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Autocatalytic reaction fronts between reacted and unreacted species may propagate as solitary
waves, that is, at a constant front velocity and with a stationary concentration profile, which result
from a balance between molecular diffusion and chemical reaction. A velocity field in the supporting
medium may affect the propagation of such fronts through different phenomena: advection,
diffusion enhancement, front shape changes, etc. Here, we report on an experimental study and
lattice Bhatnagar–Gross–Krook numerical simulations of the effect of an oscillating flow on the
autocatalytic reaction between iodate and arsenous acid in a Hele–Shaw cell. In the low frequency
range covered by the experiments, the front behavior is controlled by the flow across the gap and is
reproduced with two-dimensional numerical simulations. It is shown that the front velocity
oscillates at the frequency of the flow, whereas the front width oscillates at twice that frequency.
Moreover, the Taylor regime in the presence of a Poiseuille flow is fully investigated: The
description obtained in the case of a stationary flow provides an analytical prediction for the
sinusoidal flow. The range of parameters, for which the prediction applies, is delineated and
discussed. © 2008 American Institute of Physics. �DOI: 10.1063/1.2919804�

INTRODUCTION

Interface motion and reaction front propagation occur in
a number of different areas,1 including flame propagation in
combustion,2 population dynamics,3,4 and atmospheric chem-
istry �ozone hole�. An autocatalytic reaction front between
two reacting species propagates as a solitary wave, that is, at
a constant front velocity and with a stationary front profile.5,6

These issues were addressed earlier on, but only a few cases
are understood, such as the pioneering works of Fisher3 and
Kolmogorov et al.4 on a reaction-diffusion equation with a
second-order kinetics.1,7,8 Although the effect of an underly-
ing flow on a flame propagation has been extensively
analyzed,2,7 the effect of advection on the behavior of an
autocatalytic front has only recently been addressed.9–12 In
this case, the evolution of the concentration of each chemical
species is given by the advection-diffusion-reaction �ADR�
equation:

�C

�t
+ U� . �� C = Dm�C + �f�C� , �1�

where C is the normalized concentration of the �autocata-

lytic� reactant, U� is the flow velocity, Dm is the molecular
diffusion coefficient, and � is the reaction rate.

In the absence of flow �U� =0��, the balance between dif-
fusion and reaction leads to a solitary wave of constant ve-
locity V� and width l�. For the autocatalytic iodate-arsenous
acid �IAA� reaction studied here, the kinetics is of the third
order,1 f�C�=C2�1−C�, and the following one-dimensional
solution of Eq. �1� is obtained:1,6,13

C�z,t� =
1

1 + e�z−V�t�/l�
, l� =�2Dm

�
, V� =��Dm

2
, �2�

where z is the direction of the front propagation. We note that
propagating fronts with a stationary shape are also observed
for quadratic reactions, such as the chlorite-tetrathionate
reaction.14,15 Thus, the present study, which is devoted to the
IAA reaction, is expected to also apply to such higher order
reactions.

For a reaction propagating along the direction of a uni-

directional stationary flow U� , two regimes have been de-
scribed, depending on the ratio �=b / l�, where b is the typi-
cal length scale transverse to the flow direction.16–18 In the
eikonal regime, ��1, the front propagates as a planar wave,
at a velocity given by the sum of V� and of the algebraic

maximum �along V�
� � of the flow velocity profile, and takes

the according stationary form. In the mixing regime, ��1,
the interplay between diffusion and advection enhances the
mixing of the chemical species and leads to an overall mac-
roscopic diffusion known as the Taylor hydrodynamic
dispersion.19 The front propagation still obeys the same
equation �Eq. �1��, in which the local fluid velocity and the
molecular diffusion coefficient Dm have to be replaced by the
transverse-averaged velocity and the effective macroscopic
counterpart,18 respectively. As a result, the front velocity is
increased by either the mean advection velocity or the dis-
persion enhancement. The latter contribution, which brings
the difference between the “classical” mixing regime, de-
scribed in Ref. 16, and the Taylor regime, is usually negli-
gible compared to the advection contribution. However, this
Taylor regime has been tested and recovered, by numerical
simulations, for the specific case of a stationary unidirec-
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tional flow with a sine velocity profile, namely, in the ab-
sence of mean advection. Note that for intermediate values of
�, an analytical fit of the front velocity has been recently
proposed.20

