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Analysis and improvement of Brinkman lattice Boltzmann schemes: Bulk, boundary, interface.
Similarity and distinctness with finite elements in heterogeneous porous media
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This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media
grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first
analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM)
both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity.
This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious
velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-
rates combination �. Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional
Darcy group and produce viscosity-independent permeability provided that the spatial distribution of � is fixed
independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by
“partial bounce-back” TRT gray models, as shown in this work. Further, we propose a consistent and improved
IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation
rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves
for effective permeability measurements, from porous channel to multidimensions. The framework of our exact
analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined,
and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite
different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity
and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We
derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them,
a property also shared by FEM for shear stress. But, in contrast with FEM, effective velocity conditions in LBM
give rise to slip velocity jumps which depend on (i) neighbor permeability values, (ii) resolution, and (iii) control
parameter �, ranging its reliable values from Poiseuille bounce-back solution in open flow to zero in Darcy’s
limit. We suggest an “upscaling” algorithm for �, from multilayers to multidimensions in random extremely
dispersive samples. Finally, on the positive side for LBM besides its overall versatility, the implicit boundary
layers allow for smooth accommodation of the flat discontinuous Darcy profiles, quite deficient in FEM.
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I. INTRODUCTION

In carbonate rocks, believed to host over 50% of the world’s
hydrocarbons [1], the fractured poral space is found side by
side with very low-permeable micritic domains. Although
unresolved on x-ray computed tomography (CT) images,
the latter are non-negligible because of their contribution to
flow patterns and dispersion. There exists a large variety of
double-porosity carbonates, and their effective permeability
may vary by several orders of magnitudes, from 10−1 to
104 mD, and the averaged porosity ranges from 0.02 to
0.5 [2]. Typically, one voxel of CT scans representing a
few microns of porous sample is mapped onto one node of
the computational mesh [3–5], further characterized by its
permeability, via typical porosity-permeability relationships.
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Although the effective permeability of the entire sample is
of the interest, it is determined by the microstructure in an
unpredicted way. Upscaling techniques of different complexity
aim at assembling multiscale data of distinguished nature
from the experimental to numerical [6]. In particular, the
direct numerical solution in representative volumes allows an
estimation of their effective permeability, with the help of
Darcy’s law.

Any numerical scheme designed for the mesoscopic solu-
tion of the cell-average velocity field �u needs to accommodate
the open (Stokes) flow to Darcy profiles in the presence of
the impermeable solid matrix. The Brinkman approach [7]
couples the three phases via interface and boundary layers by
including the shear into Darcy’s equation. This work applies
a steady-state Stokes-Brinkman-Darcy equation across the
entire domain of isotropic heterogeneous permeability field
k(�r) for a positive distribution of porosity function f (φ):

�∇ · �u = 0,
νρ0

k
�u + �∇P = νBρ0��u, νB = ν

f (φ)
. (1)
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The Stokes and Darcy regimes are recovered in the two
opposite limits, k → ∞ and k → 0, respectively. It has been
recognized that the effective viscosity μB = νBρ0 depends
on the interfacial microgeometry. However, its actual relation
with porosity φ is an issue still under debate, as experimen-
tal [8], theoretical [9,10], and numerical investigations [11,12]
show either increase or decrease of νB with respect to the
kinematic viscosity ν. In default of agreement, the most
common semiheuristic rules employ either f (φ) = 1 (νB = ν)
or f (φ) = φ. In this context, a related question refers to
the interface continuity for the stress-tensor components.
The interface force resulting from the resistance was first
believed negligible against the shearing. This led Brinkman [7]
to adopt usual velocity and stress-continuity conditions.
However, more recent works based on either experimental
results [13], asymptotic analysis [14–17], or also combining
the two approaches [18] have advocated different forms for the
so-called stress-jump condition. The two forms of shear-stress
difference proportional to the interface slip velocity, Beavers-
Joseph [13] and Ochoa-Tapia-Whitaker [15,18], are well fitted
to the numerical modeling [12] of the microscopic flow over
open-porous interface for large porosity φ ∈ [0.7 − 0.95];
in smaller porosity of our interest, slip velocity has been
found negligibly small, restoring the shear-stress continuity
condition. The generic stress-jump condition has been for-
mulated in the framework of the finite-volume method [19];
the shear-stress-jump has been introduced into the lattice
Boltzmann scheme [20]. Nevertheless, commonly, the stress
continuity is adopted with the local effective viscosity.

To solve the Brinkman equation in heterogeneous media,
two numerical approaches compete in versatility: the finite
element method (FEM) (see Refs. [21–24] and references
herein) and the lattice Boltzmann method (LBM). The LBM
can be further subdivided into two main groups. The first
one [3,20,25–31] incorporates a momentum sink in the form
of the local grid-node drag force. We hereafter refer to this
group as the Brinkman-force (BF) model. The second group
modifies the population dynamics in a more elegant “kinetic”
way, partly reverting the postcollision populations in the spirit
of the “partial-bounce-back” rule. In turn, this second group
performs the momentum exchange in two ways: (i) nonlocal or
link-based [32–34] and (ii) local or grid-node based [35–38].
We will refer to these last algorithms as the “gray” schemes.

Commonly, the LBM Brinkman schemes are validated
through model examples allowing for analytical solutions,
such as Couette and Poiseuille Stokes-Brinkman porous
flow, fluid flow in stratified heterogeneous layers, or par-
tially porous conduits. Further, they are compared with the
finite-difference or finite-volume methods for Brinkman-
Forchheimer flow in channels, lid-driven cavity, or plug flow
(see Refs. [5,20,27,28,30,31,33–36,38]). Flow around perme-
able elliptical cylinder [26,34] was validated with the lubrica-
tion semianalytical model [39]. Modeling in realistic porous
media has been also addressed in the past decade, for example,
two-dimensional (2D) bimodal heterogeneous porous media
and 2D fractured media on rectangular mesh [31], 3D samples
and CT images with multiple matrix components [3], relative
permeability measurements towards water saturation in 3D
cement paste [4], and, very recently, sandstone rocks with
different contents of calcite phase per voxel [5]. Additionally,

multiscale flow modeling has been coupled with the solute
transport for dispersion studies in heterogeneous random 2D
media [40] and carbonate samples [41].

However, several reservations can be put forward. First,
the benchmark simulations were typically run on very large
systems of tens to hundreds of cells per permeability contrast,
while in rock modeling, only one node per permeability
contrast is often available. Second, all the aforementioned
LBM Brinkman schemes, except in Ref. [20], operate with the
implicit boundary or interface conditions, and their effective
slip or continuity conditions have never been examined.
However, as confirmed by the analysis in this work, the latter
ones determine the effective accuracy of velocity profiles and
permeability measurements on coarse grids. Third, the alarm
extends over the fact that the single-relaxation-time BGK
operator [42] has been employed for all these simulations.
Yet it has been demonstrated in Ref. [29] that, similarly
to steady-state LBM solutions of Stokes and Navier-Stokes
equations [43–46], the BGK becomes inconsistent for Stokes-
Brinkman and Brinkman-Forchheimer force-based models in
the sense that their solutions are not set by the governing
Darcy numbers and, eventually, Reynolds number. In other
words, the BGK inevitably leads to viscosity-dependent
apparent permeability, which is rather inconvenient for LBM
applications in realistic soil samples.

In the framework of the BF approach, the minimal consis-
tent collision is the two-relaxation-times TRT operator [47,48].
In the BF-TRT model [29,49], the spatial variation of drag
force induces an apparent, second-order local correction of the
modeled viscosity: νB → νB[1 + δ(k−1,�)], where � is free-
valued product of two relaxation functions and δ is anisotropic,
in principle [28,29]. The BGK is the TRT subclass where � is
proportional to ν2, which explains the loss of the second-order
consistency in bulk by the BF-BGK. The apparent viscosity
correction has been also derived [35,38] for three gray BGK
schemes, on the basis of the effective discretization of channel
flow, but it has been missed by the asymptotic analysis [34]. Yet
it has been recently recognized in Ref. [49] that in these three
gray schemes, δ remains a function of ν even if they cope with
the TRT operator. Furthermore, it has been shown that the two
schemes [35,38] are matched by the BF-TRT via simple but
viscosity-dependent transforms of its free eigenvalue, while
the “partial bounce back” scheme [37] needs to transform the
two relaxation rates. In the present paper, we develop all these
results in length.

We also show that within low-resolved high-permeability
contrasts, it becomes impossible to avoid negative apparent
viscosities, giving rise to spurious numerical oscillations. To
correct for this shortcoming, we introduce an approach, called
improved IBF-TRT model, which is designed to vanish viscos-
ity corrections in stratified heterogeneous channels. It appears
that it also removes flow fluctuations and outperforms the
BF-TRT for permeability measurements in two-dimensional
bimodal and random media. The rationale behind IBF is that it
automatically increases its viscous relaxation function with a
local Darcy number decrease but retains the possibility of the
overall control with the help of the free antisymmetric-mode
rate. Thereby, a new point is that the effective product of
two relaxation functions now varies in space, along with the
heterogeneity.
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On the other hand, the extension of our LBM analysis
to the linear finite-element method (FEM), for instance,
employed by the COMSOL code [23], reveals that the FEM
also incorporates specific viscosity correction δ(k−1) due to
involved discretization force stencil. Although the idea is
straightforward, we are not aware of this result in previous
studies on FEM. The BF-TRT matches this correction for
one particular �, but we will show that the two similar bulk
discretizations accommodate very differently highly hetero-
geneous velocity profiles due to differences in the way they
damp or amplify the fluctuations by their respective boundary
and interface conditions. This presents the intrinsic contrast
between the FEM and LBM: The former prescribes velocity
and stress continuity in grid vertexes, and the LBM mimics
them implicitly when populations travel over the interface.

In this work we derive the exact underlying macroscopic
interface continuity conditions in two model situations: porous
inclusions in series and parallel layers. Further, we specify
them for BF and IBF and gray schemes. Our methodology
combines the recurrence equations [43], which provide the
exact formulation for the nonequilibrium components, and
the exact microscopic interface conditions [47], which link
the equilibrium and nonequilibrium components over the
interface. This analysis also covers the bounce-back boundary
rule. Thereby, no approximation is involved to construct exact
symbolic solutions: microscopic for populations in LBM and
macroscopic for velocity in LBM and FEM. Such a solution
even applies for one-spacing per material property. In LBM,
the perpendicular flow across periodic porous layers will
dictate the imperative relation between the microscopic and
macroscopic momentum for matching a constant Darcy veloc-
ity. The parallel flow in turn will reveal that the stress and slip-
velocity undergo �-dependent jumps where velocity raises
in the open conduits, resulting in �-dependent permeability
overestimates. In Darcy’s limit, the LBM accommodates flat
branches smoothly, thanks to implicit boundary layers, and
thereby avoids strong interface oscillations revealed in FEM,
but the dependency k(�) becomes highly nonlinear. Although
the updated IBF model improves the overall accuracy, a
pressing question concerns how to select � reliably, effi-
ciently, and robustly. Our work aims to answer this question
as well.

The paper is structured as follows. The TRT operator and
BF model are analyzed in Secs. II and III, respectively. The
improved IBF model is constructed in Sec. IV and related
to a more general “modified” TRT update which also covers
the gray schemes. The effective discretization of the FEM

in the heterogeneous channel is constructed in Sec. V. The
symbolic solutions in channels are extended for all schemes
and compared. In Sec. VI, we predict accuracy for permeability
measurements in two layers and then extend this analysis
to multilayered and highly heterogeneous two-dimensional
random distributions, with three principal schemes: BF, IBF,
and FEM. Based on this study, a heuristic “upscale” algorithm
is proposed to select the optimal � from multilayers to multidi-
mensions. Finally, Sec. VII concludes the work. Appendix A
provides the technical details on the multilayered solutions.
Appendix B extends the recurrence equations and their channel
solutions to the “modified” TRT update.

II. THE TRT SCHEME

This section starts by recalling the generic recurrence equa-
tions, interface, and bounce-back closure relations [43,47]. The
steady-state solutions reproduced by the TRT operator obey
them for any equilibrium. We then construct the exact nonequi-
librium solution and macroscopic equations in heterogeneous
Darcy flow and parallel stratified channel flow. This analysis
assumes that the two relaxation rates are constant per material
property where the individual (boundary or interface) values
can be matched with one grid cell. The interface conditions
will account for their exact coupling.

A. The bulk

The discretized system is defined for the regular grid {�r}
sketched in Fig. 1. The velocity vectors {�cq} interconnect
the grid nodes. The velocity set contains Q vectors: one
zero, �c0 = �0, for the immobile population, and Qm = Q −
1 nonzero ones, �cq = {cqα, α = 1, . . . ,d}, for the moving
populations. Cubic velocity sets [42] with the two moving
classes are assumed, e.g., d2Q9, d3Q15, and d3Q19. The
first Qm/2 velocity vectors �cq are set diametrically opposite
with the next Qm/2 vectors �cq̄ , and a pair of antiparallel
velocities (�cq,�cq̄) is referred to as a link. The combinations
ψ+

q = ψ+
q̄ = 1

2 (ψq + ψq̄) and ψ−
q = −ψ−

q̄ = 1
2 (ψq − ψq̄) are

referred to as the symmetric and antisymmetric components,
respectively, for any pair (ψq,ψq̄): ψq = ψ+

q + ψ−
q , ∀ q. The

immobile population applies ψ+
0 = ψ+

0̄ = ψ0, ψ−
0 = ψ−

0̄ =
0. The unknown variables of the scheme at the node �r
and time t are the components of Q dimensional popu-
lation vector f (�r,t), f = {f0,(fq,fq̄), q = 1, . . . ,Q−1

2 }, or,
equivalently, its symmetric and antisymmetric components:
f = {f0,f

±
q , q = 1, . . . ,Q−1

2 }. Prescribing two relaxation

+1+1

LBM FEM

+1+1 h3

h1

2 h2

3

N hN

...

periodic

(a) (b) (c)

FIG. 1. Sketch for the cell-centered LBM grid (a) and vertex-centered FEM grid (b). Porous layers in series (c).
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parameters s±(�r,t) ∈]0,2[ and two equilibrium values e±
q (�r,t),

the TRT operator [47] updates the population vector f (�r,t)
with two postcollision quantities g±

q (�r,t) per link:

fq(�r + �cq,t + 1) = f̃q(�r,t), q = 0,1, . . . ,Q − 1,

f̃0(�r,t) = f0(�r,t) + g0, g0 = −s+(f0 − e0),

f̃q(�r,t) = fq(�r,t) + g+
q + g−

q ,

g±
q = −s±(f ±

q − e±
q ), q = 1, . . . ,

Qm

2
,

f̃q̄(�r,t) = fq̄(�r,t) + g+
q − g−

q ,

�cq̄ = −�cq, q = 1, . . . ,
Qm

2
. (2)

The TRT operates with two positive eigenvalue functions �±
and their product � as follows:

�± =
(

1

s± − 1

2

)
, � = �+�−. (3)

A special role for boundary, interface, and bulk accuracy,
as well as stability, is played by several specific values of �,
such as � = { 1

12 , 1
8 , 1

6 , 3
16 , 1

4 , 3
8 , 3

4 }, see Refs. [29,45–47,50]. In
particular, in Brinkman straight and diagonal channels the BF
annihilates the bulk viscosity correction δ for � = 3

8 and � =
3
4 , respectively [29]. However, the TRT is not confined to any
particular choice and �(�r) will vary over domain in this work.

In TRT, any external local symmetric or antisymmetric
external source terms M±

q (�r,t), added to outgoing populations,
can be formally included into equilibrium: e+

q → e+
q + (�+ +

1
2 )M+

q and e−
q → e−

q + (�− + 1
2 )M−

q . For the purpose of the
theoretical analysis, it is proven convenient to express both
precollision values fq(�r,t) and postcollision values f̃q(�r,t) as:

fq(�r,t) = [
e+
q + e−

q − (
1
2 + �+)

g+
q − (

1
2 + �−)

g−
q

]
(�r,t), ∀q,

(4a)

f̃q(�r,t) = [
e+
q + e−

q + (
1
2 − �+)

g+
q + (

1
2 − �−)

g−
q

]
(�r,t), ∀q.

