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Monochromatic plane waves: 

Dispersion relation ω = f(k) : 
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Phase velocity: 
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Group velocity: 

=> Wave equation 
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Dispersive waves 

Hypothesis: irrotational flow (low dissipation) and linearity (small amplitude) 
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Phase and group velocities in deep water 



Close to minimum velocity 

1,5 mm cylinder moving at 22 cm/s 



Kelvin's floating laboratory: the Lalla Rookh 
 

Existence of Vmin: Thomson verified this point on his yacht with the help of an 
eminent guest, Hermann von Helmholtz [O. Darrigol, Worlds of flow]. 
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Fig. 25. Kelvin’s ship-waves [Thomson 1887a, plate; perspective view borrowed by Kelvin from
R.E. Froude]

f (x) =
+∞∫

0

cos(w3 − wx)dw, (123)

where x is proportional to the distance from the caustic. Airy’s evaluation of this integral
was insufficient for accurate comparison with William Miller’s excellent data of [1842].
As a first step toward a better estimate, Stokes [1850] derived the differential equation

Lord Kelvin 
(William Thomson) 

1824-1907 

William Froude 
 (1810-1878) 



Mach construction or Kelvin wedge? 
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-  Crawford, AJP, 1984 
-  Lamb, Lighthill or Whitham 

sinα(U) = sinθ = C
U

Non dispersive media 

C =Vg =Vϕ

Mach cone (U > c) 

U sinθ k( ) =Vϕ =
g
k

Kelvin wedge (any U) 

Dispersive media 



100 101 1020

5

10

15

20

25

k / k
g

α(
k)

  (
de

gr
ee

s)

tanα θ( ) = tanθ
2+ tan2θ

tanα k( ) =

k
kg
−1

2 k
kg
−1

avec  kg =
g
U 2

sinαmax =
1
3

U sinθ k( ) =Vϕ =
g
k



Photograph by Adrian 
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Everything clear? 

Matlab simulation (F. Moisy) 
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From Kelvin to Mach regime in ship wakes
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We revisit the classical problem of the wake pattern behind a disturbance moving at constant
velocity U at the surface of water. From a set of airborne images of ship wakes, we show that
the wake angle decreases as U

�1 at large ship velocity, in a way similar to the Mach cone in a
non-dispersive medium, in contradiction with the celebrated Kelvin result predicting a constant
wake angle of 19.47o. We propose here a simple model in which finite size e↵ects of the disturbance
explains this transition between the Kelvin and Mach regimes at Froude number Fr = U/

p
gL ' 0.5,

where L is the hull ship length. This model is confirmed by results from numerical simulations.

The V-shaped pattern behind disturbances like ducks
or ships moving at constant velocity on calm water is
a fascinating wave phenomenon, first explained by Lord
Kelvin, and described in many textbooks [1, 2] (see Ref.
[3] for a rewarding historical perspective). The wake pat-
tern owes its remarkable shape to the dispersive nature
of surface gravity waves, governed by the dispersion re-
lation !

2 = gk in deep water, from which it follows that
the group velocity cg = d!/dk of a given wavenumber k
is half its phase velocity c' = !/k =

p
g/k. From this

key ingredient, Kelvin, developing for this purpose the
method of stationary phase, has shown that the wave
pattern must be confined in a wedge of half-angle ↵K

independent of the disturbance velocity,

↵K = arcsin(1/3) ⇡ 19.47o. (1)

This result strongly di↵ers from the classical Mach cone
for sound waves, or more generally for any wave in a
non dispersive medium (e.g., the Cherenkov cone for
electromagnetic radiation), leading to a wake half-angle
↵(U) = arcsin(c/U), where c is the phase (and group)
velocity of the wave. While it is generally argued that,
because of the dispersive nature of surface gravity waves,
the simple Mach cone construction does not apply for
ship wakes and must be replaced by the more subtle
Kelvin construction, we show in this Letter that the Mach
construction is actually relevant if the finite size of the
disturbance is considered, because a single group veloc-
ity, independent of the velocity, is e↵ectively selected by
the size of the disturbance.

Since the work of Froude, ship waves have received
considerable interest in naval hydrodynamics, because an
important part of the resistance to motion of a ship is due
to the energy radiated by these waves [3]. The key pa-
rameter governing the geometry of the wake and the wave
drag is the hull Froude number, Fr = U/

p
gL, where g

is the gravity and L the waterline length of the hull. It
is instructive for the following to rewrite this number as
Fr =

p
�g/2⇡L, with �g = 2⇡U2

/g the wavelength of
the longitudinal gravity wave propagating in the ship di-

rection having phase velocity equal to U .

