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Generalization of Darcy’s law for Bingham fluids in porous media:
From flow-field statistics to the flow-rate regimes
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In this paper, we numerically investigate the statistical properties of the nonflowing areas of Bingham fluid
in two-dimensional porous media. First, we demonstrate that the size probability distribution of the unyielded
clusters follows a power-law decay with a large size cutoff. This cutoff is shown to diverge following a power
law as the imposed pressure drop tends to a critical value. In addition, we observe that the exponents are almost
identical for two different types of porous media. Finally, those scaling properties allow us to account for the
quadratic relationship between the pressure gradient and velocity.
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Flows of non-Newtonian fluids through porous medium are
of interest in many practical applications [1] such as ground
reinforcement by cement injection, hydraulic fracturation,
enhanced oil recovery (EOR) [2], or as a potential method for
porosimetry [3]. Some of these fluids, such as mud, heavy oil,
foam, emulsions, exhibit a yield stress [4]: they behave like
liquid above a critical stress and as solid otherwise. Unlike
Newtonian fluids, their flow characteristics in porous media
are poorly known due to the interplay of the complex rheology
and porous structure. Consequently, the determination of a
macroscopic constitutive law to relate the flow rate to the
applied pressure has been the subject of many investigations
in the past [1,5–15] but remains a challenging and controversial
issue [16,17].

For simple yield stress fluids (no thixotropy), the flow curve,
i.e., the relation between steady state shear stress (τ ) and shear
rate (γ̇ ), can be represented by the Herschel-Bulkley model

τ < τc ⇒ γ̇ = 0 (solid regime),

τ > τc ⇒ τ = τc + kγ̇ n (liquid regime)

in which k and n are material parameters (n = 1 for a Bingham
fluid) and τc is the yield stress. Based on experimental
observations [5,6,13,18], the common law proposed in the
literature between the flow rate and the applied pressure
has the following form: Q ∝ (�P − �Pc)n, where Q is the
mean flow rate, n is the Herschel-Bulkley power-law index,
and �Pc a minimal pressure drop below which there is no
flow. However, as demonstrated numerically in [19–21] for
Bingham fluids, one should expect at least three different
flowing regimes depending on the applied pressure (see Fig. 1).
Those regimes can be interpreted by the progressive addition of
flowing paths with the applied pressure. Indeed, just above the
critical pressure, since only one flowing path is remaining, the
flow rate evolves linearly with the pressure Q ∝ (�P − �Pc).
This linearity results from the fact that inside this channel, the
effective viscosity can be considered as constant (see [14]).
For a larger applied pressure, more and more paths start to
open progressively. It contributes then to enhance the flow
rate according to a quadratic law Q ∝ (�P − �Pc)2. Finally,
when the pressure is high enough, the fluid is yielded in the
whole pore volume and behaves as a Newtonian one and the
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flow rate follows the standard Darcy’s law (with a constant
pressure loss coming from the fluid yield stress).

Since most of the experiments report only one flowing
regime (with a pressure threshold) and were performed at
significantly high net flow, we conjecture that it corresponds
to the last regime. Moreover, this is supported by recent NMR
experiments [16] which showed that the yield stress fluid
flows in the whole pore volume for all the flow-rate values
achieved experimentally.

The quadratic intermediate regime has instead been less
investigated in particular to understand its range of observa-
tion, its exponent’s origin, but also the impact of the porous
medium disorder. Different arguments have been proposed
in the literature to explain this quadratic dependence of the
flow rate with the applied pressure. Roux and Herrmann [19]
first observed this regime in a network of resistors with a
threshold voltage and conjectured that the number of flow
paths increased linearly with the pressure. Besides, Chen
et al. [9] demonstrated that for a parallel tubes model
with heterogeneous radii, the linearization of the probability
distribution function (PDF) of the radii leads also to a quadratic
flow rate. More recently, based on the work of [22] on
percolation system, Sinha and Hansen [23] performed a mean
field calculation on a capillary network leading to a quadratic
dependence but also after linearizing the threshold PDF. If
both models are based on the linearization of the PDF of the
local pressure thresholds, it remains quite unclear why this
argument holds for the whole range of pressure (i.e., from the
first to the last channel to open).

The aim of this paper is to focus on this quadratic regime.
In particular, we will demonstrate without any linearization
of the distribution that this regime can be explained by the
statistical properties of the unyielded regions.