(4b)

The steady-state recurrence equations [43] of the TRT
present specific linear combinations of the evolution equa-
tions (2) by substituting there Eqs. (4). They relate the linkwise
variation of the equilibrium and nonequilibrium components
between them. The first pair of these equations expresses
g±

q (�r):

g+
q (�r) = �̄qe

−
q − �−�̄2

qe
+
q + (

� − 1
4

)
�̄2

qg
+
q , (5a)

g−
q (�r) = �̄qe

+
q − �+�̄2

qe
−
q + (

� − 1
4

)
�̄2

qg
−
q . (5b)

The first and second central linkwise finite differences are,
respectively: (i) �̄qψ(�r) = 1

2 [ψ(�r + �cq) − ψ(�r − �cq)] and (ii)
�̄2

qψ(�r) = ψ(�r + �cq) − 2ψ(�r) + ψ(�r − �cq), ∀ ψ . The second
pair of the recurrence equations expresses �̄qg

±
q (�r):

�̄qg
+
q = �̄2

qe
−
q − �−�̄2

qg
−
q , (6a)

�̄qg
−
q = �̄2

qe
+
q − �+�̄2

qg
+
q . (6b)

The combination of Eqs. (5) and (6) will provide a generic
solution for g±

q (�r) in channel flow. The recurrence equations

assume that �− and �+ are linkwise constant, meaning
their uniform distributions for TRT. In all Stokes-Brinkman
schemes we apply linear hydrodynamic equilibrium [47,48]
featuring the macroscopic pressure P and momentum �j in the
presence of external forcing �F :

e+
q (�r) = Pq, Pq = tqP (ρ), ρ = f0 + 2

Qm/2∑
q=1

f +
q ,

(7a)

e0(�r) = ρ − 2
Qm/2∑
q=1

e+
q ,

e−
q (�r) = jq + �−Fq, jq = tq( �j · �cq),

(7b)

�j = �J + 1

2
�F, �J = 2

Qm/2∑
q=1

f −
q �cq, �F = 2

Qm/2∑
q=1

Fq �cq.

For simplicity, we restrict our analysis to same (isotropic)
weights [42] for all terms:

2
Qm/2∑
q=1

tqcqαcqβ = δαβ, ∀α,β,

(8)

6
Qm/2∑
q=1

tqc
2
qαc2

qβ = 1, α �= β.

We also make use that 6
∑Qm/2

q=1 tqc
2
qαc4

qβ = 1, α �= β, applies
for standard velocity sets. Although the linear relationship
P (ρ) = c2

s ρ is assumed, c2
s ∈]0,1] is kept as free parameter

(further restricted to a velocity-set-dependent stability inter-
val [45,46,50]). The conserved momentum is �J , while the
macroscopic momentum is �j [see Eq. (7)]. The macroscopic
velocity �u is formally defined for any scaling parameter
ρ0 as:

�u = �j
ρ0

. (9)

Exact mass and momentum conservation equations read,
respectively,

Q−1∑
q=0

g+
q (�r,t) = 0, 2

Qm/2∑
q=1

g−
q �cq(�r,t) = �F (�r,t). (10)

The zeroth- and first-order moments over Eqs. (5a) and (5b)
yield for equilibrium (7):

∇ · �j = 2�−
Qm/2∑
q=1

�̄2
qPq − 2

(
� − 1

4

) Qm/2∑
q=1

�̄2
qg

+
q , (11a)

∇P − �F = �+

3
�̄2 �j + 2�

Qm/2∑
q=1

�̄2
qFq �cq

− 2

(
� − 1

4

) Qm/2∑
q=1

�̄2
qg

−
q �cq, (11b)
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TABLE I. This table summarizes the BF- and IBF-TRT schemes (2) applied with two relaxation rates s±
� = 1/(�±

� + 1
2 ) and equilibrium (7).

Input local parameters are the (i) resistance factor Bf = ν/k, (ii) Brinkman viscosity νB , and (iii) free positive collision parameter �.

Model Collision Forcing Solution �j = ρ0 �u �+
� = 1

s+
�

− 1
2 �−

� = 1
s−
�

− 1
2 �� = �+

� �−
�

BF TRT �F p − Bf �j �J+ �Fp/2
1+Bf /2 3νB

�

3νB
�

IBF TRT �F p − Bf �j �J+ �Fp/2
1+Bf /2

9(4+B)νB

4(3+2B�)
�

3νB

3(4+B)�
4(3+2B�)

with

∇ · �j = 2
Qm/2∑
q=1

�̄qjq,

∇P = 2
Qm/2∑
q=1

�̄qPq �cq, (12)

�̄2 �j = 6
Qm/2∑
q=1

�̄2
qjq �cq.

Thus, we express the steady-state macroscopic equations
reproduced by the TRT hydrodynamic schemes in terms of
the central finite-difference operators for equilibrium and
nonequilibrium components, without any approximation.

In BF and IBF schemes, considered, respectively, in
Secs. III and IV, the external forcing �F is composed from
the uniform flow-driving force �Fp and drag force −ν �j/k(�r);
the effective viscosity νB(�r) = ν/f (φ(�r)) and free-tunable
parameter �(�r) are locally prescribed. Assume eigenvalues s±

�

in Eq. (2). The BF and IBF differ for choice of the symmetric-
mode relaxation function �+

� = 1
s+
�

− 1
2 . Short summary can

be found in Table I. The effective product of two relaxation
functions �+

� and �−
� = 1

s−
�

− 1
2 is �� = �+

� �−
� , which is

equal to prescribed value � in BF but differs from it in IBF,
except for � = 3

8 , where the two schemes coincide.

B. The interface

The LBM imposes the interface conditions implicitly, when
the two populations cross the interface between the two nodes
with the different collision components (see Fig. 1). The TRT
satisfies two interface steady-state closure relations at any two
nodes �r and �r + �cq :

Sq(�r) = Sq̄(�r + �cq), (13a)

Sq(�r) = [
e+
q + 1

2g−
q − �+g+

q

]
(�r),

Gq(�r) = −Gq̄(�r + �cq), (13b)

Gq(�r) = [
e−
q + 1

2g+
q − �−g−

q

]
(�r), ∀ e±

q .

These equations present two linear combinations of the
evolution equation (2) (see details in Ref. [47]). Notice that
(1) changing q to q̄ in e−

q and g−
q changes the sign and

(2) �± take their local values, i.e., �±(�r) and �±(�r + �cq),
respectively. A delicate point is that the recurrence equa-
tions (5) and (6) apply for constant �±. It will appear that
their solution g±

q can be applied to Eqs. (13) if expressing
all finite-difference operators on the virtual linkwise contin-

uation of the bulk solutions over the interface, even when
the layer has only one grid cell. This way we can derive
effective stress and velocity continuity conditions in stratified
channels.

C. The boundary

The bounce-back reflection is applied in grid boundary node
�rb for cutted link �cq :

fq̄(�rb,t + 1) = f̃q(�rb,t) if �rb + �cq ∈ solid. (14)

Applying Eq. (4a) for fq̄ (�rb) and Eq. (4b) for f̃q (�rb), the steady-
state closure relation of the bounce-back rule (14) reads

Gq(�rb) = 0, with Gq = e−
q + 1

2g+
q − �−g−

q . (15)

Given that the function Gq(�r) is the same as in the continuity
condition (13b), the effective bounce-back closure relation can
be obtained from the interface analysis.

D. Porous blocks in “series”

The Brinkman model assumes continuous macroscopic
momentum ρ0 �u over the domain. Obviously, the conserved
momentum �J and the redefined momentum �j = �J + 1

2
�F ,

employed in Eq. (7), cannot be at the same time continuous on
the interface where �F undergoes the jump. Let us demonstrate
that the definition �j = �J + 1

2
�F is both necessary and sufficient

to maintain a one-dimensional constant velocity profile,
say, uD = jy/ρ0, for piecewise linear continuous pressure
distribution P (i)(y). This way we will verify that the constant
Darcy velocity in series of porous inclusions (sketched in
Fig. 1) is an exact solution of the scheme. Assume P (i)(y)
as obeying the momentum equation for constant velocity,
F (i)

y = ∇yP
(i), and for piecewise constant distribution e−

q
(i)

we have:

e+
q

(i) = tqP
(i), F (i)

q = tq∇yP
(i)cqy, �̄qe

−
q

(i) = 0. (16)

Then �̄2
qe

±
q

(i) = 0 and the recurrence equations (5) give:

g+
q

(i) = 0, g−
q

(i) = �̄qe
+
q = tq∇yP

(i)cqy = F (i)
q . (17)

The stress-continuity condition (13a) reads with

S(i)
q = (

e+
q + 1

2g−
q

)∣∣(i)

Yi− 1
2

= tq
(
P (i) + 1

2∇yP
(i)cqy

)∣∣
Yi− 1

2

= tqP
(i)(Yi),

S
(i+1)
q̄ = (

e+
q − 1

2g−
q

)∣∣(i+1)

Yi+ 1
2

= tq
(
P (i+1) − 1

2∇yP
(i+1)cqy

)∣∣
Yi+ 1

2

= tqP
(i+1)(Yi).
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Therefore, the scheme maintains continuous piecewise lin-
ear pressure distribution. In turn, the two components in
velocity-continuity equation (13b) read:

G(i)
q = (e−

q − �−g−
q )|y=Yi− 1

2

= tqρ0u
(i)
y cqy + (�−Fq)(i) − (�−g−

q )(i),
(18)

−G
(i+1)
q̄ = (e−

q − �−g−
q )|y=Yi+ 1

2

= tqρ0u
(i+1)
y cqy + (�−Fq)(i+1) − (�−g−

q )(i+1).

Making use of Eq. (17) in Eq. (18), the continuous velocity
condition, u(i)

y = u(i+1)
y , satisfies the system. In case of a drag

force F (i)
y = F

(p)
y − B

(i)
f ρ0uy , the scheme matches the Darcy

solution uy ≡ uD for harmonic mean kD:

∇yP
(i) ≡ F (p)

y − B
(i)
f ρ0uD, B

(i)
f = ν

ki

,

F p
y − ∇yP =

∑
i hi

(
F

(p)
y − ∇yP

(i)
)

H
= −ρ0uDν

∑
i

hi

ki

H
,

uD = −〈k〉F
(p)
y − ∇yP

ρ0ν
, 〈k〉−1 =

∑
i

hi

ki

H
,

H =
∑

i

hi . (19)

Remark 1. If the drag force would be computed with −Bf
�J

instead −Bf �j , the numerical solution for Jy in periodic series
of two inclusions would undergo the interface jumps, as
J1/J2 = (1 − 1

2B
(2)
f )/(1 − 1

2B
(1)
f ) predicted by Eq. (18), and

the scheme would be much less stable.
Remark 2. The analysis above is independent of the

relaxation rates since the system can be regarded as be-
ing at quasiequilibrium, and the linear pressure gradient
is compensated by the resistance. Thereby, if the external
forcing is perpendicular to periodic system of multi-layers and
momentum is redefined, the BF and IBF and gray schemes
provide an exact solution (19).

E. Continuous and discretized flow in stratified channels

1. Continuous solution

The streamwise periodic cell is composed of N parallel
layers of the thickness hi separated by flat interfaces y = Yi .
The entire width of the system is H = ∑N

i=1 hi . Inside each
layer, ki and fi(φ) are set piecewise constant. The flow is driven
by the constant forcing F

p
x = −∇xP . We solve Brinkman

equation (1) for velocity u(i)
x (y):

B
(i)
f ρ0u

(i)
x (y) − Fp

x = ν
(i)
B ρ0∂

2
yyu

(i)
x (y), B

(i)
f = ν

ki

,

(20)
ν

(i)
B = ν

fi(φ)
, y ∈ [Yi − hi,Yi].

The system is subject to velocity and shear-stress continuity
interface conditions:

u(i)
x = u(i+1)

x

∣∣
y=Yi

, ν
(i)
B ρ0∂yu

(i)
x = ν

(i+1)
B ρ0∂yu

(i+1)
x

∣∣
y=Yi

.

(21)

It is convenient to decompose the velocity profile u(i)
x (y)

into two components: a piecewise-constant Darcy velocity u
(i)
D

and a correction u
(i)
B (y):

u(i)
x (y) = u

(i)
D + u

(i)
B (y), u

(i)
D = Dai

Da
uD,

u
(i)
B (y) = uDU

(i)
B (y ′), uD = −∇xP

νρ0
DaH 2,

U
(i)
B (y ′) = −(aie

σiy
′ + cie

−σiy
′
), y ′ = y

H
, σ 2

i = 1

Da(i)
B

,

Da(i)
B = Dai

fi(φ)
, Dai = ki

H 2
. (22)

The reference σ value is set with the effective Darcy perme-
ability value kD:

σ = Da−1/2, Da = kD

H 2
, kD = 〈ki〉 =

∑N
i=1 hiki

H
. (23)

The effective Brinkman permeability value kB is computed
from Darcy’s law applied to the cell-averaged velocity 〈ux(y)〉;
its relative correction kr to kD reads

kr = kB

kD

− 1 = 〈
U

(i)
B (y ′)

〉
, kB ∈ [0,kD]. (24)

The integration constants ai and ci in Eq. (22) are determined
from the interface and boundary conditions. The two con-
figurations sketched in Fig. 2 are periodic [Fig. 2(a)] and
bounded [Fig. 2(b)] layers, respectively. In periodic layers
along the y axis, Eqs. (21) link adjacent layers. The no-slip
condition applies at the horizontal walls in bounded layers.

2( ), 2
h2

h1

( )

1( ), 1

periodic

2( ), 2
h2

h11( ), 1

( )

solid(a) (b)

FIG. 2. Periodic (a) and bounded (b) two-layered stratified systems.
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FIG. 3. (Color online) The exact solution (25) in a single channel is plotted when σ = Da−1/2 = {1,5,10,102} from the solid (magenta)
to dot-dashed (black) lines. The three normalization scalings employed are umax, uD and averaged Poiseuille value 〈uP 〉. Last diagram plots
effective permeability kB normalized by kD (solid line) and kP (dashed line).

The bounded system reduces to a single porous channel when
ki ≡ k, fi(φ) ≡ f (φ), σ 2

i = σ :

UB(y ′) = −cosh [σy ′]
cosh

[
σ
2

] , y ′ ∈
[
−1

2
,
1

2

]
,

(25)

kr = −2
tanh

[
σ
2

]
σ

∈ [−1,0].

The profiles UB(y ′) are plotted in Fig. 3 for several values of σ

and three different scale factors. The first diagram normalizes
all profiles with umax; the second one with uD [cf. Eq. (22)];
the third one adopts 〈uP 〉 = −∇xP

νρ0

H 2

12 : This last scaling is
most suitable for the Stokes-Brinkman regime since uD →
∞ when σ → 0. The three regimes, Stokes-Brinkman with
σ ∈≈ [0,1], intermediate Brinkman, σ ∈≈ [1,102 − 103], and
Darcy-Brinkman, σ >≈ 102–103, are clearly seen on the
basis of permeability (last diagram), where kB varies between
kP = H 2

12 and kD . Figure 4 illustrates the exact solution given by
Eq. (22) for both two-layered periodic and bounded systems,
with the permeability contrast equal to 10. The last diagram
depicts kB(σ )/kD . In this paper, all solutions are demonstrated
for fi(φ) = 1 (except for Fig. 13).

2. Nonequilibrium solution in channel flow

We apply the recurrence equations to find g±
q in a straight

channel for equilibrium (7) with �j = {jx(y),0} and forcing
�F = {Fx(y),0}. Two key points are as follows:

(1) In straight-channel flow, g−
q is set by Eq. (10):∑Qm

q=1 g−
q cqx = Fx ,

∑Qm

q=1 g−
q cqy = 0, along with the stream-

wise conditions. In the two situations of force-driven or
constant-pressure-gradient-driven flow, with �∇P = {∇xP,0},

the solution reads:

∇xP = 0, �̄qe
+
q = 0 : g−

q (y) = 3Fx(y)Tq x,
(26a)

Tq x = tqcqxc
2
qy,

∇xP = const, �̄qe
+
q = ∇xPqcqx :

g−
q (y) = ∇xPqcqx + 3(Fx(y) − ∇xP )Tq x. (26b)

(2) Since �̄2
qe

+
q = 0 in both situations (26), Eq. (6b)

implies:

�̄2
qg

+
q (y) = −�̄qg

−
q (y)

�+ . (27)

Plugging this relation into Eq. (5a), the generic channel
solution for g+

q (y) reads:

g+
q (y) = �̄qe

−
q (y) −

(
� − 1

4

)
�̄qg

−
q (y)

�+ . (28)

After substituting Eqs. (26) into Eq. (28), it takes the form:

g+
q (y) = �̄qe

−
q − 3

(
� − 1

4

)
�+ �̄qFx(y)Tq x. (29)

Finally, replacing e−
q by its definition (7b), g+

q (y) becomes

g+
q (y) = tqcqx(�̄qjx(y) +

[
�− − 3

(
� − 1

4

)
�+ c2

qy

]
�̄qFx(y)).

