time steps in each regime
(corresponding to the encircled points from left to right in the
same order).

note that a resolution check has been performed, which
leads to an error smaller than ten percent.

Results. – Figure 2 shows the variation of the reaction
front velocity vf vs. the mean adverse flow velocity u
for σ= 0.5 and lχ/λ= 0.126. We observe three different
regimes: For low velocities (regime U), the front travels
upstream, that is in the same direction as that of the chem-
ical reaction (vf > 0). For a range of velocities (regime F ),
the front becomes static (vf = 0) : this the “frozen state”
plateau mentioned before. At higher velocities (regime D),
the front travels downstream (vf < 0). These regimes, as
well as the typical front shapes (fig. 2), are in agreement
with the experiments [8]. Interestingly, the static regime
also displays the very characteristic “V-shaped” structure
observed in experiments [8]. The agreement between
experiments and our model porous medium reveals that
introducing heterogeneities allows one to reproduce the
static “frozen states” plateau observed experimentally,
even though the velocity distribution and correlation are
different. One of the goals of this paper is to understand
the occurrence of the static state and the plateau’s extent.
Figure 3 presents the variation of vf vs. u with each of the
two control parameters of the heterogeneities, lχ/λ and σ,
while keeping the other one constant. Figure 3(a) shows
that increasing lχ/λ while keeping σ constant reduces the
plateau width; moreover, this reduction occurs mainly
on the side of the F ↔D (FD) transition, whereas
the U ↔ F (UF ) transition corresponds always to the
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Fig. 3: Variation of the width of the plateau region as a function
of the two heterogeneity parameters, lχ/λ and σ. (a) vf vs. u
for different lχ/λ keeping σ= 0.5 constant. (b) vf vs. u for
different σ keeping lχ/λ= 0.126 constant.

same u value. Keeping lχ/λ constant and increasing the
amplitude of heterogeneities (i.e., σ, fig. 3(b)), increases
significantly the width of the plateau region. The FD
transition is clearly more affected while the UF transi-
tion remains unaffected. As σ tends to zero, that is a
homogeneous porous medium, the plateau region vanishes
and the velocity variation tends towards the linear law,
vf ≈ 1−u, (Vf =U +Vχ) which is the expected behavior
for a homogenous flow field leading to a simple Galilean
sum rule [7,9]; in this case the front is static only for a
single flow value (u= 1). To summarize these features,
fig. 4 represents the phase diagram of the different regimes
as a function of the two heterogeneity parameters, lχ/λ
and σ.

Discussion. – In order to account for zero-velocity
fronts in porous media, refs. [10,11] emphasize the influ-
ence of “excited stagnant pockets” that would act as
point source accounting for pinning the front spatially.
This assertion needs, however, to be completed: in our
numerical porous medium, we do observe static fronts
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Fig. 4: Diagram of the observed regimes (U , F , D). The circles
corresponds to observation of frozen fronts (F : vf = 0) , hence
the vertical give the u variation of the frozen state plateau.
(a) u vs. lχ/λ at constant σ= 0.5. (b) u vs. σ for lχ/λ= 0.126.
The thin dashed lines correspond to the first rough estimate of
the FD transition using eq. (4), whereas the thick solid bold
lines correspond to a more refined one (eq. (5)). The bottom
bold, almost straight, lines in both figures correspond to the
percolation like prediction of the UF transition (see text).

although we do not have any stagnant zones. In addi-
tion, this mechanism did not explain why, for sufficiently
large velocities, the front is pushed back again. Indeed the
phenomenon has only been observed previously for differ-
ent complex chemical reaction in combined cellular flow
and mean flow [13] where stagnation points are scarce.
Such a plateau was observed recently experimentally in
packed beads [8,14]. As we do not have stagnation points
but only low-velocity zones to account for the plateau,
we display in fig. 5 the velocity fields and front shapes
for different regimes. To identify the low-velocity zones,
we have drawn in white the iso-velocity contours corre-
sponding to U(x, y) =−Vχ. From top to bottom (D to
U regimes), u decreases and the number and the exten-
sion of white lines increase. Let us first address the FD
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transition. It is likely that the main difference between
regime D and regime F (the two top figures of fig. 5) is
the presence of numerous white spots in the frozen regime
where locally the mean flow is lower than the chemical
velocity. We observe that the front gets pinned in these
zones. Inside these spots the catalysis concentration has
reached unity and act as a source point or zone for its
neighbors. This can also explain the V-shape structure
(fig. 2) which is the solution of the source point inside an
uniform adverse flow [8].
These observation lead to a first estimate of the

transition velocity uFD between frozen and downstream
regimes,

min(U(x, y)) =−Vχ. (4)

In other words, the transition occurs when the chemical
velocity becomes smaller than the global minimum of the
velocity field. This criterion has been plotted on the phase
diagram in fig. 4 as the thin dashed line which indeed is
a larger bound that over predicts the transition and does
not account for the effect of lχ/λ. The relevance of this
latter ratio can be addressed in the context of eikonal [28]
and mixing regimes [9,29]. In the mixing regime, the front
width is much larger than the characteristic length scale of
the flow which in this problem is the correlation length of
the permeability field λ; in this case the chemical front is
sensitive to the average velocity over the distance lχ and
therefore feels the average velocity field U and behaves
like in the homogeneous medium leading to the above
disappearance of the plateau. In the opposite case, the so-
called eikonal (thin-front) regime, the front width is much
smaller than any length scale in the system and, therefore,
is sensitive to local velocities. Indeed, in our simulation we
are in between these two regimes but the global trend is
in agreement with the above discussion (decreasing lχ/λ
leads to a shorter plateau); therefore, the finite width
lχ has to be taken into account in the pinning criteria.
We can expect that the lower-velocity zones influence the
dynamics of the front when they have a sufficiently large
extension: in fig. 5(b), we note that the front has passed
through low-velocity zones before being pinned. Following
the determination of the contours of all the low-velocity
zones, we compute the width lFD of each of them, and
retain those with a large enough size:

