
The Fate of Shear-Oscillated Amorphous Solids

Chen Liu,1 Ezequiel E. Ferrero,2 Eduardo A. Jagla,3 Kirsten Martens,4 Alberto Rosso,5 and Laurent Talon6

1Laboratoire de Physique de l’Ecole Normale Supérieure, Paris, France
2Instituto de Nanociencia y Nanotecnoloǵıa, CNEA–CONICET,
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The behavior of shear-oscillated amorphous materials is studied using a coarse-grained model.
Samples are prepared at different degrees of annealing and then subject to athermal and quasistatic
oscillatory deformations at various fixed amplitudes. The steady-state reached after several oscil-
lations is fully determined by the initial preparation and the oscillation amplitude, as seen from
stroboscopic stress and energy measurements. Under small oscillations, poorly annealed materials
display shear-annealing, while ultra-stabilized materials are insensitive to them. Yet, beyond a criti-
cal oscillation amplitude, both kind of materials display a discontinuous transition to the same mixed
state composed by a fluid shear-band embedded in a marginal solid. Quantitative relations between
uniform shear and the steady-state reached with this protocol are established. The transient regime
characterizing the growth and the motion of the shear band is also studied.

Amorphous solids are a vast class of materials, com-
mon in nature and ubiquitous for human applications.
Their mechanical behaviour is strongly affected by the
preparation protocol: poorly annealed materials, such
as emulsions, foams or gels, are soft and ductile, while
well annealed materials such as metallic glasses, ceram-
ics and silica are hard and brittle[1, 2]. Under a uni-
form deformation, the former tend to melt into a liq-
uid, while the latter fail with a sharp stress-drop and the
appearance of a thin liquid shear-band[3–5]. Although
we tend to distinguish between these two kind of yield-
ing, a debate is open: ductile materials could also dis-
play stress overshoots[5–8]. Beyond finite-size issues[6–
8], dealing only with transient states does not help to
settle the discussion. This is where an oscillatory defor-
mation protocol[9–18] becomes handy, since it opens the
possibility of characterizing a transition in terms of sta-
tionary states. In molecular dynamics (MD) simulations,
two different “phases” have been identified: For moder-
ate strain amplitudes Γ, the material appears solid and
is progressively annealed[10, 11, 15–17] as oscillation cy-
cles accumulate. Above a critical amplitude Γc, further
shear-annealing is prevented and a shear-band coexists
with a solid[10, 11, 16, 17, 19]. Despite a rapidly growing
literature[9–27], basic questions remain to be addressed:
(i) the nature of the transition at Γc, (ii) the relation be-
tween steady-states in the two protocols (oscillatory and
uniform shear), and (iii) how those states are reached.

To answer these questions, in this Letter we use a
coarse-grained approach, which goes beyond natural lim-
itations of MD simulations. We find that the transition
from solid to flow at Γc is discontinuous. We quantita-
tively relate properties of the emerging phases in oscil-
latory shear with those of the uniform-deformation pro-
tocol. Moreover, we describe transient stages previously
unexplored. To do that, we prepare samples at differ-

ent degrees of annealing, characterized by the initial en-
ergy Einit per unit volume, and subject them to oscil-
latory deformations at various fixed amplitudes Γ until
steady-states are reached. We find that once a driv-
ing condition (Einit,Γ) is chosen, it univocally defines
the material’s fate in the steady-state; allowing us to
fill a sort of phase diagram. Very well-annealed samples
(Einit<E

∗, with E∗ a critical annealing level) are insen-
sitive to small oscillations, while poorly-annealed sam-
ples (Einit>E