(30)

Altogether, the obtained solution for two components g±
q is

given by Eqs. (26) and (30).
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FIG. 4. (Color online) Exact solution (22) in two-layered channels: (left diagram) periodic and (middle diagram) bounded, are plotted
for r2

k = k1/k2 = 10−1 when σ = Da−1/2 = {1,5,10,102} from the solid to the dot-dashed lines. Right diagram: kB/kD in two systems:

limσ→0
kB

kD
= 4r2

k

(1+r2
k

)2 in the (periodic) system, limσ→0
kB

kD
= 0 in the (bounded) system.
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After substituting Eq. (27) into Eq. (11a) and Eq. (26) into
Eq. (11b), the macroscopic equations read for the straight
channel as:

∇ · �j = 2

(
� − 1

4

)
�+

Qm/2∑
q=1

�̄qg
−
q

= 6

(
� − 1

4

)
�+ �̄yFx(y)

Qm/2∑
q=1

tqcqxc
3
qy = 0, (31a)

∇xP − Fx = �+

3
�̄2

yjx + �

3
�̄2

yFx −
(

� − 1

4

)
�̄2

yFx

= �+

3
�̄2

yjx + 3 − 8�

12
�̄2

yFx. (31b)

It follows that when Fx is neither constant nor linear
in space, one should expect the correction to appear in
the momentum equation even for straight-channel flow. In
Brinkman schemes, this will result in the aforementioned
viscosity correction νB → (1 + δ)νB since �̄2

yFx ∝ �̄2
yjx .

Remark 1. The momentum equation (31b) has the following
equivalent discrete form:

∇xP −
(

Fj + 3 − 8�

12
�̄2

yFj

)
= �+

3
ρ0�̄

2
yuj . (32)

This corresponds to the three-point force discretization with
stencil: {1 + 3−8�

12 ,1 − 2 × 3−8�
12 ,1 + 3−8�

12 }. Ahead we will
show that the linear-element-based FEM employs the force
stencil {1 + 1

6 ,1 − 2 × 1
6 ,1 + 1

6 }, which corresponds to � =
1
8 . This result might appear quite unexpected since the TRT
reduces to its discrete equivalents (such as the finite-difference
and finite-volumes schemes) for � = 1

4 , i.e., when the last
term vanishes in Eqs. (11) and they become expressed via
the variation of the equilibrium (and, hence, macroscopic)
components alone [50]. In fact, � = 1

4 is shifted to � = 1
8

because of the momentum redefinition with the half-forcing.
Remark 2. The steady state is reached when the population

flux is constant across the media. In the presence of the
external forcing, summation of the population fluxes over
the perpendicular section is equivalent to summation of the
local values �j only provided that �j differs by �F/2 from �J
[see Ref. [44] and Eq. (7b)]. We have demonstrated that this
redefinition is also imperative to match constant velocity in a
series of porous blocks.

3. Discretized solution

Momentum Eq. (31) for u
(i)
j will take the same form in all

Brinkman schemes:

−Fp
x + B

(i)
f ρ0u

(i)
j = νiρ0�̄

2
yu

(i)
j ,

(33)

νi = ν
(i)
B [1 + δi(Bi)], Bi = B

(i)
f

ν
(i)
B

= fi(φ)

ki

= σ 2
i

H 2
.

Thereby, u(i)
j is decomposed into u

(i)
D and the correction uDU

(i)
j

[cf. Eq. (22)]:

u
(i)
j (y) = u

(i)
D + uDU

(i)
j ,

(34a)
U

(i)
j = −(

air
yj

i + ciri
−yj

)
, yj ∈ [Yi − hi,Yi],

with ri(Bi) = 1 + Pi

1 − Pi

, P 2
i = b2

i

1 + b2
i

,

(34b)

b2
i = Bi

4[1 + δi(Bi)]
.

The first difference between Eqs. (20) and (33) is
that ∂2

yyux(y) is discretized as �̄2
yu

(i)
j = u

(i)
j−1 − 2u

(i)
j + u

(i)
j+1,

where �̄2
yu

(i)
j = uD�̄2

yU
(i)
j is computed on the same layer

solution. The second difference is that the numerical value
νi differs from the prescribed viscosity value ν

(i)
B by a quantity

δi(Bi)ν
(i)
B as summarized in Table II. Due to linearity of δi

with Bi , δi(Bi) reduces as H 2 with the space resolution and
it reduces to zero in the Stokes regime Bi = 0. The key
point is that νi may become negative in channel flow with
the BF and FEM. This happens when conditions specified in
Table II are not satisfied. The negative values νi result in a
complex velocity solution in Eq. (34) where the numerical
profile manifests spurious oscillations. The BF and FEM
differently damp or amplify them according to their interface
and boundary conditions. By construction, δi = 0 in IBF and
the “ideal” finite-difference IFD scheme. Notice that while
of methodological interest, this last scheme is only realized
via symbolic solutions. The bounce-back closure relation (15)
reads in a straight channel:

BB : u
(i)
j ± 1

2α+
i �̄yu

(i)
j + 1

8α−
i �̄2

yu
(i)
j

∣∣
yj =± H

2 ∓ 1
2

= 0, (35)

with �̄yu
(i)
j = (u(i)

j+1 − u
(i)
j−1)/2. The coefficients α±

i are gath-
ered in Table II and, for gray schemes, in Table III. In BF
and IBF they reduce to {α+

i ≡ 1, α−
i ≡ 16

3 �i} in Stokes
flow δi ≡ 0, where the Poiseuille profile has zero velocity
at yj = ±H

2 only for � = 3
16 (see Refs. [44,48]). The new

TABLE II. This table provides effective viscosity coefficient δi(Bi) in Eqs. (33) and (36a), coefficients α±
i of bounce-back closure

condition (35), and interface velocity-continuity condition (36b). The last two columns indicate parameter space where νi is positive.

δi α+
i /(1 + δi) α−

i /(1 + δi) νi > 0

BF, �i < 3
8

8�i−3
12 Bi 1 16

3 �i Bi < 12
3−8�i

⇔ Da(i)
B >

3−8�i

12H 2

BF, �i > 3
8

8�i−3
12 Bi 1 16

3 �i ∀Bi , ∀Da(i)
B

BF|�i= 3
8
, BF− 0 1 2 ∀Bi , ∀Da(i)

B

IBF, BF+ 0 4(3+2�iBi )
3(4+Bi )

16
3 �i ∀Bi , ∀Da(i)

B

IFD 0 1 1 ∀Bi , ∀Da(i)
B

FEM −Bi/6 – – Bi < 6 ⇔ Da(i)
B > 1

6H 2

023307-8



ANALYSIS AND IMPROVEMENT OF BRINKMAN LATTICE . . . PHYSICAL REVIEW E 91, 023307 (2015)

TABLE III. This table provides coefficients for the GS�, WBS�, and ZM� TRT schemes in Eq. (60) and A± in Eq. (50), followed by
δ = δ�(A±) in Eq. (33) and (36a) and then α± in Eqs. (35) and (36b).

k+ k− k̃+ k̃− A− A+ δ�(A±) α+/(1 + δ�) α−/(1 + δ�)

GS� [35,36] −ns ns 0 0 B(2�+�+)
6+B�+ 0 − 3(1+B�+)+2B�+2+3�(B−8)

12(3+B(�++�)) B 1 − 4(B�+2−12�)
3(3+B(�++�))

WBS� [37] 0 ns −ns 0 2B�

6+B�+ − B�+
6+B�+

(�+−1)(6+B�+)+6�(4+B�+)
6(6+B(�++2�) B 12(1+δ�)

12+B(1+2�+)
32�

6+B(�++2�)

ZM� [38] 0 0 −ns ns
B(2�−�+)

6+B�+ 0 −9+2B�+2−3�(B−8)
12(3+B�) B 1 4(B�+2+12�)

3(3+B�)

property is that the two coefficients α±
i scale with the bulk

correction (1 + δi) in the BF. In combination with δi = 0, the
IBF has the same coefficient α−

i = 16�i

3 as the TRT Stokes
scheme. The IFD yields a second-order Taylor condition with
the exact coefficients α±

i = 1. The FEM sets zero velocity in
grid vertexes without any approximation.

In stratified channels the two interface relations (13) take
the form of the Taylor-type finite-difference approximations
of the continuity conditions:∣∣∣∣νi

(
�̄yu

(i)
j ± 1

2�̄2
yu

(i)
j

)∣∣∣∣
Yi∓ 1

2
= 0, νi = ν

(i)
B (1 + δi),

(36a)
∣∣∣∣u(i)

j ± 1

2
α+

i �̄yu
(i)
j + 1

8α−
i �̄2

yu
(i)
j

∣∣∣∣
Yi∓ 1

2
= 0. (36b)

Hereafter, ||ψ ||Yi∓ 1
2

= 0 implies ψi(Yi − 1
2 ) = ψi+1(Yi +

1
2 ). Again, all the finite-difference operators apply to the
velocity solution of the same layer. The coefficients α±

i are
the same as in Eq. (35). The stress-continuity condition is set
with the effective viscosity νi .

Symbolic solutions of the TRT schemes then can be
constructed by coupling Eqs. (35) and (36) with the bulk
solution (34). The closed-form solutions are given by Eq. (A3)
for a single channel and by Eqs. (A6) in the two-layered
periodic system. The solution applies with δi and α±

i from
Tables II and III. The exact agreement between symbolic and
numerical results validates our analysis. Once the symbolic
solutions have been validated, we may operate with them
alone. This enable us to visualize the solution between grid
nodes to access the effective location of the boundaries and
interfaces and, finally, to predict permeability kB in continuous
parameter space.

III. THE (BRINKMAN-FORCE-BASED) BF SCHEME

We first derive effective viscosity νi and coefficients in
closure relations (35) and (36) in the BF-TRT scheme [29,49].
Here the focus will be put on the spurious oscillations induced
by the negative values νi caused by either small permeability
or small �i values. A specific construction is developed in
Sec. III C for case νi ≡ 0 where solution form (34) does not
apply. The BF then provides Darcy’s flat profiles accommo-
dated with one or two boundary or interface nodes. Further, we
examine the influence of the local, layerwise-constant and/or
individual boundary or interface � values.

A. The bulk

The BF incorporates the grid-node drag force �F (r) directly
into Eq. (7):

BF : Fq = F (r)
q + F (p)

q ,

F (r)
q = tq( �F (r) · �cq)= − tqBf ( �j · �cq), F (p)

q =tq( �Fp · �cq),

�j (�r,t) =
�J (�r,t) + �Fp/2

1 + Bf (�r)/2
, Bf (�r) = ν

k(�r)
. (37)

Momentum equation (11b) then reads

∇P − �Fp − �F (r) = νB(1 + δis)�̄2 �j

− 2

(
� − 1

4

) Qm/2∑
q=1

�̄2
qg

−
q �cq,

νB = �+

3
, δis = −�

3
B, B = Bf

νB

. (38)

The last term −2(� − 1
4 )

∑Qm/2
q=1 �̄2

qg
−
q �cq further modifies the

effective viscosity. However, this correction is anisotropic,
meaning that its coefficient of �j depends on the channel
orientation with respect to the computational grid. Exact
solution for apparent viscosity has been obtained for BGK
operator in straight or diagonal channels [28] and, together
with approximations for arbitrarily inclined channel, for TRT
operator [29]. In the stratified straight channel, Eq. (38)
first reduces to Eq. (31b), applying Eq. (26) for g−

q . After
substituting drag force (37), Eq. (31b) reduces to Eq. (33) with
δi(Bi,�i) given by Eq. (39):

δi(Bi,�i) = δis
i +

(
�i − 1

4

)
Bi = Bi(8�i − 3)

12
. (39)

The discretized channel solution has form (34) with

ri(Bi,�i) =
2 ±

√
3Bi

3+2Bi�i

2 ∓
√

3Bi

3+2Bi�i

. (40)

Thereby, on the one hand, when �i � 3
8 , δi � 0, then νi > 0

and ri > 0. However, we will observe that this choice is quite
inaccurate for poorly resolved interfaces. On the other hand,
when �i ∈]0, 3

8 [, then νi > 0 only provided that Bi < 12
3−8�i

or, equivalently, Da(i)
B > (3−8�i )

12H 2 (see Table II). This means
that νi is positive independently of �i when � ∈]0, 3

8 [ only for

relatively large Darcy values: Da(i)
B � 1

4H 2 .

Remark 1. Since Da(i)
B = Dai

fi (φ) , smaller Darcy numbers
Dai are available when fi(φ) < 1. In particular, if one sets
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FIG. 5. (Color online) The BF velocity profiles in single channel of width H = 8 in three regimes (from left to right): σ = 1 (Stokes-
Brinkman regime), σ = 8 (Brinkman), and σ = 160 (Darcy-Brinkman) with � = { 1

512 , 3
16 , 3

8 ,2}(dashed,solid,dotted,dot-dashed). The triangles,
circles, lozenges, and squares mark the grid points. The analytical solution is matched closely by � = 3

16 in the two first diagrams; it is
dot-dashed (black) in the last diagram.

fi(φ) < 4ki

H 2 , the constraint vanishes. However, fi(φ) modifies
the effective profiles, and hence kB , as can be easily understood
from Eq. (25).

Remark 2. Whenever νi < 0, numerical profiles oscillate.
Nevertheless, the computations will show that the BF remains
stable.

B. The interface and the boundary

Here the starting points are Eqs. (13) for the interface and
Eq. (15) for the bounce-back. To prescribe g±

q there, we first
substitute Eq. (37) into Eq. (30), which together with Eqs. (26)
yields:

g+ (i)
q (y)

= tqcqxcqy

{
1 − Bi

[
�i

3
−

(
�i − 1

4

)
c2
qy

]}
�̄yj

(i)
x (y),

(41a)

�−
i

(
Fq − g− (i)

q

)
(y)

= �−
i

[
F (i)

x (y) − ∇xP
]
tqcqx

(
1 − 3c2

qy

)
. (41b)

Accounting for δi from Eq. (39), Eqs. (41) become for
interface or boundary cutted links:

g+ (i)
q (y) = tqcqxcqy(1 + δi)�̄yj

(i)
x , c2

qy = 1,

(42a)

�−
i

(
Fq − g− (i)

q

)
(y) = 2�i

3
tqcqx(1 + δi)�̄

2
yj

(i)
x , c2

qy = 1.

(42b)

At the same time, we also substitute g−
q from Eqs. (26) into

stress-continuity condition (13a). We divide it by factor 3 and
reorganize as:∣∣∣∣

∣∣∣∣ − 1

3
tq

(
P ± 1

2
∇xP cqx

)
+ �+

i

3
g+

q

± 1

2
tq

[∇xP − F (i)
x (y)

]
cqxc

2
qy

∣∣∣∣
∣∣∣∣
Yi∓ 1

2

= 0. (43)

Finally, we account for the pressure continuity condition mid-
way through the interface cutted link: P + 1

2∇xP cqx |Yi− 1
2

=
P − 1

2∇xP cqx |Yi+ 1
2
, and then replace g+ (i)

q with its solu-

tion (42a) and [∇xP − F (i)
x (y)] with the effective channel bulk

equation (33). This yields the interface condition (36a). In turn,
Eq. (13b) with Eqs. (42) reduces to Eq. (36b) with (see also in
Table II):

BF : α+
i = 1 + δi, α−

i = 16
3 �i(1 + δi). (44)

The bounce-back closure relation (35) also employs coeffi-
cients (44).

Remark The BF differs from the IFD in Table II since
the former yields δi = 0 only for �i = 3

8 , but then α−
i = 2.

One exception is the one-node per layer bounded or periodic
heterogeneous system (A8) where BF(�i = 3

16 ) reduces to
IFD.

Figure 5 shows symbolic BF profiles in three regimes:
Stokes-Brinkman (σ = 1), Brinkman (σ = 8), and Darcy-
Brinkman (σ = 160). They demonstrate that large � values
shift the boundary outside the channel for σ = 1, but the
profiles preserve their (parabolic) form. In the Brinkman
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FIG. 6. (Color online) Velocity profiles (dashed) of the “ideal” IFD scheme in a single channel of width H = 8 in three regimes (from left
to right): σ = {20,40,80}. The exact solution is plotted by a solid line.
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FIG. 7. (Color online) Velocity profiles of the BF in a single porous channel of width H = 8 are plotted in three regimes (from left to right):
σ = {20,40,80} for � = { 1

512 , 3
16 , 3

8 } (circle, triangle, lozenge); the exact solution is shown with a dot-dashed line. The profiles are limited to
u > 0.

regime, the profiles deviate by a larger extent from the
analytical solution (still well matched for � = 3

16 ). In the
Darcy regime, Uj in last grid nodes y = ±H±1

2 = ± 7
2 lies

on the exact velocity branch for all �, such that their symbolic
continuation towards y = ±4 is only very slightly decreasing.
We also notice the appearance of oscillations for � < 3

8 , where
νi is negative.