The main idea of the present paper is to address the
effect of a pulsating flow on the front propagation. Recently,
Nolen and Xin12 studied the effect of a time and space peri-
odic flow on the front propagation velocity from a numerical
and analytical point of view. They found that, in the limit of
a weak flow velocity, the front velocity quadratically in-
creases with the maximum flow velocity. Here, we experi-
mentally focus on a more realistic flow where the mean
space flow velocity is not zero. It corresponds to the one
studied by Chatwin,21 Smith,22 and Watson23 without reac-
tion. They showed, by using a Taylor-like approach,19 that in
the tracer case, a pulsating flow results in an effective time
dependent diffusion coefficient, the time average of which is
larger than the molecular diffusion coefficient.23 In the same
spirit, we will focus on the time-averaged front velocity ob-
tained in the mixing regime, in the presence of an oscillating
flow, of period T. More precisely, we address the low fre-
quency regime and accordingly discuss the relevant time
scale, to which the time scale of the flow T has to be com-
pared.

We study, experimentally and numerically, a third-order
autocatalytic IAA reaction submitted to a pulsative flow. In
Sec. I, we present the experimental setup and the measure-
ments obtained in a Hele–Shaw �HS� cell by using various
frequencies and amplitudes of oscillations. In Sec. II, we
compare the experimental results with two-dimensional �2D�
numerical simulations involving an oscillating Poiseuille
flow. In Sec. III, we focus on the Taylor regime. First, we
delineate the Taylor regime in the case of a stationary Poi-
seuille profile.18,20 Then, we extend the results to the quasi-
static regime of an oscillating flow.

EXPERIMENTAL SETUP AND DATA

We use the third-order autocatalytic IAA reaction. The
reaction front is detected with starch, which leads to a dark
blue signature of the transient iodine as the reaction
occurs.1,6,13 In the absence of flow, a reaction front travels
similar to a solitary wave, with a constant velocity
V�

exp�20 �m /s and with a stationary concentration profile
of width l�

exp�100 �m in agreement with the theoretical one
�Eq. �2��. We study the front propagation in a HS cell of

cross section b�h=0.4�8 mm2 �along the x and y direc-
tions, respectively�. The unidirectional �along the z direction�
oscillating flow is imposed at the bottom of a vertical HS
cell, from a reservoir filled with unreacted species. The res-
ervoir is closed with a thin elastic membrane, which is de-
formed by a rigid rod fixed at the center of a loudspeaker.
Consequently, a displacement of a given volume of liquid in
the reservoir induces a displacement of the same volume of
liquid in the HS cell. The y-z plane of the HS cell is enlight-
ened from behind and recorded with a charge coupled device
camera. The amplitude A and the pulsation 	=2
 /T of the
oscillating flow are imposed by the controlled sine tension
applied to the loudspeaker and measured in situ from the
recorded displacement of the air/liquid interface at the top
of the partially filled HS cell. This displacement obeys the
expected A sin�	t� time dependence. Due to the constraint
of our device, the imposed amplitude A and frequency
f of the flow displacement are in the ranges of
A� �0.07 mm,1.7 mm� and f � �0.01 Hz,0.2 Hz�. The oscil-
lating flow field in the HS cell is of the form f�x ,y , t�. The
shape of the velocity profile depends on the viscous penetra-
tion length l�=�� /	.24 If l� is large compared to the cell
thickness b �low frequency�, the flow variations are slow
enough for the steady state to be established. The resulting
“oscillating stationary” velocity profile is parabolic in the
gap and flat along the width h of the cell except in the vicin-

x

y

z
b

O y=h/2 x=0

b h

FIG. 1. Sketch of the HS cell of thickness b and width h. Also shown are the
velocity profiles obtained at low frequency in the planes located at y=h /2
and at x=0.