∗) exhibit shear-annealing for large enough
sub-critical Γ. We therefore distinguish between stable
solids, that keep memory of their initial condition, and
marginal solids which result from poorly-annealed sam-
ples loosing memory of their initial conditions due to the
shear-annealing by oscillations. Yet, when the oscillation
amplitude reaches the critical threshold Γc(Einit), every
sample undergoes a discontinuous transition, comprising
a jump in stress and energy, towards the same mixed
solid-fluid state. Part of the system melt in a shear-band
while the rest becomes a critical solid of energy E∗, inde-
pendently on the initial condition. The fluid in the band
corresponds to the one of the stationary state at large
uniform quasi-static shear and holds at most the uni-
form yield stress Σy. As Γ is further increased, the width
of the shear-band scales as a power of (Γ− Σy/G), with
G the effective shear-modulus, further relating uniform
and oscillatory protocols. Also, a rich transient dynam-
ics towards the steady-state above Γc is unveiled. We
show a band-width growth as a function of the number
of oscillation cycles that is reminiscent of critical domain
coarsening. Surprisingly, once the band reaches its sta-
ble width it ballistically sweeps out the deeply-annealed
regions, if present, turning them in the critical solid of
energy E∗, and finally displays an (anomalous) diffusion.
Overall, our Letter offers answers to fresh issues raised
by MD simulations of glasses.
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Figure 1. Stationary properties– (a) Symbols: Maximum stress Σ(Γ) versus the oscillatory strain amplitude Γ. Curves: Stress-
strain produced by quasi-static uniform shear. Different colors code for different degrees of initial annealing, signaled in (b).
System size is 1282. (b) Stress-free steady energy Estat

sf versus the Γ. The purple dashed-line corresponds to “marginal solids”.
The orange solid line displays a fit of Estat

sf (Γ) discussed in the text. (c) “Phase diagram” classifying driving conditions (Einit,Γ)
according to the steady-state they will reach: stable solids (strongly reminiscent of the initial state), marginal solids (shear-
annealed solids independent of the initial condition), and solid-liquid mixtures characterized by an erratic shear-band. Color
circles indicate Γc for different initial degrees of annealing Einit.

Methods – Our modelling is based on the evolution
of a two-dimensional scalar strain field in a disordered
potential, previously used to study yielding under uni-
form deformation[28–32]. Initial sample annealing is
achieved by tuning the configuration of the disordered
landscape (lower initial energies Einit for better annealed
systems). Within this picture, the strain field behaves as
a manifold propagating in a disorder medium[29, 30, 33].
Two essential ingredients are incorporated: the quadru-
ple Eshelby’s elastic interaction[2, 34] and a disorder that
rather than originating in quenched impurities mimics
the random positions of particles. The local disorder
changes irreversibly, even if the strain manifold revisits
the same location. Details of our method are presented
in the Supplemental Material (SM)[35].

Results – In view of their relevance in interpreting the
shear oscillation results, we first reproduce some key fea-
tures in uniform shear. In Fig.1(a) we show stress-strain
curves for individual samples prepared at different de-
grees of annealing Einit (see also SM[35]). After an ini-
tial linear elastic response of slope G ≈ 0.91, all samples
reach at large strain γ & 3 a common plateau corre-
sponding to the yield stress Σy = 0.375 ± 0.003. The
characteristic strain γy where plasticity becomes impor-
tant is estimated as γy = Σy/G ' 0.413. Poorly an-
nealed materials display a monotonic crossover from an
elastic solid to a liquid crossing γy, while well annealed
systems remain elastic above γy up to a failure strain γf
where a sharp stress downfall occurs. The overshoot gets
larger for better annealed samples[3–5, 8]. In general,
the total energy per volume of the material can be de-
composed into two contributions: Etot = Esf + Σ2/(4µ),
where the second contribution is due to macroscopic elas-
tic deformation (with µ = 1/2 the shear modulus) and
Esf, called ‘stress-free energy’ afterward, characterizes
the state of the material with zero macroscopic stress. In
the large uniform shear limit γ → ∞, where the mem-
ory of the initial state is completely erased, all samples

converge to a homogeneous stationary liquid state with
Estat
sf = −0.122± 0.001 ≡ Eliq (see SM[35] for details).