Figure 6 plots symbolic velocity profiles when σ =
{20,40,80} with the IFD scheme. Those profiles also do
not accommodate the prescribed zero value at y = ±H

2 , the
discrepancy increases rapidly with σ , meaning that the second-
order truncated central-difference Taylor approximation (35)
is not accurate enough on the sharp Darcy profiles, even for
ideal coefficients α± ≡ 1. Figure 7 shows that this situation
becomes much more complex in BF: � = 3

16 noticeably under-
estimates boundary velocity at y = 4 for σ = 20, followed by
strong oscillations exhibited with � = 1

512 . Remarkably, their
amplitude decreases with σ when |δ| increases. This effect is
because of the coupling with the boundary [cf. Eq. (A3)].

Figure 8 illustrates the curious situation in a single channel
where we apply a pair of two different values (�1,�2),
respectively, for boundary and bulk nodes. It appears that
( 3

16 , 1
512 ) almost vanishes the oscillations presented by ( 1

512 , 1
512 )

and the solution becomes only slightly more oscillating in the
bulk than for ( 3

16 , 3
16 ). On the other hand, ( 1

512 , 3
16 ) only slightly

amplifies the boundary oscillation computed with ( 3
16 , 3

16 ).
Finally, the two pairs, {�1,�2} = {( 3

8 , 3
8 ),( 1

512 , 3
8 )}, get nearly

the same solutions. Thus, although sufficiently large boundary
value �1 suppresses bulk oscillations, a boundary value �1

will not induce them provided that sufficiently large �2 is
used.

Figure 9 illustrates the problem of the interface condi-
tions (36) in the periodic channel for the permeability contrast
of 102 in the Stokes-Brinkman regime σ ≈ 2.81, using two
and eight nodes per layer. The two schemes displayed are
as follows: the IFD and BF(� = 3

8 ) = IBF(� = 3
8 ). The IFD

demonstrates that the second-order Taylor conditions (36) with
exact coefficients, such as νi = ν

(i)
B and α±

i = 1, produce very
noticeable interface slip velocity jumps on the coarse grid. The
BF with �i = 3

8 also yields δi = 0 but it further enlarges the
interface velocity jump. This explains why large �i values
should be avoided on coarse grids, even if they vanish the bulk
oscillations.

Figure 10 shows that, despite the similarity between the
Stokes-Brinkman limit on the open-impermeable interface and
Poiseuille solution in the single channel, the interface velocity
jump inside open flow is much larger than the bounce-back
discrepancy in the location of the no-slip boundary, for the
same � in same resolution. The IBF reduces interface velocity
jumps for typical � values, also improving permeability
measurements.

Figure 11 helps us explaining why the permeability
observed in Fig. 10 improves for small �. Four possible
combinations of the two values �i ∈ { 3

8 , 1
512 } are applied for

permeability contrast k2/k1 = 106. The most accurate choice
is �1 = �2 = 1

512 , followed by ( 1
512 , 3

8 ) and then ( 3
8 , 1

512 )
and ( 3

8 , 3
8 ) (the worst). This figure clearly shows that the

improvement in the permeability is due to the decrease of
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FIG. 8. (Color online) The BF is used with two different values {�1,�2} in boundary and bulk nodes, respectively, in a single channel
of width H = 16, σ ≈ 506 (k = 10−3). The exact solution is plotted with a solid (black) line. Left diagram: (�1,�2) = {( 1

512 , 1
512 ),( 3

16 , 1
512 )}.

Middle diagram: (�1,�2) = {( 3
16 , 3

16 ),( 1
512 , 3

16 )}. Right diagram: (�1,�2) = {( 3
8 , 3

8 ),( 1
512 , 3

8 )}. In the three diagrams, the first of two pairs
(�1,�2) is dot-dashed (blue) and the second one is dashed (red).
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FIG. 9. (Color online) Velocity profiles in a two-layered periodic channel for k2/k1 = 102, σ ≈ 2.8 using the “ideal” IFD scheme (first and
third diagrams) and BF(� = 3

8 ) = IBF(� = 3
8 ) (second and fourth diagrams). Each layer has two and eight nodes in the first two and last two

diagrams, respectively. The analytical solution is shown with a dashed line.

interface velocity jump inside the open layer with the help of
small � value in impermeable layer.

Figure 12 illustrates how the setting individual �1i and/or
�2i values, employed in one or two interface points, may
create slip-velocity jumps inside the same layer. This alerts us
for the fact that the use of local discontinuous � distributions
have to be adopted with care.

In summary, in the interface between open and porous
layers, the BF has worse accuracy than the bounce-back on
a solid wall. It follows that using Brinkman schemes through
the whole domain with low-permeable “solids” cannot be
recommended. The BF has better overall accuracy when a very
small value � is applied, either in all nodes or at least inside
the low-permeable layer. In the two cases, solution oscillates
for very small Darcy numbers. In addition, the uniform choice
of small value � is quite inaccurate for boundaries in open
flow. The strategy IBF presented in Sec. IV may dispel the
oscillations for all � in a straight channel.

C. Darcy solution for zero effective viscosity

The effective viscosity νi reduces to zero if δi = −1:

Bi = 12

3 − 8�i

, Bi � 4, or �i = 3(Bi − 4)

8Bi

,

�i ∈]
0, 3

8

]
, �i → 3

8
if Bi → ∞. (45)

We might suggest that the scheme then solves the Darcy
equation.

Indeed, in a single channel, the solution consists of the
Darcy component uD for all nodes, except the boundary yb =

±H
2 ∓ 1

2 (see Fig. 13), that is:

uj (y) = uD if yj �= yb,
(46)

uj (yb) = uD

2

(
1 + (B − 4)

B

)
= B − 2

B
uD, B � 4.

The bounce-back accommodates the flat profile with the
help of the intermediate velocity (46) in the grid-boundary
node yb. When Bi → ∞, then uj → uD , meaning that the
accommodation value approaches the flat profile. Therefore, as
could be expected, the formal use of zero viscosity via δi = −1
will increase the velocity value in grid boundary node.

Remark 1. The velocity solution (46) has been derived from
the bounce-back closure relation (15) substituting Eqs. (26) for
g− (i)

q and the following solution for g+ (i)
q :

g+
q

(i) = −F
(p)
x + B

(i)
f ρ0ui

2ν
(i)
B

tqcqxcqy. (47)

This solution has been derived from Eq. (13a), where g− (i)
q (yb)

is given by Eqs. (26) for outgoing populations but the
incoming populations from the flat Darcy profile at y = yb − 1
yield: g± (i)

q (yb − 1) = 0. Then Eq. (47) solves 1
2g− (i)

q (yb) −
�+

i g+ (i)
q (yb) = 0.

Let us illustrate now the interface situation in the specific
limiting case when νi vanishes in the two layers due to the
choice (45). The solution of the system is very similar: The
velocity profile consists of two Darcy values u

(i)
D everywhere,
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FIG. 10. (Color online) Velocity profiles in Stokes limit σ ≈ 0.26, k2/k1 = 106 with the BF (left diagram) and IBF (middle diagram),
� = { 1

512 , 1
8 , 3

16 } [circles (magenta), lozenges (blue), and triangle (red)]. The exact solution is dot-dashed (black). Right diagram: Bounce-
back Poiseuille solution with the same � (exact solution is for � = 3

16 ). Relative permeability errors: Err(k)[%] = {3.8,31.3,42.6} in BF,
Err(k)[%] = {13.4,14.3,28.5} in IBF, and Err(k)[%] = {−6.2,0,3.125} in Poiseuille flow.
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FIG. 11. (Color online) Two periodic layers with H = 8, k2/k1 = 106, σ = 0.26 when two different values � = (�1,�2) are used in two
layers. The analytical solution is shown in the dash-dotted (black) line. (i) ( 1

512 , 1
512 ); (ii) ( 1

512 , 3
8 ); (iii) ( 3

8 , 1
512 ); (iv) ( 3

8 , 3
8 ).

except in the two interface accommodation nodes y = Y ± 1
2 ,

that is:

u
(i)
j = u

(i)
D = F (p)

ρ0B
(i)
f

, if yj �= Y ± 1

2
,

u(1)

(
Y − 1

2

)
= 〈uD〉 + γ

[
B2B

(1)
f + (−4 + B1)B(2)

f

]
,

u(2)

(
Y + 1

2

)
= 〈uD〉 − γ

[
B1B

(2)
f + (−4 + B2)B(1)

f

]
,

with γ = ρ0
(
B

(2)
f − B

(1)
f

)
(F (p) − ∇xP )

2B
(1)
f B

(2)
f

(
B2B

(1)
f + B1B

(2)
f

) ,

〈uD〉 = (
u

(1)
D + u

(2)
D

)
/2. (48)

This solution is illustrated in Fig. 13 for a periodic two-layered
channel which can be obtained numerically, e.g., with �1 =
�2 = �. This means, from Eq. (45), that the same value Bi =
fi(φ)/ki = B(�) for two different permeability values ki due
to fi(φ) = kiB(�).

Remark 2. Velocity profile (48) has been constructed
similarly to Eq. (47), but now using a four-layer solution
where the two interface layers each consist of one node; two
interface-to-bulk relations (13a) give Eq. (47). Then we plug
these relations, together with Eqs. (26) for g− (i)

q , into interface
condition (13b) and derive velocity solution (48).

To summarize, this constructed solution shows that the
BF may run the Darcy equation in different layers thanks
to the two-node interface accommodation and, similarly to
the boundary, the interface velocities will approach their
respective flat profiles with the decrease of the Darcy
number.

IV. THE MODIFIED TRT MODELS AND
IMPROVED IBF SCHEME

A. Motivation, ideas, and summary of results

There are many ways to eliminate the viscosity correction δ

in a single porous channel. Several of them have been already
outlined in Ref. [29]. For example, one may redefine B →
B�(B,�) or, inversely, � → ��(B) and to fit solution (34)
of the discretized equation (33) to the exact (continuous)
solution (22) (see Eqs. (32) and (33) in Ref. [29]). Otherwise,
one may eliminate δ in discretized equation (33) with the
help of the anisotropic force weights (Eq. (A6) in Ref. [29]).
Furthermore, one can think about a nonlocal modification of
the force stencil via the correction F (r)

q → F (r)
q − C�̄2

qF
(r)
q ,

and then

δ = 0 if C(�,B) = 3 − 8�

4 + B
. (49)

This last technique is based on the ideas in Ref. [29] but
solution (49) was not found in that work [see (A.13) there]. All
these techniques and their combinations have been examined
for interface or boundary in stratified channels. We find that
the new local IBF scheme from Table I globally outperforms
them in versatility and stability. In contrast with strategy (49),
the IBF does not modify the local momentum, and, unlike the
first two mentioned strategies, it is available for all parameters
keeping � free. The working principle behind IBF is explained
as follows. Assume that the entire forcing Fq = F (r)

q + F
(p)
q

from Eq. (37) is directly added to the outgoing populations
and, thereby, the postcollision quantities g±

q = −s±(f ±
q − e±

q )
have neither mass nor momentum contributions. Now let us
modify TRT update (2) with two local corrections A+g+

q
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FIG. 12. (Color online) Two periodic layers of permeability contrast 102 at σ = 0.796. The analytical solution is shown in dash-dotted
(black) and BF profiles are shown in dashed (blue) lines. At the interface nodes, local values {�1i ,�2i} are applied. (a) � = 1

512 except �1i = 3
8 ;

(b) � = 1
512 except �2i = 3

8 ; (c) � = 1
512 except �1i = �2i = 3

8 ; (d) � = 3
8 except �1i = �2i = 1

512 .
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FIG. 13. Exact solutions (46) and (48) in BF when νi(B,�) = 0: The single channel is on the left and the periodic two-layered channel
with k2/k1 = 10 is on the right. The solution is � independent in bulk nodes (circles). In the boundary or interface nodes it is plotted for
� = { 1

512 , 1
8 , 3

16 } (lozenge, square, triangle).

and/or A−g−
q :

f̃q(�r,t) = fq(�r,t) + G+
q + G−

q + Fq, G±
q = g±

q + A±g±
q ,

g±
q = −s±n±

q , n±
q = f ±

q − e±
q , e−

q (�r) = tq( �J · �cq).

(50)

It has been first understood [49] that the gray
schemes [35,37,38] are covered by Eq. (50) for individual
coefficients A±. The modified update alters the effective vis-
cosity �+/3 to �+(1 + δ�(A±))/3 and modifies the effective
coefficients α± in closure relations. These results for gray
schemes are shown in Table III. The straightforward idea
is to look for two coefficients A± which (i) vanish δ�(A±)
and (ii) improve the boundary or interface. The relationship
A+(A−,B,�+,�) which assures δ�(A±) = 0 is given by
Eq. (B12); the associated coefficients α±(A−,B,�+,�) are
given by Eq. (B13). It happens that there is no solution
for A+(A−) which would put the two coefficients α± equal
to 1, meaning that no modified scheme coincides with the
IFD scheme from Table I. In particular, requiring α+ = 1 for
A+ = 0 results in a scheme called BF−:

BF− : A+ = 0, A− = 8� − 3

3 + 4�+ , δ�(A±) = 0,

α+ = 1, α− = 2. (51)

Obviously, for � = 3
8 this scheme reduces to BF, together

with its coefficients α±. The reason for this result is very
simple: The BF scheme (2) with s±

� coincides with the modified
scheme (50) provided that

s+
� = (1 + A+)s+, s−

� = (1 + A−)s−. (52)

As one example, applying Eq. (52) with A± from Eq. (51), one
gets s+

� = s+, s−
� = 8�+

3+4�+ , that is �� = ( 1
s+
�

− 1
2 )( 1

s−
�

− 1
2 ) =

3
8 in BF. This scheme BF(� = 3

8 ) is also obtained applying
Eq. (52) to coefficients A± of the two gray schemes, GS�

and ZM�, where A+ = 0, for their specific solution �(B,�+),
where δ� = 0 (see Table 4 in Ref. [49]). It also appears
that the BF− is equivalent to the aforementioned anisotropic
force weights [29] and this property is not restricted to
channel flow. The intrinsic reason for this “equivalence”
is that all these schemes vanish δ� with the help of the
antisymmetric component g−

q alone. Next, it is fruitful to set

A− = 0 and enforce δ�(A+) = 0 with A+. This scheme is
called BF+:

BF+ : A+ = B�+(8� − 3)

6 + 12�+ + 3B�+ + 4B�
,

A− = 0, δ�(A±) = 0. (53)

Again, it reduces to BF for � = 3
8 . Applying Eq. (52) with A+

from Eq. (53), we deduce the associated eigenvalue s+
� . At the

same time, s−
� remains unchanged: s−

� = s−, since A− = 0.
This eigenvalue choice gives us the IBF scheme from Table I
examined in detail below.

In summary, there are two equivalent implementations of
the “modified” scheme (50), and IBF or gray schemes in par-
ticular. The first one updates populations with Eq. (50), that is,
it adds the postcollision corrections to standard TRT update (2)
with Brinkman forcing (37). The second one applies the BF
in this original form but with locally modified eigenvalues
s±
� . The two forms are linked via Eqs. (52). Thereby, there

also exist two approaches to analyze the modified schemes.
The first one applies the extended solution of the recurrence
equations developed in Appendix B. Although this might
appear unnecessarily complicated, the methodology developed
there has the advantage that it can be extended for other
problems. The second approach simply updates the eigenvalue
functions �± to �±

� in the already derived BF results. This
update approach has its subtle points, as is demonstrated
by Eq. (59) for IBF model, since now νB �= �+

� /3. Finally,
there exists an infinite number of combinations A+(A−),
given by Eq. (B12), where δ�(A±) = 0. Future work needs
to explore whether the modified update (50) may motivate
another interesting and consistent candidates.

B. The IBF scheme

The IBF applies the TRT update (2) with equilibrium (7) and
forcing (37) but it modifies the eigenvalue of the symmetric
component: s+ → s+

� = 1/(�+
� + 1

2 ) (see Table I). Namely,
assuming that the three quantities mentioned above are
locally prescribed: (i) �+ = 3νB , (ii) Bf = ν/k, and (iii)
� (meaning �− = �/�+), the IBF operates with two local
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FIG. 14. (Color online) This figure plots two-layered symbolic periodic solutions ux/uD with k1 = 0.02(7), k2 = 6.25 for four models:
GS�, WBS�, ZM�, and IBF, with �+ = 3νB = 1

2 in the top and �+ = 3νB = 3
2 in the bottom, � = 1

8 for all results. The analytical solution is
plotted in a solid line (black). Except for the IBF, the nondimensional solutions ux/uD differ for two viscosity values.

functions �±
� :

IBF : �+
� (B,νB,�) = 1

s+
�

− 1

2
= 9(4 + B)νB

4(3 + 2B�)
,

B = Bf

νB

= f (φ)

k
,

(54)
�−

� = 1

s−
�

− 1

2
= �− = �

�+ ,

�+ = 3νB = 3ν

f (φ)
.