Ship wakes displaying an angle close to the Kelvin so-
lution (1) are usually found at low Fr (i.e., L � �g).
In this case, a double wedge pattern, generated by the
bow and the stern, can be observed (Fig. 1a). At larger
Fr, �g reaches the ship length L, resulting in interact-
ing bow and stern waves. At this point the trim of the
boat is a↵ected and the wave drag strongly increases:
this phenomenon is known as the hull limit velocity —
even if powerful and light motor or sailing boats nowa-
days overcome this limit. At even larger Fr (L ⌧ �g),
the hull partly rises out of the water, in the so-called
planing regime, and the wake pattern becomes narrower,
with angles of 10o or less (see Fig. 1b).

(a)

(b)

D

D

FIG. 1. (Color online) Airborne images of ship wakes taken
from Google Earth. (a) Near Antwerp (51.354o N, 3.879o

W), Fr = 0.15, ↵ ' 20o. Note the double wake pattern, with
intense bow waves and weaker stern waves. (b) Near Toronto
(43.630o N, 79.365o E). Fr ' 1.1, ↵ ' 9o.
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Origin of narrow wake pattern ?  Finite size effect 
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Surprisingly, such narrow wakes, in clear contradic-
tion with the celebrated Kelvin result, have not received
much attention. Note that, at the time of Kelvin, ships
were limited to moderate Froude numbers, which may
explain the common belief in the constant angle pre-
diction. Wakes of small angle have been inferred from
radar measurements [4], but their origin remains contro-
versial. It has been proposed that the non-dispersive na-
ture of gravity waves in shallow water, where the phase
and group velocities cg = c' =

p
gh (with h the wa-

ter depth) are independent of the wavelength, could be
responsible for this Mach-like behavior [5]. However, im-
ages like Fig. 1(b) are frequently encountered in places
where the sea depth is much larger than the character-
istic wavelength, for which the dispersive Kelvin result
should apply.

Fig. 2 shows measurements of wake angles ↵ as a func-
tion of the Froude number, collected from a series of air-
borne images of ship wakes taken from the Google Earth
database [6]. These images are chosen close to active
harbors, where a high resolution, of order of 0.5 � 1 m,
is available. They are taken from high altitude, ensuring
small parallax distortions. Only images where the ship
wake forms straight arms, ensuring a constant boat direc-
tion, are selected. For each image, the ship length L is de-
termined using the spatial calibration provided by Google
Earth, and the wake angle ↵ is defined from the slope
of the line going through the brightest points resulting
from sun glitter or whitecaps, which trace the maximum
amplitude of the wake. The boat velocity U is deduced
from the wavelength in the wake [see Eq. (2) below and
Ref. [7]], from which the Froude number Fr = U/

p
gL is

determined. In spite of a significant scatter, which can
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FIG. 2. (Color online) Red circles: Log-log plot of the wake
angle ↵ as a function of the Froude number, measured from a
set of 37 airborne images (see Supplementary Material). Blue
dash-dotted line: Kelvin prediction ↵K = 19.47o. Blue line:
model (4). Green dotted line: asymptotic law (5). Yellow
squares: Numerical simulations.

be mainly ascribed to the uncertainty in measuring �,
the data clearly shows a plateau at ↵ ' 18.6o ± 1.8o for
low Froude number, in good agreement with the Kelvin
prediction (1). For Fr > 0.5±0.1, this first regime is fol-
lowed by a decrease of the angle down to values of order
of 7o for the fastest boats. Interestingly, this decrease
follows approximately a law as ↵ ⇠ 1/Fr, similar to the
Mach cone problem. We propose in the following a model
which explains the transition between these two regimes
in terms of finite size e↵ects of the disturbance.
We first establish the expression for the wake angle ↵

of a given wavenumber k, following Ref. [8]. Since the
wake is stationary in the frame of the ship, the phase
velocity of each component k of the wave pattern must
be given by the ship velocity projected in the direction
of the wave propagation (Fig. 3):

U cos ✓(k) = c'(k) =
p
g/k. (2)

Accordingly, only wavenumbers k � kg = g/U

2 can
form a stationary pattern. We consider a wave of given
wavevector k emitted at time �t in the direction ✓ given
by Eq. (2) when the boat was in M, with MO= Ut (Fig.
3). Since its group velocity is half its phase velocity, the
distance MH= cgt traveled by this wave is half the dis-
tance MI= c't. It follows that the wedge angle formed
by this particular wavenumber k is

tan↵(k) =

p
k/kg � 1

2k/kg � 1
. (3)

The angle ↵(k), plotted in Fig. 4, vanishes at the lower
bound kg allowed by the ship velocity (corresponding to
the transverse wave �g shown in Fig. 3) and at k/kg !
1, and reaches the maximum ↵K = tan�1(1/

p
8) '

19.47o at km/kg = 3/2. The angle made by the crests
of the waves corresponding to this wavenumber is ✓m =
cos�1(

p
2/3) ' 35.24o. No energy can be found outside

this wedge of angle ↵K , so if all wavenumbers are excited
(Dirac pressure disturbance), the classical wake angle ↵K

is recovered.