FIG. 2. Time evolution of a chemical front �in y-z plane� in a pulsative flow
field of period T=50 s and velocity amplitude UM =69.1 �m /s. Time in-
creases from left to right and from top to bottom. Two images are separated
by T /4 time intervals. The distance between two dashes is 1 mm.
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ity of the side walls, in a layer of thickness b.25 Figure 1 is a
sketch of such an effect.

Conversely, for l��b �high frequency�, the fluid has not
enough time to feel the effects of the solid boundaries and
the velocity profile is flat over the whole cross section
b�h, except in the vicinity of the walls, in a layer of thick-
ness l�. For our dilute aqueous solutions of viscosity
��10−6 m2 s−1 and in our frequency range, the penetration
length l�, which lies between 0.8 and 4 mm, is larger than the
cell thickness b=0.4 mm. Hence, the “stationary velocity
profile” is expected to be instantaneously reached. It is para-
bolic, Poiseuille-like across the gap b, and almost flat along
the y direction �except in a layer of thickness b close to the
sides of the cell�. In our experiments, the flow velocity pro-
file can then be approximated by

U�x,t� = UM�1 −
4x2

b2 	cos�	t� , �3�

where UM =A	 is the velocity amplitude in the middle of the
gap �at x=0�. Figure 2 displays snapshots �in y-z plane� of a
typical experiment.

We do observe a front slightly deformed, which propa-
gates up and down �oscillating�, with a downward averaged
displacement from the burnt product of the reaction to the
fresh reactant. From such a frame sequence, the front is
tracked and its location is plotted as a function of time. Fig-
ure 3 shows the front position z�t� so obtained, its oscillation
at roughly the imposed frequency, and an overall drift of the
front for various amplitudes and periods of the flow.

The measurement of this drift in time leads to the time-
averaged front velocity 
Vf

exp�. Figure 4 displays 
Vf
exp�, nor-

malized by V�
exp, versus the flow velocity amplitude UM, also

normalized by V�
exp. The increase in 
Vf

exp� with UM is almost
linear, with a slope slightly larger than 0.1. This demon-
strates that the propagation velocity of a reaction front can be
enhanced by a null in average, laminar flow. Moreover, as

the mean advection in this time-periodic flow is zero, this
effect clearly comes from some nonlinear interplay. It might
be attributed to the enhancement of the mixing by the flow.

As mentioned above, it is seen from the instantaneous
displacement of the front that the front velocity oscillates at
the frequency of the flow. We also noticed from our obser-
vation of the experimental movies that the width of the col-
ored front L�t� was likely to oscillate at a frequency twice
that of the excitation, which, unfortunately, is not obvious on
the static pictures �such as Fig. 2�. To confirm this empirical
observation, we measured the width L�t� of the dark blue
ribbon. As this ribbon corresponds to the presence of the
transient iodine, L�t� is an indirect measure of the chemical
front width, but it gives, however, the right time behavior. A
classical Fourier analysis of L�t� was tried but due to the
large amount of noise, it did not provide any reliable fre-
quency dependence. Therefore, we used the more sensitive
micro-Doppler method �see Refs. 26 and 27, and the refer-
ences therein�, which analyzes the instantaneous signal fre-
quency. The so-obtained oscillation frequencies f� of the
width L�t� versus the imposed ones f are displayed in Fig. 5.

FIG. 3. Time evolution of the front position, z�t� �z in mm, t in s�, for
different values of the periods and velocity amplitudes corresponding to
�T, UM� �T in s and UM in �m /s�. �a� �25, 70.4�, �b� �50, 69.1�, �c� �12.5,
140.7�, and �d� �25, 138.2�.

FIG. 4. Normalized drift velocity of the chemical front 
Vf
exp� /V�

exp vs the
normalized flow velocity amplitude UM /V�

exp.