The two schemes, BF and IBF, coincide for � = 3
8 , where

�+
� = �+. We emphasize that �+

� depends linearly on νB ,
like �+ in the traditional approach, but the coefficient of
proportionality now depends on the local permeability and
control parameter �. At the same time, the effective “magic”
parameter of IBF is ��(B,�) and it is independent of νB :

��(B,�) = �+
� �−

� = �+
�

�+ � = 3(4 + B)�

4(3 + 2B�)
,

lim
B→0

�� = �, lim
B→∞

�� = 3

8
,

��(B,�) = � if � = 3

8
, ∀ B. (55)

That means that even when � is set constant over the domain,
the IBF operates with the heterogeneous distribution ��(�r)
set by B(�r), except when � = 3

8 and �� = �. Notice that
the IBF remains consistent since ��(�r) remains fixed on the
given grid together with B(�r) and �(�r) due to the linearity
of function �+

� (�+). This is confirmed by the viscosity-
independent nondimensional Brinkman profiles in Fig. 14.
The modified �+

� and the traditional �+ = 3νB present the
following interesting limiting relations:

lim
B→0

�+
�

�+ = 1, lim
B→∞

�+
�

�+ = 3

8�
,

(56)

lim
�→0

�+
�

�+ = 4 + B

4
, lim

B→∞,�→0

�+
�

�+ = ∞.

This last relation is consistent with the fact that, in the
Darcy limit σ → ∞, the IBF compensates negative infinite
correction δ of the standard scheme. In fact, in the straight
channel, the IBF has the following coefficients in Eq. (33) and
boundary or interface relations [(35) and (36)]:

δ ≡ 0, then r(B) = 1

2
(2 + B ±

√
B

√
4 + B),

α+ = 1 + B(8� − 3)

3(4 + B)
= �

��

= �+

�+
�

,

(57)

lim
B→0

α+ = 1, lim
B→∞

α+ = 8

3
�,

α− = 16

3
� : α−|�= 3

16
= 1.

The IBF has a zero-viscosity correction δ = 0 in the straight
channel. This can be readily obtained by using Eq. (11b) with
Eq. (26) for �±

� :

∇P − �Fp − �F (r)

=
[
�+

�

3
− Bf

�−
� �+

�

3
+ Bf

(
�� − 1

4

)]
�̄2 �j . (58)

The coefficient of �̄2 �j corresponds to the effective numerical
viscosity. Equating it to the prescribed viscosity �+/3 = νB ,
one gets the solution for �+

� (B,νB,�) given by Eq. (54).
The key point is that the IBF operates with B = Bf /νB

where νB �= �+
�

3 . Due to this one cannot obtain the coefficient
α+ in Eq. (57) simply by replacing δ by zero in Eq. (42a).
Nevertheless, one obtains it from generic equation (30), which
in the presence of the drag force there and restricted to the
cutted links c2

qy = 1 reads:

g+
q (y) = α+tqcqx�̄qjx(y),

(59)

α+ = 1 − Bf

[
�−

� − 3
(
�� − 1

4

)
�+

�

]
.

Replacing again �−
� with �− and �� with �+

� �− and
substituting Eq. (54) for �+

� , Eq. (59) gives Eq. (57) for α+.
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FIG. 15. (Color online) Similarly as in Fig. 7 but with the IBF.

In turn, Eqs. (26) and then Eq. (42b) are valid to apply δi = 0
in them, since they correspond to the effective discretization
of the IBF scheme.

Remark 1. The IBF is equivalent to BF+ via eigenvalue
transform (52) applied to coefficients A± from Eq. (53). Ac-
cordingly, coefficients α± in Eq. (57) coincide with Eq. (B13).

Remark 2. Vanishing of the viscosity correction in the
diagonal channel is extended straightforwardly by following
Ref. [29] and replacing (�� − 1

4 ) with 1
2 (�� − 1

4 ) in Eqs. (58).
Although derived in the straight channel, the computations in
random media will show that the IBF improvements are not
limited to channel flow.

Figure 15 shows that the IBF vanishes the oscillations
displayed by BF in Fig. 7 and behaves very similarly to the IFD
in Fig. 6 for intermediate �, such as � = 3

16 . On the other hand,
the IBF has very sharp profiles on the boundary or interface
when � → 0. The curvature coefficient α− in IBF is indepen-
dent of the flow regime and is exactly the same as in Stokes
flow. This last feature explains the improvment of the velocity
continuity condition observable in Fig. 10 when � lies in the
basic (Stokes) � interval. Typically, reduction of the interface
velocity jump with IBF results in an improvment of permeabil-
ity measurements, e.g., by a factor of 2 for � = 1

8 in Fig. 10.
When the permeability distribution is heterogeneous, the

IBF applies with local values B(�r) in Eqs. (54), and hence
with Bi in multilayers. Figure 16 illustrates the evolution
of two values, {�(1)

� ,�
(2)
� } and {α+

1 ,α+
2 }, towards σ = Da−1/2

[cf. Eq. (23)] in two periodic layers of permeability contrast
k2/k1 = 103 for four input values of control parameter � =
{ 1

100 , 1
12 , 3

16 , 3
8 }. When � = 3

8 , then �
(1)
� = �

(2)
� ≡ � and α+

1 =

α+
2 ≡ 1 for all σ . Otherwise, in the intermediate zone, one

observes that �
(1)
� � �

(2)
� and α+

1 � α+
2 (with {�(1)

� ,α+
1 } in the

less permeable layer). In the Stokes limit σ → 0, �(i)
� = � and

α+
i = 1. In the Darcy limit σ → ∞, �(1)

� and �
(2)
� take the limit

value �
(i)
� = 3

8 while α+
i = 8�

3 . In this limit, α±
i → 0 when

� → 0, i.e., the two interface velocity values in relations (36b)
are approached improving for permeability.

However, since α+
i ≡ 1 for � = 3

8 and this choice is
quite inaccurate for interface and permeability measurements,
we should conclude that the the curvature coefficient α−

i

dominates accuracy of these solutions, similarly to what
happens in Stokes flow.

Further comparisons for IBF with the BF and FEM in
stratified channels are found in Figs. 17–20. The solutions
for “optimal” � are presented in Figs. 21 and 22. Permeability
predictions for three schemes are compared in Figs. 23–25 in
two layers, followed by results in Figs. 26–31 for 1D and 2D
random distributions.

C. The “partial bounce back” gray schemes

According to Ref. [49], gray schemes can be implemented
in the common form:

fq(�r + �cq,t + 1) = f̃q + k+fq + k−fq̄ + k̃+f̃q + k̃−f̃q̄ + Fq,

f̃q(�r,t) = fq(�r,t) + g+
q + g−

q , with
(60)

e−
q = tq( �J · �cq),

�J =
Qm∑
q=1

fq �cq, Fq = tq(1 − ns)( �Fp · �cq).
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FIG. 16. (Color online) Two-layered periodic system of permeability contrast k2/k1 = 103 and h1 = h2 = 6 by use of the IBF scheme. The
left and middle diagrams plot for two layers (a) effective distributions {�(1)

� ,�(2)
� } from Eq. (55) and (b) coefficients {α+

1 ,α+
2 } from Eq. (57),

with light gray (color line) denoting the low-permeable layer where �(1)
� � �(2)

� and α+
1 � α+

2 and the black lines the second layer. The results
are plotted for � = { 1

100 , 1
12 , 3

16 , 3
8 } (dot, dashed, dot-dashed, solid). The right plot shows the associated permeability error.
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FIG. 17. (Color online) The Stokes-Brinkman profiles for σ = 10 in a single porous channel of width H = 8. Left diagram: Predicted
FEM solution (A9) is plotted with the dashed (red) line; COMSOL solution with the black symbols; BF(� = 1

8 ) solution (A3) with open symbols;
the analytical solution is shown in dot-dashed (black). The BF(�) and IBF(�) symbolic solutions are plotted in the middle and right diagrams
for � = { 1

512 , 3
16 , 3

8 ,2} (dashed,solid,dotted,dot-dashed). Accordingly, the symbols triangle, circle, lozenge, square mark the grid solution Uj .
The analytical solution is very closely matched by � = 3

16 .

The coefficients k+ to k̃− are related to the locally prescribed
“solid” fraction ns as summarized in Table III for schemes
called GS� [35,36], WBS� [37], and ZM� [38]. All of them
introduce momentum sink equal to −2ns

�J . The redefinition of
their macroscopic solution �j = ρ0 �u with 1

2
�F = 1

2 ( �Fp − Bf �j )
is imperative to obtain a constant Darcy velocity in series of
blocks [49]. This has been realized in Ref. [37] by averaging
the incoming and outgoing momentum. The three schemes
then relate �j to �J exactly as in the BF model (7) and they have
the common expression for local permeability value k(ns,ν)
with

�j = (1 − ns)

(
�J + 1

2
�Fp

)
= �J + (F (p) − Bf

�J )

2 + Bf

,

Bf = ν

k
= 2ns

1 − ns

, k(ns,ν) = (1 − ns)ν

2ns

. (61)

Applying Eqs. (4) in Eq. (60), and keeping in mind that the
sum of coefficients k+ to k̃− is equal to zero in all schemes
keeping mass conserved, the gray schemes are matched by the
modified operator (50) with the entire forcing �F = �Fp − Bf �j
and coefficients A± gathered in Table III:

A+ = −k+ + k− + k̃+ + k̃−

s+ + (k̃+ + k̃−),
(62)

A− = −k+ − k− + k̃+ − k̃−

s− + (k̃+ − k̃−).

The modeled Brinkman channel equation retains form (33)–
(34b) with boundary or interface conditions (35) and (36).
They should be read with δ = δ�(A±) given by Eq. (B9) and
α± given by Eq. (B11). All of them are reported in Table III.
The specific solution for �(B,�+) which vanishes δ�(A±)
simply solves the linear equation δ�(�) = 0 (cf. Table 4 in
Ref. [49]). Table III shows that, on top of B and �, δ�(A±)
and α±(A±) nonlinearly depend on the kinematic viscosity ν

via �+ = 3νB . Their dimensionless velocity profiles ux/uD

then differs for two viscosity values, as illustrated in Fig. 14.
This deficiency is smaller in the WBS� scheme, for these data
at least. The GS� scheme has larger amplitude, negative value
δ�(A±) and numerically is much less stable than all others.

Thus, unlike the BF and IBF, these three gray schemes
feature viscosity-dependent permeability solutions, even in the
frame of the TRT model with fixed �(�r) distribution. It follows
that these schemes reduce to BF via viscosity-dependent
eigenvalue transforms, and vise versa, as given in Tables 5
and 6 in Ref. [49]. Indeed, with help of their free parameter �,
the GS� and ZM� get solutions of the BF(s−

� ) by substituting
their coefficients A± into Eq. (52) to get s−(s−

� ). This way,
they may directly get solutions of each other and IBF applying
that following eigenvalue transform, relating any couple of
two models (50):

(1 + A+
� )s+

� = (1 + A+)s+, (1 + A−
� )s−

� = (1 + A−)s−.

(63)
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FIG. 18. (Color online) The exact solution (25) is plotted by the dot-dashed (black) line for σ = 103 in the single channel of width H = 8.
Left diagram: FEM solution (A9) is plotted with the dashed (red) line, COMSOL solution with the black symbols, and BF(� = 1

8 ) with open
symbols. In middle and right diagrams, the grid-node solution is zoomed for � = { 1

8 , 3
16 , 3

8 } (circles, triangles, lozenges), with BF and IBF,
respectively.
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FIG. 19. (Color online) The same configuration as in Fig. 9: FEM, BF(� = 1
8 ), and IBF(� = 1

8 ), from left to right, with hi = H/2 = 2 in
the top row and hi = 8 in the bottom.

The WBS∗ scheme will also obtain solutions of BF, IBF,
GS∗, and ZM∗ but transforming its two relaxation rates with
Eq. (63).

In summary, the gray schemes have shown that, with a naive
microscopic modification (50) of a population update, the
solutions may violate the dimensional groups of the modeled
equation. This is easily observable in νB dependency for
equivalent eigenfunctions �+

� in the standard population up-
date when a viscosity-independent control parameter � is set.
Unlike the gray schemes, the IBF remains consistent in such
parameter configuration due to its linear dependency �+

� (νB).

V. THE FEM BRINKMAN SCHEME IN STRATIFIED
CHANNELS

We assume constant pressure distribution and constant
density ρ0, the flow being driven along the channel axis x by the
constant external force F

(p)
x . The material properties k(i)

e and
φi are piecewise constant per layer. The grid is uniform with
space step δy along the y axis. Velocity and stress-continuity

conditions are prescribed on the interface Yi as follows:

ux |Yi− = ux |Yi+, ν
(i)
B ∂yux |Yi− = ν

(i)
B ∂yux |Yi+. (64)

The standard Galerkin formulation is applied to discretize
Eq. (1). The velocity is discretized on the Ne + 1
vertexes yj of Ne elements: ux(y) = ∑Ne+1

j=1 u
(i)
j �j .

A piecewise-continuous global interpolation function
�j (y) is defined featuring the linear shape functions:
�j (y) = ψ2(y),y ∈ [yj−1,yj ], �j (y) = ψ1(y),y ∈ [yj ,yj+1],
ψ1(ξ ) = (1 + ξ )/2, ψ2(ξ ) = (1 − ξ )/2, with ξ ∈ [−1,1]
in local coordinates. The discretization of the drag
forcing considers the interface vertex yj = Yi to be
shared by two elements [yj−1,yj ] and [yj ,yj+1]. Hence,
inside each element, the drag force is approximated
as F r(i)(y) = −F (i)

e ρ0ux(y), F (i)
e = ν

k
(i)
e

. Multiplying
Eq. (1) by �j and integrating over the domain yields∫ yj

yj−1
F r(i)(y)�j (y)dy = −F (i)

e ρ0(u(i)
j−1bj−1 + u

(i)
j bj )δy ,∫ yj+1

yj
F r(i)(y)�j (y)dy = −F (i+1)

e ρ0(u(i)
j bj + u

(i+1)
j+1 bj+1)δy ,
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FIG. 20. (Color online) Exact solution in two-layered bounded channel is plotted with a dot-dashed line (black), predicted FEM with a
dashed (red) line, COMSOL with filled (black) symbols, and BF(� = 1

8 ) with open symbols (left and middle diagrams). Left diagram: k2/k1 = 10,
σ = 103, H = 8. Middle diagram: k2/k1 = 10, σ = 103, H = 16. Right diagram: BF with � = { 1

8 , 3
16 , 3

8 }.
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FIG. 21. (Color online) The left and middle diagrams plot the solution for �(σ ) where E(k) = 0 in the single porous channel H =
{4,8,16,48}: (a) BF, σ < 2H (shaded with different color for different H ); (b) IBF, ∀ σ . Right diagram: plot of E(k) in IBF for H = 8 when
� = { 1

512 , 1
8 , 3

16 } (solid, dashed, dotted).

with bj−1 = bj+1 = 1
2

∫ 1
−1 ψ1(ξ )ψ2(ξ )dξ = 1

6 , bj =
1
2

∫ 1
−1 ψ1(ξ )ψ1(ξ )dξ = 1

2

∫ 1
−1 ψ2(ξ )ψ2(ξ )dξ = 1

3 . The
variational formulation of the Brinkman equation (1) takes
the following discretized form in vertex j :

δy

2

[
−F (p)

x + F (i)
e

3
ρ0

(
2u

(i)
j + u

(i)
j−1

)]

+ δy

2

[
−F (p)

x + F (i+1)
e

3
ρ0

(
2u

(i+1)
j + u

(i+1)
j+1

)]

= ν
(i+1)
B ρ0

u
(i+1)
j+1 − u

(i+1)
j

δy

− ν
(i)
B ρ0

u
(i)
j − u

(i)
j−1

δy

,

with F (i)
e = ν

k
(i)
e

. (65)

The equivalent form reads

δy

2

(−F (p)
x + F (i)

e ρ0u
(i)
j

) + δy

2

(−F (p)
x + F (i+1)

e ρ0u
(i+1)
j

)

=
(

ν
(i+1)
B − F (i+1)

e δ2
y

6

)
ρ0

u
(i+1)
j+1 − u

(i+1)
j

δy

−
(

ν
(i)
B − F (i)

e δ2
y

6

)
ρ0

u
(i)
j − u

(i)
j−1

δy

. (66)

Inside each layer system obeys:

−F (p)
x + F (i)

e ρ0u
(i)
j

= ν
(i)
B

(
1 − 1

6

F (i)
e δ2

y

ν
(i)
B

)
ρ0

u
(i)
j+1 − 2u

(i)
j + u

(i)
j−1

δ2
y

. (67)

Assuming that the velocity u
(i)
j satisfies Eq. (67) for its

virtual continuation to node j + 1, and then replacing
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FIG. 22. (Color online) Top row: Predicted solution �(σ ) where IBF yields E(k) = 0 in three two-layered systems illustrated in bottom
row for σ = {1,5,50} from the left to the right. Left diagrams: Rh = h1/h2 = 1, Rk = k2/k1 = 103. Middle diagrams: Rh = h1/h2 = 23,
Rk = k1/k2 = 103. Right diagrams: Rh = h1/h2 = 23, Rk = k2/k1 = 103.
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FIG. 23. (Color online) The two-layered asymmetric periodic systems of width H = 48 with the BF and IBF when r2
k = k1/k2 = 10−3

[(a) and (b)] and r2
k = k1/k2 = 103 [(c) and (d)]; the open layer is resolved with 2 [(a) and (b)] and 46 [(c) and (d)] space steps, respectively.