I. NUMERICAL SIMULATIONS

Following the methodology of Talon and Bauer [21],
we used a two relaxation time (TRT) lattice-Boltzmann
scheme [24–26] to solve the two-dimensional (2D) Stokes
flow of a Bingham fluid.

We employed the regularized effective viscosity proposed
by Papanastasiou [27] (see also Mendes and Dutra [28]):

νeff(γ̇ ) = (1 − e−γ̇ /γ̇0 )τ0

(
1

2γ̇
+ 1

γ̇1

)
, (1)
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FIG. 1. (Color online) Top: disk packing (a) and stochastic (b)
porous media. Bottom (c): dimensionless flow rate q as a function of
the dimensionless distance to the critical pressure gradient δp − δpc

in disk packing porous medium. The two dashed lines have a slope
of 1 and the continuous line has a slope of 2.

where γ̇ is the strain rate, τ0 is the kinematic yield stress, γ̇0 is
a regularizing parameter, and τ0/γ̇1 = ν0 defines the viscosity
of the fluid.

We use two kinds of 2D porous media (see Fig. 1): a
stochastic one, described in Talon and Bauer [21], and a
random packing of monodispersed 2D disks, characterized by
its correlation length (λ) and the disk radius (R), respectively.

In each realization, we imposed a pressure difference �P

(with transverse periodic condition) and the mean flow rate
Q is measured. The domain size was L × W = 4096 × 1024
where L and W are the length and width of the system; the
numerical parameters can be found in [29]. All the variables
used in this study have been made dimensionless by using the
following characteristic quantities. The characteristic length l∗
is the radius R for disk packing or λ for the stochastic media;
the characteristic pressure is p∗ = ρτ0 and the characteristic
velocity v∗ = l∗p∗/ρν0. Thereby, we will denote δp and q the
dimensionless pressure drop and flow rate, respectively. The
dimensionless pressure threshold is denoted δpc. We note also
that the inverse of the dimensionless flow rate represents the
Bingham number Bi = q−1, i.e., the ratio of the yield stress
(τc) to the viscous stress (kγ̇ n).

II. RESULTS

The flow paths, extracted from the 2D velocity map, are
represented (in white) on Fig. 2 for different applied pressure
drops. They border regions of unyielded nonflowing fluid
which are identified by different color shades. In this figure,
one can distinguish two important features: the clusters’ area
decreases as the flow rate increases and its distribution seems

FIG. 2. (Color online) Clusters of nonflowing regions (colored
patches) for different dimensionless flow rates (from top to bottom:
qa = 2.5 × 10−3,qb = 10−2,qc = 2.7 × 10−2) in the disk packing
geometry. The active flow paths appear in white.

to be large. We note that those features are reminiscent of
critical phenomena, particularly the percolation.

For each cluster, the following characteristics have been
extracted: the area S and, from the smallest rectangle contain-
ing it, their length l and width w. We plot the probability
distributions of cluster size on Fig. 3 for different imposed
pressure drop in disk packing (we have excluded clusters
touching the inlet and the outlet). For statistical reasons, it
was performed with an average over five realizations for disk
packing porous medium.

It can be seen that p(S) follows reasonably a power-law
decay (with exponent τ = 1.46 ± 0.06 and 1.5 ± 0.05 for disk
packing and stochastic porous media, respectively), with a
cutoff at large sizes. We note that the stochastic porous medium
displays another power-law decay at low sizes (S � 1) with an
exponent − 1

2 . We attribute this behavior to the distribution of
solid sizes. Indeed, in our determination procedure, the solid
sites are included in our nonflowing clusters which is more
distributed for the stochastic media than the disk packing.
Moreover, for each flow rate, the distribution could be well
fitted by

p(S) ∝ S−τ exp (−S/S0) . (2)

The inset of Fig. 3 provides the evolution of this cutoff size,
estimated by measuring the maximum size S0 in the system,
which reduces while the flow rate increases. At low and high
flow rates, S0 reaches its limits, determined, respectively, by
the system and the pore sizes. In-between, we found a power-
law decay with q (and also with the pressure difference, not
shown):

S0 ∝ (δp − δpc)−χ ∝ q−γ (3)

with γ = 1 (see Table I for fitting error). It is worth mentioning
that it was more convenient to present scaling laws with respect
to the flow rate q rather than the pressure difference δp − δpc.
The latter induces more errors due the requirement of δpc
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FIG. 3. (Color online) Nonflowing cluster size PDF p(S) in disk
packing (a) and stochastic (b) porous media for different flow rates.
The dashed line is a fit of the form: p(S) ∝ S−τ with τ = 3

2 . Solid
line (b): variations as S−1/2. Inset: flow-rate dependence of the cutoff
cluster area S0 (S0 is the maximal cluster area at each given flow rate).
The dashed line is a guide for the eye, S0 ∝ q−γ with γ = 1.

which depends on the realization and is subject to numerical
errors (see the regularization errors described in [21]). Thus,
in order to present statistical properties, it is more convenient
to average realizations with the same flow rate than the same
distance to the critical pressure.

