

Colloquium UPMC, 13 juin 2017

AMERICAS CUP Finales des challengers PRESENT (LOUIS Vuitton America's Cup Challengers Playoffs finals) OUIS VUITTON

Manches du 12 juin 2017

Course 7 - Artemis Racing/Emirates Team New Zealand, arrêtée temps limite dépassé. Course 8 - Emirates Team New Zealand bat Artemis Racing de 56 secondes.

Classement

Emirates Team New Zealand (NZL), 5 points. Artemis Racing (SUE), 2 points.

Emirates Team New Zealand est le challenger de la 35^e Coupe de l'America.

35^e Coupe de l'America

(America's Cup Match presented by Louis Vuitton)

Samedi 17 juin

Course 1 - Oracle Team USA - Emirates Team New Zealand Course 2 - Emirates Team New Zealand - Oracle Team USA

L'équipe victorieuse de la 35^e Coupe de l'America sera la première à gagner sept régates.

Les courses sont prévues les 17, 18, 24, 25 (deux manches par jour) ainsi que les 26 et 27 juin si besoin.

Voilier instrumenté de l'Ecole Navale

Sillage des bateaux

Formation des premières vagues

Ils apprennent à voler !

Vendée Globe 2016

Vendée Globe 2016

Pourquoi maintenant?

Chap. 1

La propulsion

Naviguer contre le vent?

- Navigation en poussée (écoulement décollé)

Ecoulement décollé et turbulent

Ecoulement laminaire

Naviguer en "finesse"

Finesse = L / D = 1 /
$$tan(\varepsilon_a)$$

Explication de la portance

 $P + \frac{1}{2}\rho V^2$ = Constante

$$L = \frac{1}{2}\rho V^2 SC_L$$
$$D = \frac{1}{2}\rho V^2 SC_D$$

Daniel Bernoulli (1700-1782)

Ecoulement d'un fluide parfait autour d'une voile mince

Utilisation de la polaire « Eiffel » : L = f(D)

- Navigation « au près » : finess $e = \frac{L}{D} = 1/\tan \epsilon$
- Il existe toujours un angle limite β_{min} de remonté au vent

Vent réel ou apparent ?

 \Rightarrow Un voilier rapide navigue toujours près du vent apparent : \Rightarrow Si X \gg 1 alors β est toujours très petit !

Pourquoi augmenter la finesse ?

Théorème de Lanchester (1907)

L'angle de remonté au vent apparent est égal à la somme des angles de plané aéro et hydrodynamique :

$$\beta = \varepsilon_a + \varepsilon_h$$

$$X = 3 \Longrightarrow \beta_{\max} = \varepsilon_a + \varepsilon_h \approx 20^\circ, f \sim 6$$

 $X = 5 \Longrightarrow \beta_{\max} = \varepsilon_a + \varepsilon_h \approx 11^\circ, f \sim 10$

Equilibre aéro/hydro (ici 2D)

Quille et voile/aile ayant de bonnes finesses

Planeur ayant une bonne finesse

Parenthèse 1

Analogie avec la croissance des cristaux et l'optique géométrique

Polaire de vitesse d'un voilier

Courbe $V_S(\theta)$ des vitesses cibles en fonction du cap par rapport au vent réel.

- dépend du jeu de voile,
- de la force du vent
- de l'état de la mer

Construction de l'enveloppe convexe : $V(\theta)$

- Les parties plates correspondent aux positions atteignable par virement de bord (VMG).
- Analogue à la construction de Wulff pour les cristaux

Trajectoire de François Gabart (2016)

http://www.thetransat.com

Exemple d'une simulation de routage

Méthode des isochrones

Analogie avec la construction de Huygens en optique

Christian Huygens, Traité de la lumière (1690)

Surtout utile avec des indices variables (mirages) : n(x,y,z)

Mais en mer, l'indice dépend du temps ... et ce n'est pas un scalaire ! Pire que les milieux optiques anisotropes (ellipsoïde des indices)

En mer : $V(\theta) \neq V(\theta + \pi)$: A -> B \neq B -> A

Fin de la parenthèse 1

Plus vite que le vent?

- Existe-t-il un X_{max}?

- Le théorème de Lanchester est-il vraiment une limite ?

- Ne pourrait-on aller directement contre le vent ?

Naviguer face au vent... est-ce possible ?

1920 – Constantin (sur la Seine)

1933 – Lord Brabazon

1980 – Jim Bates

Autogiro, gyrovoile, Archinaute ...