[(a) and (c)] BF(� = 3
16 ), BF(� = 1

8 ), IBF(� = 3
16 ), IBF(� = 1

8 ), from the topmost line. [(b) and (d)] The profiles are plotted with the BF for
σ = 50 (b) and σ = 5 (d). Compare with the IBF profiles in Fig. 22.

δy

2 (−F
(p,i)
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e ρ0u
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j ) in Eq. (66) by ν
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)ρ0
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2δy
, Eq. (66) reads on the interface:
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)
ρ0
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(
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6

F (i)
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y

ν
(i)
B

)
ρ0
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j+1 − u

(i)
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2δy

. (68)

This corresponds to the interface stress continuity condi-
tions in the following form:

FEM :
∣∣∣∣νi�̄yu

(i)
j

)∣∣∣∣
yj =Yi

= 0, �̄yu
(i)
j = (

u
(i)
j+1 − u

(i)
j−1

)/
2,

νi = (1 + δi)ν
(i)
B . (69)

In this condition, �̄yu
(i)
j is computed on the virtual con-

tinuation u
(i)
j+1 of the profile u(i) into the neighbor layer.

An interesting point here is that the discretized shear-stress
continuity conditions are set with the effective viscosity

νi = ν
(i)
B [1 + δi(δy)], δi(δy) = − 1

6
F

(i)
e δ2

y

ν
(i)
B

. Transforming to the

coordinates δy = 1, Eq. (67) takes the form:

FEM : −F (p)
x + B

(i)
f ρ0u

(i)
j = ν

(i)
B

(
1 − Bi

6

)
ρ0�̄

2
yu

(i)
j ,

�̄2
yu

(i)
j = u

(i)
j+1 − 2u

(i)
j + u

(i)
j−1,

B
(i)
f = F (i)

e δ2
y = ν

ki

, ki = k(i)
e

δ2
y

,

Bi = ν

kiν
(i)
B

. (70)
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FIG. 24. (Color online) Predicted permeability error E(k) towards σ is compared for BF(� = 1
8 ) [dashed (red)], IBF(� = 1

8 ) [dotted (blue)],
and FEM [solid (magenta)] in a single channel of width H = 8 in the left diagram and for permeability contrast Rk = 10 in two-equal-layered
channels of width H = 16, the bounded in the middle and the periodic in the right.
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FIG. 25. (Color online) Predicted permeability error in periodic system of two equal layers of a width of eight grid cells with permeability
contrast Rk = {103,3 × 105,109} for BF [dashed (red)], IBF [dotted (blue)], and FEM [solid (magenta)].

FIG. 26. (Color online) This and three next figures: In the two first diagrams E(k) is plotted versus � for a 2D Cauchy distribution in a
48h2 box with h = 1 and h = 8. In two last diagrams, multilayered (ML1) simulations in 48 layers are displayed for one and eight grid cells per
layer. The symbols include � = {10−6, 1

512 , 1
64 , 1

32 , 1
16 , 1

8 , 3
16 , 3

8 }. The BF (dot-dashed blue line with triangles) and IBF (solid magenta line with
lozenges). The FEM is independent of � (dot-dashed red lines). This figure shows the Stokes-Brinkman zone σ = 15.2 where Rk = kB

kD
≈ 0.34

(2D) and Rk ≈ 0.09 (ML1).

FIG. 27. (Color online) This figure shows the Brinkman zone σ = 152, Rk = kB

kD
≈ 0.68 (2D), and Rk ≈ 0.23 (ML1).
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FIG. 28. (Color online) This figure shows the Darcy-Brinkman zone σ = 1520, RB = kB

kD
≈ 0.92 (2D), and RB ≈ 0.8 (ML1).

FIG. 29. (Color online) This figure shows the Darcy zone, σ = Da−1/2 = 15200, RB = kB

kD
≈ 0.97 (2D), and RB ≈ 0.98 (ML1).
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FIG. 30. (Color online) Top row: Velocity distribution in ML1 with BF (blue), IBF (magenta), and FEM (red), with σ = Da−1/2 =
{15.2,152,1520,15200} from left to right. In the fourth diagram, BF and IBF almost coincide, and FEM is shown in a dot-dashed line. Grid
refining h = 8 except for the last diagram, where h = 1. Bottom row: Corresponding effective distribution �� in IBF given by Eq. (55). The
BF/IBF are applied with � = 1

8 in the three first cases and � = 1
64 in the last diagram where �� → 3

8 when σ → ∞.

The solution is given by Eqs. (34) with:

FEM : δi = −Bi

6
= δi

(
Bi,�i = 1

8

)∣∣∣∣
BF

,

ri =
1 ± √

3
√

Bi

12+Bi

1 ∓ √
3
√

Bi

12+Bi

. (71)

Thereby, the BF has this correction for particular value �i = 1
8 .

The symbolic solutions are constructed similarly as in BF
prescribing Eqs. (34) with Eq. (71), along with Eq. (69) on the
interfaces. The discretized system is determined by Eqs. (A9)
and (A10). In bounded channels, velocity is set equal to zero
in boundary points. The FEM symbolic solutions are found in
quasiexact agreement with the COMSOL code profiles applying
the relative residual stopping criteria (see in Sec. VI C). In
periodic system, u

(i)
j is set the same in first and last vertexes.

Figure 17 shows the Stokes-Brinkman solution for σ = 10
when νi > 0 with the three schemes. The FEM agrees well
with the analytical solution, and the accuracy of BF and
IBF depends on �: IBF(� = 3

16 ) behaves the best among the
displayed schemes. The large values � > 3

16 overestimate the
velocity profile.

Figure 18 addresses the Darcy regime for σ = 103. The left
diagram plots FEM and BF(� = 1

8 ): The two schemes have

the same δ = −B
6 predicted by Eq. (71). Since B = 106

64 �
6, νnum < 0, the two schemes are expected to oscillate. The

results display strong oscillations with the FEM, while Uj

lies on the Darcy flat solution branch for BF. The two next
diagrams zoom into the BF and IBF solutions in grid nodes.
Indeed, the BF displays the oscillation near the boundary for
� = 1

8 . Yet their amplitude is about 104 smaller than that from
FEM. As expected, the IBF has no oscillations; when � = 3

8 ,
the BF and IBF coincide and their solution is monotonous.

Figure 19 addresses the same configurations as in Fig. 9
but with FEM, BF(� = 1

8 ), and IBF(� = 1
8 ). It shows that

oscillations appear in the low-permeability layer with FEM and
BF(� = 1

8 ) on the coarse grid where 1 + δ1 = 1 − B1/6 < 0.
Furthermore, the FEM solution is continuous on the interface
but the velocity becomes negative in the low-permeability
layer. The oscillations vanish with the IBF. All solutions
improve noticeably for eight points per layer. The behavior
is very similar in periodic and bounded channels (data is not
shown) for the same parameter choice.

Figure 20 shows that in the Darcy-Brinkman regime in
a bounded channel, FEM solutions display strong interface
oscillation, on top of the boundary oscillations, similarly to
that shown for single channel in Fig. 17. It is interesting to
note that its relative amplitude u(i)

x /uD does not improve by
increasing resolution. At the same time, the grid-node velocity
is located on the two Darcy branches with the BF/IBF, where
BF has relatively small oscillations similar to what we have
observed in a single channel in Fig. 17.

In summary, the FEM has the same bulk correction as the
BF with �i = 1

8 , meaning that their effective bulk equations
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FIG. 31. (Color online) This figure plots E(k) towards � for three regimes (a)–(d): kB

kD
≈ {0.3362,0.6796,0.925,0.97}. The random 2D

(black lozenge), multilayers ML2 (blue triangles), and ML3 (magenta squares) are plotted together. The data are in Table IV.
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are the same. The only difference refers to the location of
the discretization points with respect to boundary or interface.
In turn, the boundary and interface conditions differ in two
schemes. In the Stokes-Brinkman and Brinkman regimes the
choice of � is important for BF scheme in view of the bulk
and boundary accuracy. The bulk profiles are smoother with the
IBF, but � still controls the boundary, more in the spirit of TRT
Stokes scheme. In the Darcy-Brinkman and Darcy regimes,
the bounce-back produces sufficiently accurate velocity in
the grid nodes themselves, without any oscillations with the
IBF, but it does not accommodate symbolic continuation of
the profiles to zero boundary value, in opposition to FEM,
which by enforcing this leads to strong oscillations. A similar
situation takes place on the interface where enforcing the exact
continuity conditions between Darcy profiles, FEM causes
interface oscillations. Again, this is opposed to LBM where
neighboring velocity branches stay “discontinuous,” accom-
modated internally by an implicit interface layer. Nevertheless,
the implicit coupling may produce large interface slip-velocity
jumps even in the Stokes-Brinkman regime, especially visible
with the BF scheme unless � is reduced, but then the
BF oscillates. The IBF noticeably improves this interface
discrepancy for intermediate � without any oscillations. All
in all, this suggests that the accuracy of the permeability
measurements will depend on the scheme and on � with
the BF/IBF and that this last dependency will differentiate
according to the Brinkman regime. This is further explored in
the next section.

VI. THE PERMEABILITY

This section begins with the symbolic predictions on
the accuracy of permeability measurements for BF, IBF, or
FEM in single and two-layered channels. We recall that by
construction, the FEM supports linearity of Brinkman equation
with respect to the kinematic viscosity ν. This way, the
derived permeability kB is independent of the viscosity values
when the steady state is reached. The BF and IBF assure
viscosity-independent permeability kB provided only that the
distribution �i(�r) is kept fixed when �+

i is altered with ν. The
symbolic solutions will reveal that the optimal solution for �,
where the numerical and predicted values coincide, strongly
depends on the flow regime. Permeability measurements in
a two-dimensional random Cauchy distribution, and its mul-
tilayered subdistributions, are then compared. These studies
lead to a heuristic algorithm aimed at predicting the optimal
� in multidimensions from their multilayered counterparts.
Another heuristic algorithm allows us to maintain a similar
convergence to steady state in LBM through the different
regimes and space resolutions.

In this section, all simulations are driven by the external
constant forcing F

(p)
x ≈ 10−6 and ν

(i)
B = ν [fi(φ) = 1 in

Eq. (1)]. The flow regime is characterized in terms of
σ = Da−1/2: The averaged Darcy number Da = kD/H 2 is
computed with the predicted Darcy permeability value kD .
In parallel, the effective regime is characterized in terms of
RB = kB/kD on the computed solution kB . The permeability
contrast Rk = kmax/kmin and the aspect ratio Rh = hmax/hmin

(in two layers) complete the description.

A. Single and two-layered systems

We first examine the permeability error E(k) of the
measured permeability knum against the predicted value kB

in single and two-layered systems:

E(k) = knum

kB

− 1, knum = 〈uj 〉ρ0ν

F
(p)
x

. (72)

In LBM, 〈uj 〉 is computed from the arithmetical average of
the cell-centered grid velocity values, while the “trapezoidal-
rule” is applied for the vertex-centered grid in FEM. Reference
solution kB is obtained from the integration of the exact profile
in multilayers and from the finer-grid FEM solution in random
media.

Remark The difference between the summation and inte-
gration explains E(k) �= 0 for � = 3

16 on the exact Poiseuille
profile (see the caption to Fig. 10). The exact permeability
value knum = kp = H 2

12 is matched for � = 1
8 , as has been

shown in Ref. [46].
Figure 32 displays E(k) in BF for the two-layered periodic

channel. All these results show a very similar dependency of
E(k) versus �: E(k) noticeably reduces decreasing � from 3

8
to �min = 10−2, from ≈30% to ≈3%, on the coarse grid for
Rk = 103. Using �min only in the low-permeable layer also
improves the results, from ≈30% to ≈8%. This also applies for
finer grids. On the other side, E(k) reduces by a factor 6 from
H = 12 to 48. When the permeability contrast Rk increases
from 10 to 103, E(k) increases much slower than linearly, by
a factor 6 on the coarse grid and by a factor 4 on the fine.
In BF, the systematic permeability overestimate is confined to
the Stokes-Brinkman domain because of the velocity raise into
the open layer (cf. Fig. 10).

Figure 23 displays E(k) for two asymmetric situations for
BF and IBF together. First, the open layer is reduced to h = 2
while the low-permeability porous layer is stretched to 46.
This linearly increases E(k) from 20% to 60% for � = 3

8
with respect to the case of equal layers of h = H/2 = 6 in
Fig. 32. The BF(� = 1

8 ) has the same E(k) as the IBF(� =
3

16 ), outperformed by IBF(� = 1
8 ). The BF reaches similar

accuracy reducing � to 10−2, but then the velocity field
oscillates in low-permeable layer (second diagram). Second,
the permeability ratio is inverted: E(k) behaves similarly with
σ but its amplitude reduces by factor 50 for finely resolved
fractured (open) layer.

We equate now symbolic solution knum(�,σ,Rk,Rh,H ) to
exact solution kB(σ,Rk,Rh) and derive the root �(σ,Rk,Rh,H )
with the help of a numerical routine. In BF, this procedure
works robustly only when νi is positive for all �, that is,
when Da(i)

B > 1
4H 2 (σ � 2H ). This situation differs with the

IBF where �(σ ) becomes available ∀ σ . Figure 21 plots these
solutions for BF and IBF in a single channel. As could be
expected from the Poiseuille solution, �|σ→0 → 1

8 in both
schemes. Interestingly, � reduces to zero with BF for σ >≈ 8
and, when σ < 2H , the distribution �(σ ) is practically the
same for different H . In IBF, �(σ,H ) is not monotonous in
the Brinkman zone; it first slightly increases inside the interval
� ∈ [ 1

8 , 3
16 ] and then decreases towards � = 0. Unlike with

BF, �(σ,H ) increases with resolution. The increase of optimal
� with resolution has been observed in Ref. [45] for Stokes
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FIG. 32. (Color online) Predicted permeability error E(k) in BF is plotted for the two-layered periodic channel with the contrast r2
k =

k1/k2 = 10−1 (left diagram) and r2
k = 10−3 (middle and right diagrams) for two resolutions: H = 12 (top row) and H = 48 (bottom row). The

two first columns apply �1 = �2 = {10−2, 1
12 , 3

16 , 3
8 }; �1 is reduced to 10−2 for the low-permeable layer in the last column.

flow around regular and random arrays of spheres. In turn, the
decrease towards � = 0 is explained by the overestimation
of the velocity on the flat Darcy profile. The right diagram in
Fig. 21 confirms that � = 1

8 is very accurate in the Stokes-
Brinkman regime, followed by a nonmonotonous Brinkman
zone where � = 1

8 has to be increased towards � = 3
16 , � ∈

[ 1
8 , 3

16 ]. Notice that IBF losses accuracy for very small � in
the Brinkman zone, in agreement with the velocity profiles
in Fig. 15. In the Darcy regime, E(k) is relatively small and
similar for the three examined �; however, the exact solution
reduces � towards 0.

Figure 22 depicts solutions �(σ,Rh,H ) in three two-layered
situations explored above: a symmetric with equal width and
the two antisymmetric ones with the aspect ratio Rh = 23. The
three situations show a similar dependency on �(σ,Rh,H ), but
� = 1

8 extends over a larger interval σ when the fractured layer
is not resolved (see in the right diagram). The IBF confirms
the improvement of the BF profiles shown in Fig. 23.

Figure 24 compares E(k) in BF, IBF, and FEM for single,
bounded, and periodic channels of contrast Rk = 10, resolved
with the eight grid cells per layer. These results are extended
to much larger contrasts, such as 103, 3 × 105, and 109

for the periodic system in Fig. 25. The BF and IBF are
applied with � = 1

8 . First, the inaccuracy of FEM in the
Stokes-Brinkman regime σ ∈≈]0,1] in bounded channels is
due to the “trapezoidal” integration rule while � = 1

8 cures
for this in LBM. In the Brinkman zone, σ ∈≈]1,102], |E(k)|
increases, and BF systematically overestimates permeability,
indicating that � should be reduced, in agreement with the
predictions in Fig. 21. In that zone E(k) is nonmonotonous for
IBF, indicating that � should first increase [when E(k) < 0]
and then decrease, in agreement with the results in Figs. 21
and 22. On the whole, the Darcy-Brinkman zone is predicted
to be relatively accurate with IBF and BF for � = 1

8 . This is to
be contrasted with FEM, which suffers from large oscillations
there. Figure 25 shows that |E(k)| increases together with Rk

for two LBM schemes and it covers a larger σ subdomain.

