
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 89, 041004(R) (2014)

Strong pinning of propagation fronts in adverse flow
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Reaction fronts evolving in a porous medium exhibit a rich dynamical behavior. In the presence of an adverse
flow, experiments show that the front slows down and eventually gets pinned, displaying a particular sawtooth
shape. Extensive numerical simulations of the hydrodynamic equations confirm the experimental observations.
Here we propose a stylized model, predicting two possible outcomes of the experiments for large adverse flow:
either the front develops a sawtooth shape or it acquires a complicated structure with islands and overhangs.
A simple criterion allows one to distinguish between the two scenarios and its validity is reproduced by direct
hydrodynamical simulations. Our model gives a better understanding of the transition and is relevant in a variety
of domains, when the pinning regime is strong and only relies on a small number of sites.
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In the systems separated in distinct phases, the dynamics
is controlled by the behavior of the propagating fronts. Those
fronts pervade a broad variety of domains in physics, ranging
from chemotaxis [1] and plasma physics [2] to flame fronts [3]
or epidemics, therefore triggering much activity in their
modeling (for a recent review, see [4]). One of the cornerstones
in this field is the celebrated Fisher–Kolmogorov-Petrowsky-
Piscunov (FKPP) theory, describing the front propagation in
reaction-diffusion systems [5]. However, this approach was
limited to systems with no advection, i.e., not undergoing
any fluid flow, despite its physical importance. Coherent
fluidlike motion strongly impacts the dynamics of the fronts [6]
and remains a challenging problem, whether because of the
appearance of turbulence [7] or because of the influence of a
disordered media [8,9]. One natural disordered environment
for propagation fronts is a porous medium. Some examples
were investigated in the petroleum industry and aeronautics
with attempts to address the evolution of a flame front in a gas
filter [10,11]. Recently, experiments on self-sustained chemi-
cal reactions have allowed a fine and controlled examination
of the propagation fronts in a porous medium, revealing some
striking features by direct observation [12].

The experimental setup employs an autocatalytic reaction
invading a cell filled with a solution of reactants. To reproduce
porosity, the cell also contains a mixture of glass spheres of
different sizes. The reaction starts at the bottom of the cell
and, in the absence of advection flow, develops into an almost
flat front propagating upwards with constant chemical speed
|Vχ | = √

Dmα/2 and width �χ = Dm/|Vχ |, with Dm being
the molecular diffusion constant and α the reaction rate. In
the presence of an adverse flow injected from the top at speed
U , the porosity generates a fixed random velocity map of the
fluid with short range correlations of characteristic length �d .
A rich dynamical phase diagram is observed as a function of
the flow velocity U , which is the control parameter of the
experiment (see Fig. 1). In particular, the self-sustained fronts
can travel downstream along the flow (D), remain static over
a range of flow rate values (S), or move upstream (Up). In all
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of these phases, the heterogeneities make the front rough and
the dynamics proceeds by random jumps called avalanches
displaying a free scale statistics.

Here we focus on the transition between the static and
the downstream regimes, occurring at the threshold USD

(see Fig. 1). Hydrodynamical simulations show two different
scenarios: either the invading chemical reaction is completely
washed away for U > USD or some stagnant chemicals remain
trapped in the porous media for any U . In the first case,
approaching USD from below, the front is largely deformed
into a sawteeth structure (see Fig. 1, bottom right), while
in the second case, the interface adopts a very rough and
complicated structure with overhangs (see Fig. 1, bottom
left). Experiments typically correspond to the first scenario but
the second one has also been observed in very contaminated
cells [12].

In this Rapid Communication, we describe the front prop-
agation with a stylized model controlled by two parameters
that can be easily measured in experiments. This model gives
a simple criterion to discriminate between both scenarios,
depending only on the behavior of the disorder distribution
close to 0. The critical threshold USD and the shape of the
front can be characterized. Comparison with hydrodynamical
ab initio simulations using the Darcy equation shows a perfect
agreement with our results. Although our approach addresses
questions raised by the experiments of [12], the results of
this stylized model are much more general and relevant
to all systems where the transition between a static and a
moving regime is controlled by a small number of pinning
sites [13–16].