FIG. 5. Experimental oscillation frequency f� of the front width vs the
imposed oscillation frequency f of the flow �in Hz�. The straight line is
f�=2f .
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Their collapse onto the straight line f�=2f demonstrates that
the front width oscillates at twice the frequency of the flow.
We note that this feature could support the description of the
front thickness in the framework of an effective diffusion
coefficient D, since the latter is expected to be insensitive to
the flow direction and to depend only on the flow amplitude,
which follows D�U2 �which here oscillates at 2f�.8 We note
also that this feature might be attributed to the deformation
�in the gap� of the front by the flow, which could stretch the
front during the displacement either forwards or backwards.
To have further insight into the instantaneous features of the
propagating front, we used numerical simulations, which
give access to the behavior in the gap of the cell.

COMPARISON WITH 2D NUMERICAL SIMULATIONS

Assuming a third-order autocatalytic reaction kinetics
for the IAA reaction1,6,13 and a unidirectional flow U�x ,y , t�
in the z direction, the ADR equation �1� reads

�C

�t
+ U

�C

�z
= Dm� �2C

�x2 +
�2C

�z2 	 + �C2�1 − C� , �4�

where C is the concentration of the �autocatalytic� reactant
iodide, which is normalized by the initial concentration of
iodate, Dm is the molecular diffusion coefficient, and � is the
kinetic rate coefficient of the reaction. The solution of Eq. �4�
was generated by using a lattice Bhatnagar–Gross–Krook
�BGK� method. This method is described in detail in Ref. 28
and has already been used in similar contexts.17,25,29,30 Equa-
tion �4� was solved in two dimensions �in the gap of the cell,
x-z plane� by using the analytical Poiseuille velocity field
given by Eq. �3�, which holds in the low frequency regime,
T��=b2 /�.

To compare the results of the numerical simulations with
the experiments, we used the same nondimensional quanti-
ties, namely, UM /V�

exp and b / l�
exp=4. The simulations were

performed on a lattice of length Nz which ranges between
2000 and 6000 nodes, and of constant width Nx=40 nodes
during 2�105 to 4�106 iterations. The above experimental
value of b / l�

exp gives a numerical chemical length
l�=Nxl�

exp /b=10=�2Dm /�. We chose Dm=5�10−3 and
�=10−1, which set the front velocity to V�=��Dm /2=5
�10−4. The varying parameters in the simulations are the
velocity amplitude UM and the period T of the imposed os-
cillating flow.

A typical time sequence of a numerical simulation is
displayed in Fig. 6. It can be seen that the front oscillates and

travels from the burnt product to the fresh reactant. The
mean concentration profiles were obtained by averaging
across the lattice width and analyzed along the same line as
in the experiments. Figure 7 shows the time evolution of the

displacement of the isoconcentration C̄=0.5, which is mea-
sured in 2D simulations and in experiments: The agreement
between the two supports the contention that in our fre-
quency range, the dynamics of the front is governed only by
the variations of the velocity field in the gap �b=0.4 mm�,
and that the �large� transverse extent of the plane of the ex-
perimental cells �h=8 mm� plays no role.

STUDY OF THE LOW FREQUENCY TAYLOR’S
REGIME

By taking advantage of the flexibility of the numerical
simulations, we have investigated the low frequency mixing
regime and compared it to the corresponding regime that one
can extrapolate from the stationary flow cases.16–18,20 To ad-
dress Taylor’s mixing regime in slowly oscillating flows, we
will recall first the main expressions obtained for stationary
flows in the frame of Taylor’s description and study their
range of validity in the case of a Poiseuille flow.

We showed in Ref. 18 that, in the asymptotic mixing
regime, the extension lf of the transverse-averaged concen-

tration C̄ �defined by lf
2= �3 /
2��−�

+�z2�dC̄ /dz�dz� could be

expressed as lf =�2Deff /�, where Deff is the effective Taylor
diffusion coefficient, which reads, for the Poiseuille flow in
the gap of a HS cell, as

Deff

Dm
= 1 +

1

210
� Ūb

Dm
	2

= 1 +
2

945
� b

l�
	2�UM

V�
	2

, �5�

with Ū and UM =3Ū /2 as the average and the maximum of
the fluid velocity, respectively. In this regime, the front ve-
locity,

FIG. 6. 2D numerical simulation of the front displacement �in the gap of the
cell, x-z plane�, which is obtained with an imposed flow of period and
amplitude, T=106 and UM =2
�10−5. The product of the reaction is in gray
and the reactant is in dark. From top to bottom, time increases by 2�105

time steps. The lattice dimensions are 40�4000. Note that the aspect ratio
of the pictures is not 1.