This is consistent with the results in Fig. 10 which show
very large velocity jumps on open-impermeable interface
for very small σ . The positive side is that |E(k)| increases
by one order of magnitude when the permeability contrast
increases by the eight orders. Typically, IBF with � = 1

8 is
2 times more accurate than BF in the Stokes-Brinkman and
Brinkman regimes for a very wide range of permeability
contrasts. In FEM, E(k) also increases for smaller σ with
Rk but E(k) remains negative and its amplitude is almost
unaffected by permeability contrast. These results for E(k)
increase approximately linearly by reducing resolution to one
grid cell per layer (in this particular case, BF and IBF coincide
in periodic layers). Next we compare these two-layered results
with the multilayered and two-dimensional predictions.

B. Multilayered and two-dimensional random media

Two- and three-dimensional log-normal distributions are
commonly used, as advocated for their similarity with the
porous media, e.g., Refs. [51,52]. Another advantage is their
predictable Darcy permeability. Still, while the perturbation
analysis around kD only applies for very smooth permeability
fields [40], the apparent (Brinkman) permeability remains
unpredicted. In general, it depends on the standard deviation
and correlation length [40], in agreement with the estimates [1]
for carbonates. In the present work, we limit ourselves to
very weakly correlated two-dimensional Cauchy distribution
depicted in Fig. 33 for its dispersive character, due to moments
unboundness:

f (k) = 2γ

π (k2 + γ 2)
, k > 0, γ > 0, kD = e〈ln [k]〉 = γ.

The effective Darcy permeability value kD for this distribution
is predicted by Shwidler [53]. We examine four regimes
sequentially reducing all permeability values by a factor of
100: σ = 1.52 × 10n, n = 1, . . . ,4, in the H 2 = 48h2 box
for two resolutions, h = 1 and h = 8. In these realizations,
permeability varies by nine orders of magnitude, from
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FIG. 33. (Color online) From the left to the right: (a) A two-dimensional Cauchy distribution in a 482h2 box with the largest permeability
contrast over a sample Rk ≈ 109, followed by one of its 48 multilayered subdistributions with (b) h = 1 and (c) h = 8, Rk ≈ 3 × 105.

kmin = 3.4 × 10−4 × 10−2n h2 to kmax = 3.6 × 105 ×
10−2n h2, n = 1, . . . ,4. The FEM finer-grid solution in the
(48 × 16)2 box is employed as the reference one for kB . The
characteristic reference values σ = Da−1/2 and RB = kB

kD

are reported in Table IV, along with the optimal intervals
for �(σ,h) where the IBF crosses the reference solution.
The corresponding distribution E(k) versus � is plotted in
Figs. 26–29 versus � for BF/IBF and compared to FEM on
the same grid.

In parallel, we examine three multilayered samples: ML1,
ML2, and ML3. In ML1, the permeability distribution is set
equal to one column of the Cauchy distribution depicted in
Fig. 33 and rescaled to obtain the same four values kD as
have been prescribed in 2D via γ (with kD equal to the
arithmetical mean value in multilayers). The results in ML1
for E(k) towards � are displayed by the two last diagrams in
Figs. 26–29. On the whole, the dependency E(k) towards � is
very similar in 2D and ML1 and in qualitative agreement with
the two-layered predictions:

(1) The dependency E(k) versus � is nonlinear in all
four cases; the nonlinearity noticeably increases from (a) the
Stokes-Brinkman to the Darcy regime, (b) the fine to coarse

grid, (c) IBF to BF, and (d) multilayers to 2D, approaching the
linear dependency proper to Poiseuille flow for ML1 on the
fine grid in the Stokes-Brinkman regime σ ≈ 15.2.

(2) The BF produces higher permeability values than the
IBF for all � ∈]0, 3

8 [ (recall that BF = IBF for � = 3
8 ) with

larger |E(k)| in interval � ∈≈ [ 1
8 , 3

8 [. In ML1, the IBF with
� ∈ [ 1

8 , 3
16 ] matches the reference solution for σ = 15.2 and

σ = 152 on the fine grid, followed by a slight � decrease
for σ = 1520. In 2D, the IBF slightly increases its optimal
� ∈ [ 1

16 , 1
8 ] between σ = 15.2 and σ = 152; in all IBF

solutions, the optimal � increases from a coarse to finer grid,
in qualitative agreement with the two-layered predictions in
Fig. 22.

(3) In the Darcy zone, the �(σ ) dependency becomes
highly nonlinear with increasing of σ and the optimal �

reduces sharply. In ML1, the IBF matches the exact solution
for σ = 1.52 × 104 with � ∈ [ 1

32 , 1
16 ] on the fine grid, while to

achieve a similar result, the BF needs to reduce � towards zero.
In 2D, � reduces further, towards [ 1

512 , 1
64 ] on the fine grid and

[10−6, 1
512 ] on the coarse; the BF does not reach the reference

values even for � → 0, in agreement with the predictions from
their respective single-channel solutions in Fig. 21.

TABLE IV. This table provides approximate data for random 2D Cauchy distribution and three multilayered distributions, ML1, ML2, and
ML3. In 2D: The reference solution kB is given by FEM on the finer grid h = 16. In 1D: kB is the analytical multilayered solution.

Random 2D Cauchy distribution ML3

σ = Da− 1
2 = 48h√

kD
15.2 152 1520 15200 856 2047 9129 21492

Rk = kmax/kmin 109 109 109 109 109 109 109 109

RB = kB

kD
0.3362 0.6796 0.925 0.97 0.3362 0.6796 0.925 0.97

Optimal �(h = 1) 1
16

1
16 [ 1

256 , 1
128 ] [10−6, 1

512 ] [ 3
64 , 1

16 ] [ 1
32 , 3

64 ] [ 1
128 , 1

64 ] [ 1
256 , 1

128 ]

Optimal �(h = 8) 1
16

1
8 [ 1

32 , 1
16 ] [ 1

512 , 1
64 ] 1

32
1
16 [ 1

32 , 1
16 ] [ 1

32 , 1
16 ]

ML1 ML2

σ = Da− 1
2 = 48h√

kD
15.2 152 1520 15200 281 915 4009 9786

Rk = kmax/kmin 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105 3 × 105

RB = kB

kD
0.09 0.23 0.8 0.98 0.3362 0.6796 0.925 0.97

Optimal �(h = 1) 1
8 [ 1

16 , 1
8 ] [ 1

32 , 1
16 ] [ 1

512 , 1
64 ] 5

64 [ 3
64 , 1

16 ] [ 1
64 , 3

128 ] [ 1
128 , 1

64 ]

Optimal �(h = 8) [ 1
8 , 3

16 ] [ 1
8 , 3

16 ] [ 1
16 , 1

8 ] [ 1
32 , 1

16 ] 1
8 [ 1

16 , 1
8 ] 1

8 [ 1
64 , 3

32 ]
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(4) In multilayers, FEM underestimates permeability in
the Darcy zone by 60–70% for σ = 1.52 × 103 and σ =
1.52 × 104, reducing |E(k)| to 3–9%, respectively, on the fine
grid. This underestimate is related to the systematic lowering
of the peak velocity values in the Darcy zone observable
in Fig. 30 (fourth diagram in top row), together with the
unphysical negative-valued oscillations in neighboring sites.
In 2D, the sign of E(k) changes for σ = 1.52 × 104 where
FEM overestimates kB , similarly to the LBM, unless IBF is
used with small �.

(5) In fact, the IBF operates with two space-dependent
heterogeneous distributions, �+

� (σ (�r),�) and ��(σ (�r),�) (see
in Table I); the corresponding distributions ��(y) for fixed �

are depicted for four ML1 velocity profiles in the bottom row in
Fig. 30. This figure shows that ��(y) varies from its prescribed
control value � = 1

8 for σ = 15.2 to �� = 3
8 when σ = 15200

[cf. Eqs. (55)]. At the same time, �+
� varies from �+ to 3

8�
�+,

meaning an unbounded increase when � → 0 in the Darcy
zone [cf. Eqs. (56)]. The distribution ��(y) is heterogeneous
with k(y) in two intermediate zones σ = {152,1520}.

On the whole, the permeability underestimate of about
5–10% by FEM agrees very reasonably with the two-layered
predictions in the same resolution of eight nodes in Fig. 25
[recall that E(k) in two layers is almost an independent
permeability contrast with FEM]. This is to be contrasted
with the IBF(� = 1

8 ), where E(k) does not exceed [−0.1,2]%
in multilayers for h = 8 through the four regimes while its
increase up to 10% has been predicted in Fig. 25 for a similar
permeability ratio of order 3 × 105. This can be explained by
the fact that the rapid increase in E(k) is confined to a relatively
small, flow-dependent interval of σ . In addition, when the
sharp increase in E(k) is caused by a large permeability
contrast, the two-layered situation (side by side) is expected to
be worse against the multilayered one.

Despite a visible similarity of the results in 2D and
multilayers, the optimal � in Table IV is systematically
higher in ML1 than in 2D. At the same time, the obtained
values RB = kB

kD
are also higher in ML1, except in the Darcy

zone, where RB ≈ 1. We hypothesize that the so-called flow
factor [51], hereafter set equal to the effective value RB = kB

kD
,

dictates the optimal � and not the averaged Darcy value
described by σ . We then consider two other distributions, ML2
and ML3. In four realizations of ML2, ML1 is rescaled to
match four reference values RB , previously obtained in four
realizations of two-dimensional random samples. In ML3, kmin

and kmax are additionally updated to assure the same largest
contrast Rk ≈ 109 as in 2D. The analytical dependency kB(kD)
is nonlinear in multilayers and the four scale factors are derived
with the help of a numerical routine. In turn, kD and hence
Da = kD/H 2 now differ in multilayers and 2D. This analysis
focuses on the IBF scheme.

The four coarse-grid distributions E(k) versus � are plotted
together for ML2, ML3, and 2D in Fig. 31. Their characteristic
values and effective solutions for �(h) are summarized in
Table IV. In the Stokes-Brinkman (RB ≈ 0.34) and Brinkman
(RB ≈ 0.68) regimes, the optimal solution �(2D) is found
between ML2 and ML3. In the Darcy-Brinkman regime
(RB ≈ 0.925), the ML3 covers the optimal value the best.
In the Darcy zone (RB ≈ 0.97), when �(2D) ≈ 0, the ML3
overestimates it.

In summary, this last numerical experiment confirms that
it is reasonable to build a strategy for “upscaling” the
multilayered, optimal � in similar stochastic distributions
based on kB/kD ratios in two systems. In practice, this
suggests an iterative adjustment for RB(�) between one-
and multidimensional samples. This assumes that kD values
have been predicted or precomputed for both systems. We
emphasize that all results in random media have been obtained
without solid inclusions, meaning that all the observed de-
pendencies on the free parameter � originate from bulk and
interfaces.

Concerning the BF, IBF, and FEM, their solutions are
quite similar in the intermediate Stokes-Brinkman zones for
relatively fine resolution, demonstrated by three multilayered
profiles in Fig. 30. However, they may become quite different
on the open-impermeable interface, where LBM undergoes
�-dependent slip-velocity jumps, and in the Darcy limit
on coarse grids. The velocity profiles in the Darcy regime
illustrated for this in Figs. 18 and 20 and in the last diagram in
Fig. 30. They show that the most noticeable numerical artifacts
of the FEM solutions are observable in the Darcy-Brinkman
regime where oscillating accommodation of the profiles
results in lowering of the pick velocities and neighbor-node
negative velocities in multilayers, giving rise to a significant
permeability underestimate shown in Figs. 24, 25, 28, and 29
(last two diagrams).

Improvements with the space resolution have been reached,
however, for all regimes. We refer to Ref. [22] for improving
of the unresolved boundary layers in the Darcy limit with the
stabilizing elements and/or adaptive grid refining. Eventually,
based on such strategies, FEM might outperform LBM. Still,
we stress that, besides the overall simplicity, (i) the implicit
boundary layers help the LBM, (ii) the LBM controls the
convergence to steady state more easily (see in Sec. VI C),
and (iii) its extension to the adaptive grid is also possible. In
this last point we mention nonuniform grid extension [31] and
a recent finite-volume LBM formulation [30] for Brinkman
equation.

C. The convergence time

In LBM, the time convergence to steady state is differently
governed by the selected viscosity value in Stokes flow for
regular and random media [44–46]. We have found that the
following semiheuristic rule is valid in LBM: The same
order of the time steps is required for very different regimes,
and on the fine and coarse grids, provided that the product
σmaxν or σ 2

maxν remains approximately the same. In fact, this
rule aims to approximately preserve the largest amplitude of
the resistance factor Bf = ν/kmin (in lattice units) through
the series of computations. In practice, �+ should decrease
accordingly from the Stokes to the Darcy regime but reduction
below 10−5–10−6 becomes inefficient. Applied LBM stopping
criteria was permeability based, as |k(t + δt )/k(t) − 1| < ε,
with ε ≈ 10−12 and δt ≈ 104. Generally, IBF converged faster
than BF and, for small ν, very small � converged faster.

The BGK operator takes the same computational time
as the TRT, but the obtained permeability changes with ν,
lacking physical consistency. Obviously, if BF-BGK employs
ν = √

�/3, the same results as with BF-TRT(�) are obtained.
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However, the TRT endorses them for any ν value when �

is fixed. Therefore, even if we may recognize that the BGK
supports the general trend of these simulations (small � and
small ν in the Darcy regime, with both � and ν increasing
towards the Stokes regime), the BGK cannot offer the control
of accuracy independently of the convergence time. Besides, it
is clear that the BGK operator is unable to offer a functionality
of IBF where the two effective relaxation rates should differ.

We have also recognized a noticeable increase in the number
of time steps from the coarse to fine grid in random media
with the COMSOL FEM software using the GMRES iterative
solver (without preconditioner). Here the stopping criteria are
based on the error estimate, which checks whether the relative
residual (times some stability constant) is less than a prescribed
tolerance (set to be 10−10 in this work).

In summary, we notice that neither one of the two used
criteria guarantees the steady state in the sense that the fluid
mass flux is constant over the media (see Refs. [44–46]). In
LBM, this last criteria is natural but it takes much more time
to converge without any distinguishable difference for per-
meability in present simulations. Our preliminary simulations
suggest an advantage of IBF-TRT over FEM on relatively fine
grids, given that the LBM is rather simple to make efficient
and it allows for accuracy improvement with the free-tunable
relaxation rate, due to implicit interface and boundary layers.

VII. CONCLUDING REMARKS

The present work aimed to show up to what extent the
“small” details of the LBM population update can affect the
results in porous flow. Particular focus has been devoted to
the following three points: (i) whether the population update
and boundary conditions respect the nondimensional groups
of the modeled equation, (ii) if the macroscopic numerical
solutions satisfy the limit configurations, and (iii) the role of
free numerical parameters.

Concerning point (i), we have shown that the BF and
new IBF models respect the nondimensional groups using the
bounce-back rule, when � distribution is fixed on the given
grid. This is in contrast with the local gray schemes [35–38]
which make the modeled equations nonlinear with respect
the kinematic viscosity. Future work needs to verify nonlocal
link-based modeling of the resistance with respect to this
issue [32–34].

Concerning point (ii), we stress that neither the Chapman-
Enskog nor the asymptotic analysis has been used in this
work: The results in series and parallel channels are based
on the exact symbolic solutions constructed for all examined
schemes. We have demonstrated that all LBM schemes need
to redefine the microscopic momentum with the half forcing to
match the constant velocity in the Darcy limit. A subtle point
that we have to deal with was to connect the bulk recurrence
equations [43] of the TRT operator at the interface. We show
that they remain valid on the virtual linkwise continuation of
the population components over it. The constructed solutions
extend the known class of the analytical steady-state LBM
solutions in the presence of the boundary and interfaces.
They allow us to visualize velocity slip on the nondiscretized
interface or boundary and to predict permeability in continuous
space of the governing parameters, such as the Darcy number,

aspect ratios, or permeability contrasts. The extension of our
methodology for other-type channel flow in the presence of
the variable collision or forcing components, such as the
Brinkman-Forchheimer flow, two-phase-flow, or immersed
boundary method, is possible. Furthermore, this solution
technique has been recently extended for transient, advection-
diffusion solutions in heterogeneous stratified soil [54].