Now, in our oscillatory protocol, the material is de-
formed by quasi-statically varying the strain from 0 to
Γ, then to −Γ and subsequently back to 0 to complete
one cycle of amplitude Γ. This cycle is repeated until
a steady-state is reached. By varying Γ and Einit, we
obtain an assortment of stationary states. Figure 1(a)
shows the steady-state maximum stress[10, 15, 19] Σ(Γ)
as a function of Γ in comparison with uniform-shear
load curves. Consistent with MD results, all samples
exhibit a sharp jump of Σ(Γ) at a critical strain am-
plitude Γc(Einit). The moderately annealed samples
(Einit = −0.095, −0.12 and −0.149) fail at the same
Γc ≈ 0.4725 ≡ Γ∗, independently on the initial de-
gree of annealing; while the more annealed samples
(Einit = −0.168 and −0.199) experience a later failure at
Γc(Einit) ≈ γf(Einit) > Γ∗, stronger as better annealed
is the sample. Once above Γc, the steady-state stress
Σ(Γ > Γc) for any initial state, is well identified with Σy
of a stationary flowing state in the quasi-static uniform
shear deformation. Figure 1(b) displays the stationary
stress-free energy Estat

sf as a function of Γ [36]. For very
small Γ, the stationary state Estat

sf strongly depends on
Einit. Increasing Γ within the solid phase (Γ < Γc), two
scenarios separated by a critical annealing E∗ ≈ −0.16
are observed. Samples with Einit < E∗ keep a perfect
memory of their initial states up to melting, evidenced
by Estat

sf (Γ) = Einit for all Γ < Γc(Einit) [15, 25]. Yet, for
Einit > E∗ the phenomenology is richer: Increasing Γ, at
some point, the stationary-state Estat

sf starts to decrease
with the amplitude, loosing memory of the initial con-
dition. This is a manifestation of shear-annealing in the
steady-state, as similarly observed in[10, 15, 25–27]. No-
tice that, for initially weakly annealed systems, there ex-
ist also a transient process of shear-annealing (described
later on), where samples reach a lower-energy steady-
state by oscillating at a fixed Γ. Estat

sf for Einit > E∗
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Figure 2. Energy profiles averaged along the y-axis for dif-
ferent Γ. x = 0 is set to the maximum location. Left inset:
map of strain field during a half-cycle in the steady-state.
Right inset: profiles collapse using ws(Γ) = a(Γ − Γ0)α with
Γ0 = γy = 0.413 and α = 1/2.

ends up collapsing to a common curve (purple dashed
line in Fig. 1(b)), where the initial condition becomes ir-
relevant and Estat

sf depends only on Γ. We call “marginal
solids” the stationary states lying on the purple dashed
line, which terminates at Γ∗ at the critical energy E∗.
Once Γ > Γc(Einit), both Σ(Γ) and Estat

sf (Γ) fall onto a
unique curve, independent on Einit. The system devel-
ops a permanent liquid shear-band embedded in a solid
phase, and the steady-state energy Estat

sf increases with
Γ (Fig. 1(b)), see also[15, 19, 26]. From the previous
discussion, we can associate to each Einit an amplitude
Γa(Einit) above which the steady-state Estat

sf (Γ, Einit) is
independent on the initial annealing Einit.

As summarized in a diagram Fig.1(c), Γa(Einit)
(dashed line) identifies with Γc(Einit) (solid line) below
E∗, and bifurcates above it. The solid steady-states
resulting from driving conditions below Γa(Einit) are
strongly reminiscent of the initial state and called “sta-
ble solids”. In contrast, those driving conditions in be-
tween Γc and Γa correspond to solids that forget their
initial condition and end up being “marginal solids” in
the steady-state. Driving conditions in the region above
Γc(Einit) lead to a steady-state mixed phase composed
by a fluid shear band surrounded by a critical marginal
solid, which we detail in the following.