FIG. 7. Time evolution of the front position, z�t� �z in mm, t in s�. –:
Experimental data and – –: numerical simulations. The experimental values
�T, UM� �T in s and UM in �m /s� are �a� �1.12, 100, 70.4�, �b� �0.55, 100,
34.6�, �c� �0.14, 25, 35.2�, and �d� �0.14, 12.5, 70.4�.
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Vf = Ū + ��Deff/2, �6�

is the sum of the advection by the mean flow and a relative
velocity ��Deff /2�V�, which accounts for the enhancement
of the dispersion caused by a nonuniform flow. We note that
the normalized relative front velocity depends on the normal-
ized flow velocity �=UM /V� and on the ratio �=b / l�, as
follows:

Vf − Ū

V�

=�Deff

Dm
=�1 +

2

945
����2. �7�

We first tested the validity of the above prediction with 2D
numerical simulations of the autocatalytic chemical reaction
in a Poiseuille flow. The molecular diffusion coefficient was
set to Dm=5�10−2 and two series of simulations were per-
formed, with the reaction rates �=10−3 and 4�10−3. This
provided front widths and velocities �l� ,V��= �31.6,0.0016�
and �15.8, 0.0032�. The mean flow rate Ū and the width b of
the lattice, were subsequently varied, to obtain the following
values �=UM /V�=0.75, 1.5, and 4.5 and a ratio �=b / l�

ranging between 0.4 and 15. Figure 8 displays the normal-
ized relative front velocity as a function of ��. At low val-
ues of ��, the data collapse onto the theoretical prediction
given by Eq. �7� but a discrepancy is observed when �� is
increased. We note that the departure from our model occurs
at �� values, which are different for each set of data.

The departure from Taylor’s mixing regime is expected
to occur when the typical diffusion time across the lattice
width, D=b2 /Dm, is not any more small compared to the
typical advection time by the flow, along the front width,

ad= l� / Ū. This condition writes D�ad, or equivalently,

��2 � 1. �8�

This analysis suggests that the combined parameter ��2

may be relevant to delineate Taylor’s mixing regime of au-
tocatalytic reaction fronts. Accordingly, we plotted in Fig. 9
the ratio R of the normalized relative front velocity to Tay-
lor’s mixing regime effect �right hand side of Eq. �7�� as a

function of ��2. Figure 9 shows that, whatever the values of
� or � are, the data collapse onto Taylor’s mixing regime
prediction R=1, for values of ��2 smaller than roughly 100,
and deviate within 4% of the latter regime, for � �2�200.
We note that in this range of small deviation from the pre-
diction, the deviation has the opposite sign of �: it is positive
for adverse flows and negative for supportive flows. This is
consistent with the contribution to the front velocity DmK of
the curvature K of a steady shape traveling front17 in the
eikonal regime. Indeed, the deformation by the flow of the
isoconcentration curves leads to opposite curvatures in ad-
verse or supportive flows.

It is of practical interest to note that Taylor’s mixing
regime prediction for the velocity of an autocatalytic reacting
front in a stationary flow, which holds for values of the pa-
rameter ��2 smaller than a few hundreds, will remain valid
for large fluid velocities in small-scale devices �as in micro-
fluidic systems�.

We now turn to analyze the influence of an oscillating
flow on the front velocity. Here, we are interested in the
approach toward the asymptotic Taylor’s mixing regime,
which is extrapolated from the stationary flow case.