Combining (2) and (3) allows us to deduce a scaling
function for the PDF:

p(S) ∝ qγ τf (Sqγ ) (4)

with f (x) = x−τ e−x.

TABLE I. Fitted value of the exponents and error.

Law Exponent Bead Stochastic

p(S) ∝ S−τ τ 1.46 ± 0.06 1.5 ± 0.05
S0 ∝ q−γ γ 0.97 ± 0.07 1.1 ± 0.1
p(l) ∝ l−β β 1.75 ± 0.1 1.85 ± 0.05
l0 ∝ q−ξ ξ 0.60 ± 0.05 0.70 ± 0.1
w ∝ lα α 0.66 ± 0.03 0.69 ± 0.03
S ∝ lφ φ 1.59 ± 0.09 1.64 ± 0.06

FIG. 4. (Color online) Normalized probability distributions of
nonflowing cluster size PDF p(S) in disk packing (blue upper circle)
and in stochastic (red bottom triangle) porous media with γ = 1 and
τ = 3

2 . The continuous curve represents y ∝ x−3/2exp(−x).

Figure 4 displays, for the two kinds of porous media, this
scaling function for τ = 3

2 and γ = 1 at different flow rates
belonging to the quadratic regime (i.e., the maximum cluster
size has not reached one of the two bounds). To obtain the
normalized probability distributions of nonflowing cluster in
the stochastic porous medium, we remove the low sizes part
(S � 1) as it does not follow the same power-law decay as
the one used in the scaling function. Remarkably, one can
note that the data collapse works remarkably well. Another
remarkable point is the independence of this scaling function
and exponents with the type of disorder. This suggests that the
present problem displays universal statistical characteristics.

Interestingly, other statistical properties of the clusters
exhibit similar behaviors. For instance, the probability dis-
tribution of the lengths l follows the same kind of scaling law:
p(l) ∝ l−β exp (−l/ l0) where l0 is the cutoff length: l0 ∝ q−ξ

(see Fig. 5).
Another important geometrical property of the clusters is

the aspect ratio. We first calculate the mean width and area
for a given length: 〈w〉l and 〈S〉l . For the two kinds of porous
media, we observe on Fig. 6 that at all flow rates, the cluster
aspect ratio displays a self-affine property, namely, 〈w〉l ∝ lα,

with α � 2
3 . This self-affinity shows then that at very large

scale, the aspect ratio (w/l) of the clusters tends to be zero
(flat). We also note that the scaling deviates from this power
law at scales of the order of the solids length scale, particularly
for the stochastic medium.

Table I summarizes the different observed power laws along
with the corresponding exponents. The most remarkable result
is that all those exponents are very similar for the two different
types of disorder. This might then support the contention of
a universal behavior. It is also worth noting that all those
exponents are not independent between each other. Indeed,
one can find three dependence relationships. First, assuming
that the surface of a cluster is proportional to lw leads to

S ∝ lφ (5)

with φ = α + 1. This assumption is validated on Fig. 7.
Second, this last relationship (5) and the two power-law
distribution functions p(S) ∝ S−τ and p(l) ∝ l−β yield to
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FIG. 5. (Color online) Nonflowing cluster length PDF p(l) in
disk packing (a) and stochastic (b) porous media for different flow
rates. The dashed line is a fit of the form p(l) ∝ l−β with β = 11

6 .
Inset: flow-rate dependence of the cutoff cluster length l0 (l0 is the
maximal cluster length at each given flow rate). The dashed line is a
guide for the eye, l0 ∝ q−ξ with ξ = 3

5 .

β = τ (α + 1) − α. Finally, (5) leads to the cutoff size expo-
nent relation ξ = γ /(α + 1). From those three relationships,
we can infer that only three exponents are independent (we
choose τ , γ , α) and that all the other exponents can be derived

FIG. 6. (Color online) Average clusters width as a function of
their length in disk packing (circle) and in stochastic (triangle) porous
media for different flow rates. The dashed line scales as 〈w〉l ∝ l2/3.