M O

k
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D
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cgt

cMt

Og

H

FIG. 3. Geometrical construction of the Kelvin wake. The
wave of wavenumber k emitted in the direction ✓ at time �t

when the ship was in M reaches at time 0 the point H at the
middle of MI.

Good 
agreement! At large Froude: 

sin(α) ~ 1
Fr

=
gL
U

As in the Mach regime where 
 

sin(α) = c
U
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-  2 lengths L and λg,  
-  1 dimensionless number Fr 
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‘Cylindrical duck’ of diameter 3 cm, U = 0.75 m/s  (Fr = 1.4)  

𝛼≃19° 



‘Cylindrical duck’ of diameter 3 cm, U = 2.6 m/s  (Fr = 4.8)  

𝛼≃7.1° 



Cylinder of diameter 1.5 mm, U = 0.6 m/s  (Fr = 4.9)  

𝛼≃19° 



Cylinder of diameter 1.5 mm, U = 2 m/s  (Fr = 16)  

α ≈ 6°
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-   Known since Froude 

-  Existence of a wave drag 
(dominant at large velocity) 

Wave-making resistance 

Rw =
1
2
ρU 2B2Cw



figure 2, are of significant amplitude, so the largest visible an-
gle is given by Eq. 3 taken for k = kmin ⇥ 2⇧/L. This
model predicts that the wake angle is given by the Kelvin
prediction as long as the k0 mode contains energy, i.e. up
to Frc =

⌅
3/4⇧ = 0.49, and by a decreasing function

�(k = 2⇧/L) at larger Froude. For Fr ⌅ Frc the wake angle
decreases as

� ⇤ 1

2
⌃
2⇧Fr

. (4)

This previously unnoticed Froude number dependence of
the wake angle compares well with the wake angles observed
from airplane images. This is also consistent with the fact
that at Fr > 0.5 the transverse waves behind the boat (⇤ = 0),
which are visible for smaller Froude numbers, are no more
visible (see figure 3), since they fall outside the wave spec-
trum excited by the boat. Equation 4 is also found to describe
very well the wave patterns obtained by numerical simula-
tions (figure 4). More details on the numerical simulation can
be found in Ref. [8].

Figure 4: Perspective view of the wave pattern generated by
an axisymmetric (Gaussian) pressure distribution at Fr = 1.
The measured wake angle is � = 11 degrees.

4 WAVE DRAG

In order to describe the classical result of the increase of the
wave drag for displacement navigation (Fr < 0.5) we come
back to figure 1. We focus here on the transverse waves
propagating in the boat direction (⇤ = 0). These waves
are the stationary waves observed along the side of the hull
and behind the boat. Their wavenumber is given by Eq. 2,
kg = g/U2, and their wavelength ⌅g = 2⇧/kg can be written
as ⌅g = 2⇧L Fr2. For increasing speed their wavelength in-
creases, up to a particular velocity for which the wavelength
is equal to the length of the boat. This velocity corresponds
to Fr = 1/

⌃
2⇧ ⇤ 0.4. For this value the waves generated

by the bow are in phase with the ones emitted at the stern and
the draught or sinkage of the hull is maximum. This critical
velocity is known as the hull limit speed, because around this
Froude number the wave drag increases drastically and the
trim of the boat starts to be strongly affected by the waves it

generates. We now know that this ”limit speed” can be over-
come with light and powerful boats as they reach the planing
regime. In this regime of large Froude number, hydrodynamic
lift becomes significant, decreasing the immersed volume of
the hull. Because of the resulting smaller mass of fluid which
needs to be pushed away, a decrease of the wave drag is ob-
served. During this transition to planing, a significant acceler-
ation of the boat can be observed. We discuss here the possi-
ble connection between this wave drag decrease during plan-
ing and the decrease of the visible wake angle described in the
previous section.

The wave drag RW is the part of the hydrodynamic drag
due to the energy radiated by the waves generated by the boat.
In order to compare boats of different forms and displacement
a dimensionless wave drag coefficient CW is usually defined.
Assuming hulls having all the same shape but not the same
size, the wave drag will only depend of the boat velocity U ,
waterline length L, gravity g and water density ⌃. One finds
by dimensional analysis:

RW

⌃U2L2
= CW (Fr). (5)

In reality this coefficient CW also depends on the exact shape
of the boat, and alternate definitions where L2 is replaced by
LB or B2 (where B is the beam of the hull) are also found in
the literature. Another possibility is to build a dimensionless
drag coefficient by normalizing the wave drag force RW by
the weight of the boat ⌃gD, where D is the static immersed
volume of the hull. For displacement boat, the wave drag co-
efficient rapidly increases (at least as Fr4 if defined by Eq. 5)
and becomes the dominant part of the hydrodynamical drag
at large Fr. Note that the power law CW ⇧ Fr4 can be re-
covered by scaling argument, assuming that the amplitude of
the waves scales as U2 (using Bernoulli relation) and that the
wavelength observed along the Kelvin angle scales as U2 (Eq.
2).