Despite the simplicity of channel flow, it reveals a number of
critical properties of the two analyzed numerical approaches.
One of them is the complex interplay between the bulk and
interface or boundary effective discretizations. In all schemes,
the discontinuous prefactor 1 + δ of viscosity correction
multiplies, for two interface sides, the shear stress condition
and, additionally, the two coefficients in Taylor-type velocity
conditions for the BF scheme. Basically, the interface displays
two different scenarios in the Stokes-Brinkman and Darcy-
Brinkman regimes. The FEM builds continuous solutions,
only slightly deficient in the Stokes-Brinkman domain because
of the relatively insignificant negative numerical viscosity.
In the Darcy-Brinkman regime, its amplitude increases and
the FEM amplifies velocity fluctuations due to an attempt of
the exact coupling of the discontinuous Darcy branches for
unresolved boundary layers. This is opposed to LBM where the
Darcy branches coexist almost “independently,” making their
coupling and accommodation to the solid boundary managed
by the “invisible” interface or boundary layers.

Concerning point (iii), it is focused on the highly nonlinear
dependency k(�). It shows that the optimal choice for the
controlling combination � becomes especially crucial because
of the heterogeneity. The difficulty is that the optimal �

depends on the flow regime, ranging from the Poiseuille
choice in the Stokes-Brinkman regime, around � ∈ [ 1

8 , 3
16 ]

for permeability, to zero in the Darcy flow where, unlike
in the BF and FEM, the IBF may then reach reference
values on the very coarse grid. This is due to the fact that
the prescribed distribution of the symmetric-mode viscosity
function �+

� automatically varies in heterogeneous media with
B = f (φ)/k. Another new point is that �+

� depends on the free
antisymmetric-modes eigenfunction �−, thereby, unusually,
now �� = �+

� �− nonlinearly depends on �−. For example,
when �− → 0, then �� → 3

8 in the Darcy limit B → ∞,
where �+

� increases infinitely. It is clear that the BGK operator
is unable to offer a functionality of the IBF-TRT where the two
relaxation functions, �+

� and �−, may tend to the opposite
limits for the sake of accuracy. Besides, if the convergence to
steady state drastically depends on the selected viscosity value
ν in Stokes computations [45,46] where the optimal viscosity
choice is structure dependent, it depends on the Darcy numbers
in the Brinkman model. Using the simple practical argument,
the same permeability value for any viscosity ν is vital
when searching for optimal performance. This is unavailable
with the BGK operator. In MRT collisions [55], the IBF
determines the relationship between the kinematic viscosity
eigenfunction �+

� (ν) and the common eigenfunction �− of the
antisymmetric modes. Additional free-tunable eigenfunctions
of symmetric modes have to vary in fixed proportion with �+

�

when ν is altered [45].
The two-dimensional flow around the permeable cylinders,

examined in Ref. [56], confirms that the IBF effectively
suppresses strong interface fluctuations typical in BF and
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FEM. The random and bimodal two-dimensional benchmarks
are of the special interest in this context, since they provide
nontrivial validation to scheme (54), which has been derived
for the straight channel. The heuristic rule for the choice
of the reliable � consists in iterative equating of the flow
factors kB/kD for “simple” (eventually multilayered) and
“complex” porous rock for similar stochastic properties in
permeability distributions. The usefulness of this rationale is
that in multilayers exact solutions are known. On the other
side, the flow factor is related to the stochastic characteristics
of the media and some specific integration of the velocity field
via second-order perturbation analysis around kD [40]. We can
think about future extensions of these results to validate our
numerical strategy in CT scans and anisotropic permeability
distributions.

Finally, one may depreciate the above efforts to improve
the low-permeable Darcy zones by arguing that they have a
negligible contribution to the effective permeability itself, e.g.,
Ref. [31]. However, we believe that the accurate modeling of
the interfaces between open and micritic phase is important,
since the solute may be transported there and reside for a long
time. Although being neglected by Stokes flow modeling in
Portland carbonates [57,58], low-porosity zones are expected
to play a role in producing sharp peaks and long tails
in breakthrough curves because of the large porosity or
permeability contrast [54,59]. In view of these phenomena,
the simple strategy proposed here, aimed at damping the
interface velocity fluctuations via the IBF, might turn out to be
indispensable. Complementarily, when the solid boundary or
interface is well resolved or has a prescribed curved shape, one
might think about further improving the Brinkman schemes via
explicit high-order boundary and interface conditions. In our
opinion, the multireflection [44] or equivalent boundary ap-
proaches [45,48] have to be “upscaled” to capture for the new
� effect in Brinkman modeling, which is already present in the
first-order Taylor boundary expansion because of resistance
variation. The main advantage of such conditions would be in
making flow dependency on � negligible. A similar scenario
is interesting for the interface, perhaps extending the ideas of

explicit conditions developed for discontinuous collision com-
ponents in two-phase models [47,60] and advection-diffusion
equations with heterogeneous coefficients [47,61–63]. The
subsequent research path might be focused on the impact of
the obtained Brinkman flow-field quality on the dispersion.
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APPENDIX A: DISCRETIZED MULTILAYERS

The LBM operates on the cell-centered grid yj = Yi−1 +
1
2 + j, j = 0,1,2, . . . ,hi − 1 inside each layer y ∈ [Yi−1,Yi];
the interface or boundary is not discretized. The FEM
is discretized on the element vertexes yj = Yi−1 + j, j =
0,1,2, . . . ,hi ; the interface or boundary is discretized. The
space step is set equal to 1. The discretized bulk solution given
by Eqs. (34) satisfies the two following relations:

�̄yr
±y = ± (r2 − 1)

2
r (−1±y), �̄2

yr
±y = (r − 1)2r (−1±y).

(A1)

1. TRT schemes

In a single channel, the closure relation (35) becomes,
with help of Eqs. (A1) in two boundary nodes yb = ±H

2 ∓ 1
2 ,

respectively (we drop index i and replace ai , ci by anum, cnum),

a11a
num + a12c

num = 1, a12a
num + a11c

num = 1,

a11 = r
−3+H

2

8
[8r + 2α+(r2 − 1) + α−(r − 1)2], (A2)

a12 = r− 1+H
2

8
[8r − 2α+(r2 − 1) + α−(r − 1)2].

By symmetry, anum = cnum and Uj reads

TRT : Uj = anumr−yj (1 + r2yj ), yj = −H

2
+ 1

2
+ j, . . . ,

H

2
− 1

2
, j = 0,1, . . . .

(A3)

anum = 8r (3+H )/2

2α+(r2 − 1)(rH − r) + (α−(r − 1)2 + 8r)(r + rH )
.

In multilayers, two coefficients per layer, ai and ci , are to
be derived from the linear system corresponding to interface
velocity and stress conditions, respectively:

a
(i)
11ai + a

(i)
12ci − (

a
(i+1)
11 ai+1 + a

(i+1)
12 ci+1

) = Dai − Dai+1

Da
,

a
(i)
21ai + a

(i)
22ci − (

a
(i+1)
21 ai+1 + a

(i+1)
22 ci+1

) = 0. (A4)

The two interface conditions are given by Eqs. (36b)
and (36a), respectively, where, applying finite-difference op-
erators (A1) to velocity form (34), the four coefficients read in

Eq. (A4):

a
(i)
11 = r

Yi− 3
2

i

8

[
8ri + 2α+

i

(
r2
i − 1

) + α−
i (ri − 1)2

]
,

a
(i)
12 = r

−Yi− 1
2

i

8

[
8ri − 2α+

i

(
r2
i − 1

) + α−
i (ri − 1)2

]
,

(A5)

a
(i)
21 = − (1 + δi)(ri − 1)r

Yi− 1
2

i

fi(φ)
,

a
(i)
22 = (1 + δi)(ri − 1)r

−Yi− 1
2

i

fi(φ)
.
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In bounded system, the bounce-back closure relation (A2)
completes the system for r = rN and r = r1. In the periodic
system, interface conditions relate the first and last layers.

In two-layered system, alternatively, the symmetry conditions
can be applied at the middle of each layer. Assuming interface
at Y = 0, solution of Eqs. (A4) reads

a1 = 8(Da1 − Da2)

Da
f1(φ)r

3+2h1
2

1

p1(r2,h2,δ2)

p3
, c1 = r

−h1
1 a1,

c2 = 8(Da2 − Da1)

Da
f2(φ)r

3+2h2
2

2

p1(r1,h1,δ1)

p3
, a2 = r

−h2
2 c2,

p3 = f1(φ)p1(r2,h2,δ2)p2(r1,h1,δ1) + f2(φ)p1(r1,h1,δ1)p2(r2,h2,δ2), (A6)

p2 = 2α+(r2 − 1)(rh − r) + [α−(−1 + r)2 + 8r](r + rh),

p1(r,h,δ) = (r − 1)r(rh − 1)(1 + δ), X = 1 + δ.

This solution is valid applying Eq. (34b) with the individual
solutions for δi and α±

i . Velocity values are given by Eq. (34),
and their summation yields in Eq. (24):

knum
r = − r

( 1
2 −h1)

1

(
r

h1
1 − 1

)(
a1 + c1r

h1
1

)
H (r1 − 1)

− r
( 1

2 −h2)
2

(
r

h2
2 − 1

)(
c2 + a2r

h2
2

)
H (r2 − 1)

. (A7)

Remark. The BF, IBF, and IFD solutions differ in general.
One exception is the one-node-per-layer system where BF and
IBF coincide and then reduce to IFD for �i = 3

16 . The one-
node-layer solution in the two-layered system (with k3 = k1)
reads

BF/IBF : U
(i)
j = 1

4Da

3ki(ki+1 − ki)

3(k1 + k2) + 2[�1f1(φ) + �2f2(φ)]
.

IFD : U
(i)
j = 1

4Da

2ki(ki+1 − ki)

8(k1 + k2) + f1(φ) + f2(φ)
, (A8)

i = 1,2, j = 1,2.

The three solutions also coincide for � = 3
16 in the single

channels H = 1 or H = 2 and then in the two-layered bounded
channel with H = 2 for BF and IFD.

2. The FEM scheme

In the single channel, solution of the FEM is given by
Eq. (34) for δ = −B/6. The coefficient anum = cnum is set by
equating uj to zero at yj = ±H

2 :

FEM : Uj = − r
H
2 −yj + r

H
2 +yj

1 + rH
,

(A9)

yj = −H

2
, − H

2
+ 1, . . . ,

H

2
.

In multilayers, the coefficients in Eqs. (A4) are set from
the velocity and stress continuity condition (69) applied on
solution (34):

a
(i)
11 = r

Yi

i , a
(i)
12 = r

−Yi

i , a
(i)
21 = − (1 + δi)

(
r2
i − 1

)
r

Yi−1
i

2fi(φ)
,

a
(i)
22 = (1 + δi)

(
r2
i − 1

)
r

−Yi−1
i

2fi(φ)
. (A10)

APPENDIX B: THE RECURRENCE EQUATIONS FOR
MODIFIED SCHEMES

We consider the modified schemes (50) in the equivalent
form:

f̃q(�r,t)=fq(�r,t) + G+
q + G−

q ,

G±
q =−s±(

f ±
q − E±

q

)
, where

E+
q = e+

q + A+

s+ g+
q , E−

q = e−
q + A−(g−

q − Fq)

s− . (B1)

Here the equilibrium function e±
q , the postcollision quanti-

ties g±
q = −s±(f ±

q − e±
q ), and the external forcing Fq are

defined as in Eqs. (7) and (37). The recurrence equations (5)
and (6) remain valid, replacing e±

q with E±
q and g±

q with G±
q .

Mass and momentum conservation equations (10) become∑Q−1
q=0 G+

q = 0 and
∑Qm

q=1 G−
q �cq = �F . One new term T1 in the

right-hand side of the momentum equation is due to correction
A+
s+ g+

q in �̄qE+
q [see Eq. (5b)]: T1 = −2

∑Qm/2
q=1

A+
s+ �̄qg

+
q �cq .

Using G+
q = g+

q + A+g+
q , g+

q = G+
q /(1 + A+), and �̄qg

+
q =

�̄qG+
q /(1 + A+), where �̄qG+

q is expressed with Eq. (6a), we
obtain

T1 = −2a+
Qm/2∑
q=1

(�̄2
qE−

q − �−�̄2
qG−

q )�cq,

(B2)

a+ = A+

(1 + A+)s+ = A+(1 + 2�+)

2(1 + A+)
.

Substituting E−
q from Eq. (B1) and Fq from Eq. (7), this term

can be computed similarly as in Eq. (38):

T1 = −a+

⎧⎨
⎩

1

3
(1 − �−Bf )�̄2 �j

+ 2�−
Qm/2∑
q=1

�̄2
q

[
A−

s− (g−
q − Fq) − G−

q

]⎫⎬
⎭ �cq, (B3)

with

g−
q = (G−

q + A−Fq)/(1 + A−). (B4)
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The second new term T2 appears in the right-hand side from
�+�̄2

qE−
q :

T2 = 2�+ A−

s−

Qm/2∑
q=1

�̄2
q(g−

q − Fq)�cq . (B5)

Next, in order to construct an exact solution for these schemes,
one needs to prescribe G−

q .

1. Stratified channel

In a stratified channel, G−
q (y) is given by Eq. (26) because

of the streamwise conditions and momentum conservation.
Then Eq. (B4) allows us to express g−

q (y). When A− = 0, T2

vanishes and T1 becomes in Eq. (B3):

A− = 0 : T1 = �+

3
δ�(A+)�̄2

yjx(y),

δ�(A+) = −A+(1 + 2�+)(3 + 2B�)

6(1 + A+)�+ . (B6)

The effective viscosity coefficient becomes equal to �+
3 [1 +

δ�(A+)] with

A− = 0 : δ�(A±) = δ + δ�(A+). (B7)

Here δ is given by Eq. (33) and δ�(A+) is given by Eq. (B6).
When A− �= 0, substituting g−

q from Eq. (B4) alone with
Eq. (26) for G−

q (y) into Eqs. (B3) and (B5), we obtain:

T1 = �+

3
δ�(A±)�̄2

yjx(y),

T2 = �+

3
δ�(A−)�̄2

yjx(y),
(B8)

δ�(A−) = −A−B(�+ + 2�)

3(1 + A−)
,

δ�(A±) = A+(1 + 2�+)(−3 + A−(−3 + B�+) − 2B�)

6(1 + A−)(1 + A+)�+ .

The effective viscosity of the modified scheme (B1) is
�+
3 [1 + δ�(A±)], where the relative viscosity correction

δ�(A±) now sums three contributions given by Eq. (31b) and
Eq. (B8):

δ�(A±) = δ + δ�(A±) + δ�(A−). (B9)

In principle, this allows for two free coefficients A+ and A−
equating δ�(A±) to zero. In particular, one obtains the BF−

scheme (51) when A+ = 0 and the BF+ scheme (53) when
A− = 0.

2. Interface or boundary conditions

We replace e±
q and g±

q with E±
q and G±

q , respectively,
in interface conditions (13). The solution for G−

q has been
discussed above. Keeping in mind that in channel flow

�̄2
qe

+
q = 0, then, from Eq. (6a), �̄2

qG+
q = �̄qG−

q

a+−�+ , where a+

is given by Eq. (B2), and G+
q has the following solution from

Eq. (5a):

G+
q = �̄qE−

q + [−a+�− + (
� − 1

4

)]
�̄2

qG+
q . (B10)

The velocity condition (36b) reads with

α+ = −2(1 + A+)�+

A+ − 2�+ (1 + δ�),
(B11)

α− = −8(A−�+ − 2�)

3(1 + A−)
(1 + δ�),

where δ� = δ�(A±) is given by Eq. (B9). The stress-continuity
condition (36a) is described with νi = �+

3 [1 + δ�(A±
i )].

3. Improved schemes with δ�(A±) = 0

We require δ�(A±) = 0, and this relates A+ to A− in a
specific way:

δ�(A±) = 0 : A+(A−) = − B�+[3 + A−(3 + 4�+) − 8�]

{6 + 3(4 + B)�+ + A−[6 + (12 + B)�+] + 4B�} , (B12)

where the coefficients in the velocity closure relation are given by the following relations:

α+ = −4[−3 + A−(−3 + B�+) − 2B�]

3(1 + A−)(4 + B)
, α− = −8(A−�+ − 2�)

3(1 + A−)
. (B13)

The stress-continuity condition is described with νi = ν
(i)
B . The two schemes BF± are

BF− : A+ = 0, α+ = 1, α− = 2, (B14)

BF+ : A− = 0, α+ = 1 + B(8� − 3)

3(4 + B)
, α− = 16

3
�. (B15)

The BF− has the same coefficients as the BF for � = 3
8 .

Requiring α+ = 1 in Eq. (B13) we come to solution (B14),
which yields α− = 2; that is, we return to the BF scheme
with � = 3

8 . In turn, requiring α− = 1 in Eq. (B13), we get

α+ = 8+B
8+2B

; that is, we return to the BF+ scheme (B15) with
� = 3

16 . Therefore, there is no solution for the three parameters
{�,A+,A−} where the two coefficients α± are equal to 1 and
δ�(A±) = 0.
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