From first-principles hydrodynamics to a simple statistical
model. The flow field �U (�r) can be computed via the Darcy-
Brinkman equation:

�∇ · �U (�r) = 0, (1)

�U (�r) = −K(�r)

η
�∇P + K(�r)� �U, (2)

where P (�r) is the pressure field, η is the fluid viscosity, and
K(�r) is the local permeability. Due to the incompressibility,
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FIG. 1. (Color online) Average speed of the front Vf as a function
of the injection speed U (the convention chosen is U > 0 for a flow
from top to bottom of the cell). Depending on the sign of Vf , the
different regimes Up, S, and D are defined. For U = USD , we observe
a transition between a static front (Vf = 0) and a downstream front
(Vf > 0). Bottom part: Hydrodynamical simulations of the front, for
U ∼ USD and for different permeability distributions. Two scenarios
are observed: a regular sawtooth shape (right) or a complicated shape
with overhangs (left).

the mean fluid velocity is fixed to the injection rate U .
Once the hydrodynamic problem is solved, the concentration
of the chemicals C(�r,t) obeys an advection-diffusion equation
(see [17]):

∂C

∂t
+ �U · �∇C = Dm�C + αC2(1 − C). (3)

The effect of the disorder is incorporated in the permeability
K(�r), usually modeled as a random field, correlated over a
distance �d . Here we study the front geometry for different
permeability distributions: the log-normal distribution, often
employed to model permeability [18], and the distributions
belonging to the Weibull family of parameter δ. Figure 1
displays typical fronts for both log-normal distributed (bottom
left) and Weibull distributed (bottom right, with δ = 0.8)
permeability fields. Those are generated using a standard
method detailed in the Supplemental Material [19]. Both U (�r)
and C(�r,t) were solved using a lattice Boltzmann scheme
(see [20,21]). We ran the simulations on a square grid of size
L = 512, up to N = 2000 realizations.

In the experimental conditions �d � �χ , the front lays in
the so-called thin front eikonal limit [22,23]. In this limit, at
each point of the front, the normal component of the interface
velocity satisfies �Vf (�r) · �n = Vχ + �U (�r) · �n + Dmκ , where �n
is the unit normal vector and κ is the curvature of the front. For
U ∼ USD , �U (�r) is mainly directed along the y axis, �U (�r) ∼
[0,U (�r)]. It is natural to assume that U (�r) is constant on patches
of area �2

d and decorrelated between patches. The velocity of
each patch is an independent random variable of average U ,
distributed as

PU (U ) = 1

U
φ(U/U ), (4)

where the scaling function φ(v) is independent of U . When
U � USD , the front is pinned by the very few stagnant
sites where U (�r) < |Vχ |. Hence the distance �� between
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FIG. 2. (Color online) Sketch of the stylized model: in the thin
eikonal limit �d � �χ , the system can be described as a propagating
front. Close to USD , the density of stagnant regions becomes small
and the interface adopts a sawtooth structure.

them is much larger than �d . In the neighborhood of a
pinning site, the front has a sawtooth shape of angle θ

and the front displays a sawtoothlike structure (see Fig. 2).
θ can be computed observing that, in that regime, κ � 0,
Vf (�r) = 0, and U (�r) � U , and thus the eikonal equation
becomes [12]

Vχ + U sin(θ/2) = 0. (5)

Therefore, the geometry of the frozen fronts is completely
determined by the velocity-dependent angle θ and by the
positions of the pinning sites. In particular, the probability
that a given patch of area �2

d is a pinning site is

λ =
∫ |Vχ |

0
PU (U )dU =

∫ |Vχ |/U

0
φ(v)dv. (6)

For large downstream injection rate U � |Vχ |, the value of
λ is controlled only by the behavior of φ(v) for v close to
0. In [12], it was observed that the fluid velocity vanishes
near the wall. To mimic that fact, we always set the interface
pinned at the points �r = (0,0) and �r = (L,0). Therefore, if
no stagnant patch inside the cell pins the front, except at the
walls, the interface acquires a V shape that we call the depinned
state.