FIG. 7. (Color online) Average clusters area as a function of their
length in disk packing (circle) and in stochastic (triangle). The dashed
line scales as 〈S〉l ∝ l5/3.

from them. In Table II, we derived the exponents from the
previous relationships, which are more than consistent with
the measurements.

III. SCALING FLOWING REGIME

In this section, we aim to relate the previously statistical
properties of the clusters to the quadratic flowing scaling
regime. Indeed, following Roux and Herrmann [19], one can
reasonably assume that the total flow rate is proportional to
the total number of flowing channels (Nchan), which is in fact
the assumption made to derive the Kozeny-Carman’s law [30].
Nchan can then be approximated to the number of clusters
(N ), which can be derived from average cluster size and the
total system area: N = A/〈S〉. From the distribution (2), the
average cluster size can be computed:

〈S〉 =
∫ ∞

0
Sp(S)dS = S0

−τ+2�(2 − τ ) (6)

∝ qγ (τ−2)�(2 − τ ),

where � is the gamma function. Applying Darcy’s law leads
then to

q ∝ K(q)(δp − δpc) ∝ Aq−γ (τ−2)(δp − δpc).

Finally, we obtain the flow-rate–pressure relationship q ∝
(δp − δpc)μ with μ = 1/[1 + γ (τ − 2)] = 2.1 ± 0.2, which
gives the correct scaling law within the error bar. We note,
however, that the error bar is rather large, mainly due to the
determination of γ . Its reduction would have required us to
increase significantly the system size.

TABLE II. Exponents derived from the set (τ,γ,α).

Law Exponent Bead Stochastic

p(l) ∝ l−β β = (α + 1)τ − α 1.76 ± 0.15 1.85 ± 0.14
l0 ∝ q−ξ ξ = γ /(α + 1) 0.58 ± 0.07 0.65 ± 0.09
S ∝ lφ φ = α + 1 1.66 ± 0.03 1.69 ± 0.03
q ∝ (δp − δpc)

μ μ = 1/(1 + γ (τ − 2)) 2.1 ± 0.2 2.2 ± 0.3
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IV. DISCUSSION AND CONCLUSION

In this paper, we have investigated the quadratic regime of
the flow-rate–pressure relationship, where the apparition of the
flow paths increases with the applied pressure drop. From a
statistical point of view, we have shown that the distribution of
the unyielded clusters exhibits similar behavior as for a second
order critical phenomenon. The imposed pressure and the net
flow rate would then be, respectively, the control and order
parameter.

The most salient feature is that the cluster’s size is
distributed according to a power law with a cutoff at large
size which depends on the flow rate (or the distance to the
critical pressure). The lower and upper bounds of this cutoff
are, respectively, the local characteristic scale of the porous
medium and the size of the system. It is worth noting that
those two bounds are reached roughly at the beginning and at
the end of the second flowing regime observed on Fig. 1. This
can be physically understood since when only few flow paths
remain, the largest clusters reach the two boundaries. On the
other hand, when the maximum cluster reaches the pore size,
it corresponds to the situation where very few areas remain
unyielded. The saturation of the maximum cluster size can
then give another interpretation of the range of the quadratic
flow-rate regime.

We have investigated two different kinds of porous media
which are observed to share the same scaling exponents. This
could suggest the “universality” of those exponents. It is, how-
ever, important to note that the present exponents differ signif-
icantly from the percolation theory. In particular, it would have
led to the exponents (see [31]) τ � 2.03 and α = 1 (fractal).

Finally, we have shown that those exponents allow us to
predict remarkably well the correct scaling of the flow-rate–
pressure relationship. It also confirms and explains the physical
conjecture proposed by [19], who assumed that the number
of channels increases linearly with the increase of pressure.
Indeed, two effects are at work. First, the number of channels
is determined by the cutoff size [from Eq. (6)] with an exponent
S−2+τ

0 . And second, this cutoff size diverges with the distance
to the threshold with another exponent S0 ∝ q−γ . It is then
very surprising and fortuitous that the nonlinear combination
of those two exponents leads to the validation of this simple
conjecture.

Further works will be dedicated to investigate other types
of disorder (pore distribution, anisotropy, 3D, etc.). It seems
indeed very important to characterize the “universality” of
the presented exponents and the resulting flowing-pressure
relationship. The extension of this work to three-dimensional
porous media seems to be a challenging but very interesting
problem. For instance, we expect that the branching structure
will not define closed volumes of immobile regions. This
topological property should then require us to revisit the
methodology presented in this paper.
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