Peter Worsley, 2008

Et dans le sens du vent?

Peut-on aller plus vite que le vent ? Oui ? Non ?

Directly downwind, faster than the wind (DDWFTTW)

Blackbird, juillet 2010, record à 2.8 fois la vitesse du vent.

Chap. 2

La résistance à l'avancement

Comment diminuer la résistance à l'avancement

- Profiler la coque

- Augmenter la longueur de coque. Pourquoi ?

Qu'est-ce que le sillage de vague ?

$$\alpha_{\rm max} = 19,5^{\circ}$$

- Ondes de gravité
- Motif stationnaire

Lord Kelvin (William Thomson) 1824-1907

Quelle est la vitesse limite ?

William Froude (1810-1878)

La résistance de vague augmente rapidement avec ℓ /L

 $l \approx L$

Vitesse limite de coque en mode « archimédien »

Quelle est la vitesse limite ?

Alain Colas sur Club Méditerranée (72 m de long, Transat anglaise en 1976)

Une solution, le planing

Coque à déplacement à sa vitesse limite de coque (Fr ≈ 0.5) Coque planante Bateau de la mini-transat au planing (Fr > 1)

Parenthèse 2

L'angle de Kelvin est-il vraiment constant ?

L'angle du sillage est-il vraiment constant?

$$\alpha_{\rm max} = 19,5^{\circ}$$

- Ondes de gravité
- Résistance de vague

Lord Kelvin (William Thomson) 1824-1907

(b)

Images Google Earth

- mesure de l'angle α
- mesure de la longueur L
 du bateau
- détermination de sa vitesse *U* et donc du
 Froude :

$$Fr = \frac{U}{\sqrt{gL}}$$

Evolution de l'angle du sillage

- 2 longueurs L et λ_{g} ,
- 1 nombre sans dim. Fr

A grand Froude :

$$\sin(\alpha) \sim \frac{1}{Fr} = \frac{\sqrt{gL}}{U}$$

Comme dans le régime de Mach !

$$\sin(\alpha) = \frac{c}{U}$$

Cylindre de diamètre 3 cm, *U* = 0.75 m/s

Cylindre de diamètre 3 cm, *U* = 2.6 m/s

Comment expliquer que l'angle du sillage décroisse à haute vitesse ?

=> Effet de la taille *L* de l'obstacle

- Ship wakes: Kelvin or Mach angle? M. Rabaud and F. Moisy, *Phys. Rev. Lett.* **110**, 214503 (2013).

- Mach-like capillary-gravity wakes, F. Moisy and M. Rabaud, *Phys. Rev. E* 90, 023009 (2014).

Scaling of far-field wake angle of non-axisymmetric pressure disturbance, F. Moisy and M. Rabaud, *Phys. Rev. E* 89, 063004 (2014).
Narrow ship wakes and wave drag for planing hulls, M. Rabaud and F. Moisy, Ocean Eng. 90, 34 (2014).

Fin de la parenthèse 2

Chap. 3

Les bateaux volants et les records de vitesse

L'Hydroptère (Alain Thébault) : record à 51 Nœuds

Quelles limites pour les foils ?

- 1) Résistance mécanique(plusieurs fois le poids du bateau)

- 2) Cavitation
- 3) Passage dans les vagues
- 4) Stabilité dynamique (asservissement)
- ... Jusqu'où ira-t-on ?

Quelle est la vitesse limite d'un voilier?

— Vitesse (Noeuds)

Vitesse (Noeuds)

1970

1980

Vitesse500m 70 **Evolution des** 60 records de vitesse 50 (sur 500 m) 40 1 n = 1 mille marin/heure30 =1,852 km/h 20

2010

2020

Année

2000

1990

(record du monde à 121 km/h en 2012)

Record du monde de vitesse à la voile ! 121 km/h !

Qu'est ce qui limite encore la vitesse des voiliers ?

- vitesse du vent ? Non
- vitesse limite de coque ? Non
- cavitation sur les foils ? Non
- couple d'inclinaison (gite) ? Non
- finesse max ? Oui, $\beta > \beta_0$
- Des pistes à creuser même si elles ne sont pas encore autorisées :
- les engins à éolienne et hélice...
- l'asservissement des foils

LES BATEAUX QUI VOLENT TEXTES FRANÇOIS CHEVALIER PHOTOGRAPHIES GILLES MARTIN-RAGET

Gallimard

101LES

Merci ...