A central quantity for our analysis is Q(y), i.e., the
probability that, from y = 0 to y, no stagnant patch is
encountered. Q(y) obeys the differential equation,

Q(y + dy) = {
1 − λdy[L − 2 tan(θ/2)y]/�2

d

}
Q(y), (7)

because the probability that no pinning occurs between y and
y + dy is 1 − λdy[L − 2 tan(θ/2)y]/�2

d in an interval of size
L − 2 tan(θ/2) y. Hence,

Q(y) = e−λ[Ly−tan(θ/2)y2]/�2
d . (8)

This formula is valid up to yV = L
2 tan(θ/2) , the value above

which the front is in the depinned state. This quantity allows
one to introduce an efficient algorithm to generate the sites
pinning the front: Note ε as a random number uniformly
distributed in (0,1). If ε < Q(yV ), the algorithm terminates
with a V shape, while if ε > Q(yV ), the height of the first
pinning site is y1 = Q−1(ε) and its position x1 is chosen at
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FIG. 3. (Color online) Probability distribution of the velocity
threshold USD . The histogram corresponds to the hydrodynamical
simulations of N = 2000 samples with a log-normal permeability,
setting L = 512, Vχ = 0.0016, U = 0.0036, and �d = 5.0. The
dashed line corresponds to the prediction of the stylized model
[Eq. (9)] for a log normal φ(v) with a scale parameter σ =
0.315 (see main text). Inset: Sketch of the algorithmic recursive
procedure.

random in the segment of length L − 2 tan(θ/2)y1. This patch
divides the segment into two pieces (see inset of Fig. 3) and we
recursively apply the algorithm to both pieces until no more
stagnant patch is found.

Moreover, Eq. (8) determines the statistics of the threshold
USD . The probability of being in the depinned state for a certain
injection rate U (y = yV ) is given by

Q
dep
U

= exp

⎧⎨
⎩− L2

∫ |Vχ |/U
0 φ(v)dv

�2
d tan[arcsin(|Vχ |/U )]

⎫⎬
⎭ . (9)

We note that this probability goes to 0 quadratically in L.
More generally, in d dimensions, Q(yV ) would decay as
exp(−L−d ). Hence the effect of the cell size on the transition
is very strong and explains why washing a propagating front in
disordered medium can be surprisingly hard. With raising U ,
Eq. (9) exhibits two competing effects: the stagnant patches get
decimated, while the reaction front stretches (namely, θ → 0)
and explores a larger region. Assuming φ(v) ∼ vδ−1 when
v → 0, we get

Q
dep
U

= exp

[
−L2

�2
d

( |Vχ |
U

)δ−1
]

when
|Vχ |
U

→ 0. (10)

The two scenarios pictured in Fig. 1 now emerge naturally:
if δ > 1, the number of teeth decreases with U and the
interface always gets depinned, while if δ < 1, the pinning
sites proliferate and the front becomes rougher and rougher.
As the formation of overhangs is expected, the stylized
model breaks down. The transition between the two regimes
occurs at a critical value δc = 1: in that marginal case, the
number of teeth remains constant. This prediction is well
supported by the hydrodynamical simulations of the porous
media for different PU (v), where a clear transition towards
roughening for δ < 1 is observed. In the experiments, the
measured velocity map was fitted to a log-normal distribution,
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FIG. 4. (Color online) Distribution of l� for the stylized model
with parameters λ = 0.5 and θ = π/2. The system size is L = 100
and the simulation is performed over N = 3000 samples. The
dashed line corresponds to the asymptotic prediction of Eq. (15).
Inset: Interface pinned between two adjacent stagnant patches of
coordinates x1 and x2.

decaying to 0 as v−1 exp[− ln(v)2], which is faster than the
critical case, but not much. Hence, depinning indeed occurs.
Note that the threshold speed USD is itself random and
depends on the realization of the disorder. Its probability
distribution P (USD) = ∂UQ

dep
U

|U=USD
depends on the scaled

velocity distribution φ(v). In Fig. 3, we test the prediction
of our model against hydrodynamical simulations for a
log-normal permeability. We assume that the velocity of
the fluid displays as well a log-normal distribution, φ(v) =
(
√

2πvσ )−1e−(ln v)2/2σ 2
, with a scale parameter σ = 0.315

obtained from the direct fit of the velocity distribution close to
zero. A very good agreement with no adjusting parameter is
observed.