Fig. 2 shows the averaged stress-free energy profile
across a section orthogonal to the shear-band (evidenced
in the strain field in the left-inset). The energy pro-
file characterizes the band by a bell-shape. The inte-
rior of the band (top of the bell) has the same energy
as the stationary liquid in uniform shear deformation
Eliq ≈ −0.122. The width ws of the band increases
with Γ and is well fitted by ws(Γ) = a(Γ − Γ0)α. A
good collapse is found when rescaling the profiles with
α = 1/2 (right-inset of Fig. 2), reminiscent of the tran-
sient band dynamics in uniform shear[37]. We further
notice two peculiarities: First, from the fit, Γ0 identifies
with γy instead of Γ∗, implying that at the transition,

the shear-band has a finite width ws(Γ
∗) > 0 (because

γy < Γ∗). Second, the energy profile is independent on
Einit and the energy at the bottom of the bell-shape co-
incides with the critical solid energy E∗. This allows
to conclude that the mixture phase is completely inde-
pendent on the initial degree of annealing and uniquely
characterized by the width ws: the stationary regime is
composed of a fraction of critical solid at energy E∗ and
a shear-band made of the liquid of energy Eliq. Since
Eliq > E∗, the monotonic growth of Estat

sf (Fig. 1(b))
can be rationalized in terms of the shear-band widen-
ing with Γ: Estat

sf ' E∗ + (Eliq − E∗)
a(Γ−γy)α

L . This is
tested in Fig. 1(b). It also implies that a discontinuity
of Estat

sf at the transition Γc = Γ∗, even though small,
is expected[10, 15, 25–27]. In addition, we observed that
ws is proportional to the linear system size, as also seen
in the fact that Estat

sf shows no size dependence [35].

We now discuss the transient oscillatory dynamics.
Figs.3(a-b) show the evolution of Esf(n), as the oscil-
lation cycles n accumulate, for different driving condi-
tions (Einit,Γ). Below Γc (Fig.3(a)), ultra-stable sys-
tems (Einit < E∗) are unperturbed by the oscillations,
while systems with Einit > E∗ shear-anneals if the am-
plitude is large enough. At amplitudes above Γa(Einit)
all initial conditions are shear-annealed to the same sta-
tionary state, as observed for our three softest samples
in Fig. 3(a). Above Γc (Fig.3(b)), all samples go to the
same stationary state at large n. Our observations for
the number nT of cycles to reach steady-states are com-
patible with a divergence when approaching Γc reported
in previous works[10, 13, 14, 16, 19]. Data for (Γ < Γc)
is shown in SM[35]. We switch now to the observation of
different dynamical regimes for the mixed phase. For
poorly annealed samples, the onset of the shear-band
and its stabilization in a stationary width ws(Γ) occurs
gradually and rapidly as the solid region shear-anneals
to the critical state in a small number of cycles. Then
the shear band diffuses in the material (see Fig. 4(a) and
Video 1[35]) with a mobility that increases with Γ. In
well annealed systems instead, the transient is richer and
we identify three dynamical regimes (Fig. 4(b), see also
Video 2[35]): (i) Shear band formation and growth. The
initial band growth is observed at the top of Fig. 4(b)
(see [35] for details). This initial coarsening of the shear-
band is studied in Fig. 3(c) at different Γ. In all cases,
the band width grows as ∼ n1/3 until reaching the sta-
tionary width ws ∼ (Γ− γy)1/2. (ii) Melting of the solid.
The now fully-formed shear band displays a ballistic mo-
tion preferentially invading the deeply annealed solid and
leaving behind the critical solid of energy E∗. (iii) Shear
band diffusion. When the shear-band has visited the en-
tire system, all the regions outside the band have been
modified into the critical marginal solid. The stationary
state is reached and the band diffuses forever, maintain-
ing its characteristic Γ-dependent width.