This extrapolation is obtained by replacing in the effec-
tive diffusion coefficient expression �5� the maximum veloc-
ity UM by its instantaneous counterpart, UM cos�	t�. This
leads to the following time-averaged relative front velocity:


Vf − Ū�
V�

= ��Deff

Dm
� = ��1 +

2

945
����2cos2�	t�� .

�9�

We note that for the sine flow of interest, the mean ad-

vection is null, 
Ū�=0. Equation �9� gives then the normal-
ized time-averaged front velocity 
Vf� /V�. The latter is actu-
ally increased by the mixing of the flow �
Vf� /V��1�, by an
amount which depends on the product ��. Hence, the front
velocity increase depends on the intensity of the flow
�through �=UM /V�� but not on the flow period T. This last

FIG. 8. Normalized relative front velocity, �Vf − Ū� /V�, vs ��, where
�=UM /V� and �=b / l� are the Poiseuille flow and lattice parameters. The
symbols pertain to different values of �� , l��. �: �0.75, 15.8�, �: �0.75,
31.6�, �: �1.5, 15.8�, �: �1.5, 31.6�, �: �4.5, 15.8�, and �: �4.5, 31.6�. The
open symbols correspond to negative values of �. The line is the theoretical
prediction of Eq. �7�.

FIG. 9. Ratio of the normalized relative front velocity to the mixing regime

contribution, R= �Vf − Ū� /V��1+ �2 /945�����2, vs ��2. The symbols are
the same as in Fig. 8. The straight line is the theoretical prediction of
Eq. �7�.
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feature results from the quasistatic conditions, under which
the stationary case applies at each time: the variations are
slow enough for both the stationary flow field and the sta-
tionary chemical front shape to be established. Quantita-
tively, the quasistatic conditions require the flow period T to
be large compared to the typical diffusion time across the
width D and to the typical advection time along the front
width ad. We have tested the approach toward the quasistatic
prediction, with numerical simulations performed at b=19,
�=b / l�=1, and �=UM /V�=15, which correspond to
��=15 and ��2=15. The flow period T was varied from
T=104 to 20�104, and the typical diffusion times were cho-
sen equal to D=2.17�104, 2.84�104, or 6.50�104. The
inset of Fig. 10 displays the normalized time-averaged front
velocity, 
Vf� /V� as a function of the flow period T for dif-
ferent values of the typical diffusion time D. The quasistatic
prediction of Eq. �9� is displayed as a solid straight line in
Fig. 10. It is seen that when T is large enough compared to
D, the front velocity reaches the asymptotic value of Tay-
lor’s mixing regime. On the other hand, the smaller the flow
period is, the larger the deviation from that value is. It can
also be noticed that the discrepancy between the numerical
results and Taylor’s limit increases with D. This suggests to
normalize T by the corresponding D. Figure 10 shows the
resulting superposition of the data obtained at different D.
For the particular values ��=15 and ��2=15 used in the
present simulations, Taylor’s mixing regime is reached as
soon as T�2D. Also shown �dashed lines in Fig. 10� is the
average, over the period T, of the analytical expression of
Ref. 20, which is obtained by fitting the numerical simulation
results of the ADR equation �1� under stationary conditions.
We note that the latter analysis, which addressed a wide
range of intermediate � and finite �,20 slightly underesti-

mates the asymptotic front velocity in the Taylor regime
domain.

CONCLUSION

In this paper, we have analyzed the influence of a low
frequency time-periodic flow on the propagation of a third-
order autocatalytic reaction front in a HS cell. The numerical
simulations, which are in reasonable agreement with the ex-
periments, show that the front dynamics is controlled by the
Poiseuille flow in the gap of the cell. We have checked that
for a stationary Poiseuille flow, the front propagation can be
described by using a Taylor approach when the product of
the normalized flow velocity by the Thiele modulus ��2 does
not exceed some hundreds. This Taylor approach applies for
periodic flows in a quasistatic regime, which has been shown
to hold for flow periods T, which are lower than the charac-
teristic diffusion time across the front width. Under these
conditions, our Taylor mixing prediction is found to be in
accordance with the front velocities measured in the simula-
tions.
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