To get a better grasp on the front roughness for U � USD ,
we compute the distance l� between two adjacent pinning
sites. A scaling argument (that can be easily extended to
various geometries) extracts the main dependence in λ and
θ of the typical distance between stagnant patches: Let us
assume the interface pinned at some site and consider its right
part (see inset of Fig. 4). The probability of having another
pinning is important when the area S ∼ l2

�/ tan(θ/2) ∼ λ−1,
leading to

l� ∼
√

tan θ/2

λ
= �typ. (11)

It turns out that it is possible to compute the whole probability
distribution ρ(l�) in the sawtooth geometry. It obeys

ρ(l�) =
∫
D

dx1dx2P (x12)δ(l� − |x2 − x1|),

D =
{

0 < xi < L,0 < yi < min

(
xi

tan θ/2
,
L − xi

tan θ/2

)}
,

(12)

with i ∈ {1,2}. D simply parametrizes the area of the interface
in the depinned state. P (x12) is the probability that the interface
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GUEUDRÉ, DUBEY, TALON, AND ROSSO PHYSICAL REVIEW E 89, 041004(R) (2014)

is pinned in x1 = (x1,y1) and x2 = (x2,y2), with no other
nucleation in between:

P (x12)dx1dx2 = λ2dx1dx2e
−λS(x1,x2,y1,y2),

S(x1,x2,y1,y2) = tan(θ/2)

4

[
y1 + y2 + x2 − x1

tan(θ/2)

]2

×H (|x2 − x1|/ tan(θ/2) − |y2 − y1|) ,

(13)

with S being the triangular area depicted in the inset of Fig. 4
and H a Heaviside function. Integration over the variables
under the constraint that l� = |x2 − x1| leads, in the limit L →
∞, to

ρ(l�) = 1

�typ
ρ̂(r) with r = l�/�typ, (14)

ρ̂(r) = 2√
π

{
2(e− r2

4 − e−r2
) + √

πr

[
erf

(
r

2

)
− 2erf(r) + 1

]}
.

(15)

The maximum of ρ̂ is of the order of 1, recovering the scaling
argument given in Eq. (11), and an excellent agreement with
the stylized model is observed (see Fig. 4). This distribution
gives full information about the fluctuations of the static front
in the porous media and allows one, for example, to compute its
lateral extension through �H ∼ l�/[2 tan(θ/2)]. Finer details

about the statistical properties of the interface can be useful,
for example, to study fluctuations of the critical currents of a
strongly pinned vortex in superconductors [15].

In this Rapid Communication, we presented a general
model of pinning for interfaces in random media, when the
pinning regime is strong and only relies on a finite number
of sites. This, in particular, makes an approach through
Poisson processes possible, allowing at the same time efficient
numerical simulations and analytical results on the statistical
properties of the interface. The essential experimental pic-
ture [12] is reproduced and we identified a clear criterium
that allows one to discriminate between the possible scenarios
shown in Fig. 1. Supported by excellent agreement with
ab initio simulations used to model the experiments [24],
this validates the hypothesis that the depinning transition is
controlled by a limited number of events, randomly spread
over the medium.

The above model assumes that the interface is in its
final state. However, strong pinning phenomena often exhibit
avalanches during transient phases, where some stagnant
patches temporarily pin the interface before getting suddenly
depleted. The temporal critical properties of those systems
are not well understood. As a perspective, it would hence be
interesting to extend the present work to transient states by
introducing the random lifetime of the nucleation events.

We gratefully acknowledge Severine Atis, Pierre Le
Doussal, and Dominique Salin for useful discussions.
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