Discussion – Our mesoscopic model allows to recover
the phenomenology of the oscillatory shear of amorphous
materials reported by MD simulations[3, 10, 15, 25, 27]
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Figure 3. Transient properties– (a-b) Evolution of stress-free energy Esf as the number of cycles n increases, for different
amplitudes. Colors coding for different Einit are the same as in Fig.1. System size is 1282. (a) Solid phase (Γ < Γc). (b) Mixed
phase (Γ > Γc). Inset in (b) shows a zoom-in to appreciate the difference in Estat

sf for different Γ.(c) Shear-band width w as a
function of n for different Γ. The initial condition is a well annealed solid (Einit = −0.168). The inset shows raw-data and the

main panel the scaling w(Γ − γy)−1/2 vs. n(Γ − γy)1/2. The red dashed line is a power-law ∼ n1/3. System size is 2562.

and go beyond. While some emerging features can be al-
ready captured by even further simplified toy models as
seen recently[13], keeping an spatial extent for the system
and its geometry gives access to the full picture. We are
able to univocally classify the oscillatory stationary states
according to a “phase diagram” in the space of oscillation
amplitude Γ and initial annealing level Einit, and relate
them with the steady-states of the uniform-deformation
protocol. Interestingly, the oscillatory protocol always
shows a discontinuous transition in both stress and en-
ergy at a critical strain amplitude Γc, even in the case of
ductile materials that melt homogeneously under uniform
deformation. Notably, ductile materials mechanically an-
neal and harden at sub-critical amplitudes under oscilla-
tory shear. Independently on the initial state, every sys-
tem sheared at large amplitudes ends up in a steady-state
displaying a permanent shear-band. This band contains
a stationary fluid identical to the one obtained at large
uniform deformations and is embedded in a solid matrix

Figure 4. Energy profiles Eprofile(x) evolving as function of
the number n of oscillation cycles for Γ = 0.7. Light col-
ors represent higher energies and evidence the position of
the shear-band. (a) A poorly annealed sample with Einit ≈
−0.12.(b) Well annealed sample with Einit ≈ −0.199. The
red dashed-line in (b) indicates the stabilization of the band
width at n ≈ 220. When the blue dashed-line is reached, the
band has visited the entire system.

which is not at all arbitrary. The solid surrounding the
shear-band in this mixed phase is the critical marginal
solid that has the energy of the critical annealing level
E∗. A line of amnesia Γa(Einit) discriminate driving con-
ditions (Einit, Γ) between stable solids and solids that
shear-anneal and evolve towards a marginal line in the
steady-state. Our approach gives also transparent access
to the transient regimes of shear-band formation, growth
and motion. For deeply-annealed samples, a small but
finite width band first spreads the system, then grows
with a power-law ∝ n1/3 of the number of oscillation cy-
cles. Ulteriorly, the band invades ballistically the deeply-
annealed solid, leaving behind the critical solid of energy
E∗. Finally, is diffuses anomalously over all the system.

These results shed light to clarify some previous obser-
vations in the literature and open interesting directions of
new research. One could ask, for example, whether the
emergence of a transient state of multiple shear-bands
is possible in the large system limit, and how do they
merge in a single band in the steady-state (or not). Also,
to which extent the incorporation of “reversible” plastic
events observed in atomistic simulations[16–20, 23, 24]
enriches the overall phenomenology. Those are absent
in our present model by choice, but easy to include by
locally quenching the disordered potential [14]. Further,
the critical annealing E∗ detected in the oscillatory pro-
tocol could play also a relevant role in uniform shear,
where the ductile-brittle yielding transition is a matter
of vivid discussion[3, 5, 8]. It is indeed suggestive that
the load curve of our closest to E∗ sample sits near to
the apparent transition between ductile/brittle yielding
probed by the uniform shear curves. More importantly,
it will be interesting to test experimentally these predic-
tions, with new measurements closer to the quasi-static
limit, since in the standard setups the oscillations are rel-
atively fast and the material softens instead of annealing
and hardening. In general, we hope that our results will
motivate new research directions in the study of low tem-
perature amorphous materials, from realistic large-scale
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atomistic simulations to experiments.
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