lFD � 9lχ, (5)

where the numerical factor (9) is an ad hoc coefficient
that best fits the transition. The corresponding criterion is
represented in fig. 4 (thick dashed line) and shows reason-
able agreement for the variations of both parameters.
Increasing σ or increasing λ/lχ naturally increase the

probability to pin the front. Even if the variation with the
disorder of the transition velocity U ↔ F is not very large,
figs. 5(c), (d) give some insight into the physical mecha-
nism at work. As u is decreased, the number and the size
of weak-velocity zones increase. In these regions, where

Fig. 5: (Colour on-line) In grey scale, velocity field. White
lines correspond to the velocity iso-contours U(x, y) =−Vχ,
where U(x, y) is the local velocity. From top to bottom:
(a) downstream regime (D, u= 4); (b) frozen regime (F , u= 3)
close to the FD transition; (c) frozen regime (F , u= 1.5) but
close to the UF transition; and (d) upstream regime (U , u=
0.8). Fluid is flowing from left to right, whereas the chemical
wave in the absence of flow would propagate from right to left.
In each figure, the vertical, almost straight line corresponds
to the initial front position; the jagged lines correspond to
the frozen front for the F regime, and to its location in the
ultimate frame before the front leaves the medium at the right
(D regime) and at the left (U regime).
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the flow is weaker, the front can in principle propagate
upstream and then stop only when it reaches the left-end
side of these zones. Consequently, we can reasonably think
that one condition for the front to travel upstream is that
it found a path connecting the initial front position to the
left-end side of the system where the flow is weaker than
the chemical reaction. This is reminiscent of percolation-
like approaches. Therefore, the UF transition is likely to
be determined by a path criterion which is found using
the min-max algorithm described by [30]. For all the
paths C connecting the left-end side of the domain to
the initial position of the front, we compute the maximal
velocity. At the transition, the chemical velocity Vχ has
then to be equal to the minimum of those maxima.,

Uperc =minC
( max
(x,y)∈C

U(x, y)).

For directed percolation, this velocity can be determied
reccurently. We can describe briefly the sequences used for
this determination. It consists of introducing a matrix Ci,j
defined as the minimum of the maximal velocity found on
all pathes connecting the first column to point (i, j):

1) Initialize the first column of the matrix, C1,j which
consists of the velocity field at the inlet (i, j corre-
spond to the x, y coordinates, respectively).

2) At the next downstream location, (i), we find
Cmin(i, j)≡min{Ci,j−1, Ci,j , Ci,j+1} for all (j).

3) Then we assign Ci+1,j =max{Cmin(i, j), ui+1,j}.
4) Repeat steps 2 and 3 until the other side of the
domain opposite to the inlet is reached.

5) uperc =min{C(Nx, [1, 2, 3 . . . Ny])} where Nx, Ny are
the number of points in the x, y direction, respec-
tively.

The percolation path is then found by following the reverse
algorithm. Figure 6 shows the percolation path corre-
sponding to the percolation velocity for the velocity field
corresponding to fig. 1. Using the aforementioned algo-
rithm we compute Uperc and compare it to the observed
UF transition for various values of lχ and σ in figs. 4(a),
(b) marked by the bottom solid bold lines. The percolation
velocity gives an accurate estimate of the critical velocity
for the transition from the upstream regime to the frozen
regime, even though the variations with either parame-
ter is small; since the percolation threshold on a regu-
lar lattice is close to 1/2, the percolation velocity satisfies∫ uc
−∞ PDF(u) du� 1/2. It is thus expected that the crit-
ical chemical velocity would be close to the mean flow
velocity if the probability distribution were symmetrical.
Moreover, we expect that the amplitude of the hetero-
geneities and their correlation have very little influence
on the critical velocity which is confirmed by fig. 4. One
should however recall that our flow velocity field has a
log-normal distribution and has anisotropy, which could
explain that percolation is occurring for u> 1 and is sensi-
tive to σ.

Fig. 6: (Colour on-line) Percolation path. White and
black regions correspond, respectively, to U(x, y)<uc and
U(x, y)>uc.

One notes in fig. 6 that, close to percolation, higher-
velocity regions are also percolating to the right-end side.
The front is however propagating upstream because of the
autocatalytic process. Wherever the reaction manages to
propagate upstream, it acts as a source of catalysis from
that point and can then excite neighbouring area. The
upstream propagation has therefore an ascendent on the
downstream one. In addition, one can note that the front
is going upstream slightly before percolation. This can be
explained also by the autocatalytic process: due to the
fact that an “excited” low-velocity cluster can excite other
neighboring clusters that might span further upstream.
Non-percolating clusters might then be excited further
and further upstream. Note that the finite width of the
chemical front, in which case, a cluster can excite the
other if the distance between the two is smaller than the
chemical length.

Conclusions. – Using lattice Bolzmann simulations,
we have modeled and analyzed the different regimes of
propagation of an autocatalytic reaction front in heteroge-
nous porous media when chemical reaction and flow
field act in opposite directions. In agreement with previ-
ous experiments on a packed-beads porous medium, we
observe upstream, downstream fronts as well as static,
frozen ones over a range of flow velocity which depends
drastically on the heterogeneities of the flow field. The
transition between the static regime and the downstream
one is due the presence of large enough low-velocity zones,
whereas the transition from the static to the upstream
regime is found to be given by a kind of percolation path.
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