In order to compute the wave drag, Havelock [5] has in-
troduced a classical simplification which consists in replacing
the boat by an imposed pressure field P (x, y) at the water
surface. The resulting surface deformation ⇥(x, y) can then
be computed as a Fourier integral (see Eq. 2.17b of Ref. [9],
or Eq. 11 of Ref. [1]). From this imposed pressure and cal-
culated wave field, the wave drag is then computed by inte-
grating the product of the local pressure by the slope of the
interface in the direction of the motion:

RW =

⇤⇤
P (x, y)

�⇥

�x
dxdy. (6)

On figure 4 we have simulated the wave pattern gen-
erated by a moving Gaussian pressure field, g(r) =
(2⇧F0/L2) exp

�
�2⇧2r2/L2

⇥
, where F0 is a normalization

force, which corresponds here to the weight of the boat (F0 =
⌃gD). From this simulated surface height, we have computed
the wave drag using Eq. 6 for various Froude numbers. The
results, plotted in figure 5, are in perfect agreement with the
exact result found by Benzaquen et al. [1] for a Gaussian

⇤(x, y) =

ZZ
dkx
2⌅

dky
2⌅

ˆP (kx, ky)

[�(k2 + k2c )�
�
k (kxU � i⇥)2]

exp i[kxx+ kyy]

Havelock method (1918): Imposed pressure perturbation P(x,y) 

Where  

In the limit  ε→ 0

Wave-making resistance 
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Figure 5: Dimensionless wave drag calculated for a gaussian
moving pressure field with our simulated wave field (⇤) and
comparison with Eq. 7 (—).

flat ships, whose hull shape is equated to the free-surface
shape immediately beneath a patch of pressure.
One of our aims is to reduce or minimise wave re-

sistance. We summarise here new results for pres-
sure patches of minimum resistance at fixed total load,
and give examples illustrating the corresponding near-
field wave patterns, which are candidate hull shapes for
planing surfaces. Interestingly, although optimal pres-
sure distributions are necessarily fore-aft symmetric, this
does not imply such symmetry of the near-field pattern,
nor of the flat-ship hull, whereas the corresponding opti-
mal thin-ship theory demands fore-aft hull symmetry.
We also provide discussion and preliminary results on

the inverse problem, namely that of finding the pressure
distribution corresponding to a given flat-ship hull. This
is a very difficult computational task, and we are con-
tinuing to work on it. However, design of a pressure
distribution for low wave resistance, followed by direct
computation of the shape of the corresponding flat-ship
hull, is a computationally simpler task which is already
complete.

HAVELOCK SOURCES

The topic of this paper is detailed and accurate computa-
tion of steady flow fields, wave patterns and wave resis-
tance, for bodies moving at constant speed U at or near
a free surface under gravity g, in calm water of infinite
depth. The bodies must be small in some sense, so that
the free-surface condition can be linearised, and there
are many examples of such bodies, including thin ships,
catamarans, submarines, hovercraft and other types of
surface-effect ships, planing surfaces or flat ships, etc.
Subject to the usual assumption of an inviscid in-

compressible fluid moving irrotationally, all such flows
can be generated by distributions of Havelock sources,
which are point sources in the presence of the free
surface. The velocity potential of a unit Havelock
source (Havelock 1917, 1928, Wehausen and Laitone
1962, p. 484) located at (x, y, z) = (0, 0, �) is

G(x, y, z; �) = � 1

4⇤2
⇥
⇤ ⇤/2

�⇤/2
d⇥

⇤ ⇥

0
dk

e�ik(x cos ⇥+y sin ⇥)

�
e�k|z��| � k + k0 sec2 ⇥

k � k0 sec2 ⇥
ek(z+�)

⇥

(1)

with k0 = g/U2. The path of k-integration passes above
the pole at k = k0 sec2 ⇥, so guaranteeing that waves oc-
cur only for x > 0 . The first term inside the square
bracket of (1) contributes the potential of an ordinary

Figure 1: Comparison between theory and experiment
for wave resistance of a parabolic strut.

infinite-fluid Rankine source, since

� 1

4⇤2
⇥
⇤ ⇤/2

�⇤/2
d⇥

⇤ ⇥

0
dke�ik(x cos ⇥+y sin ⇥)�k|z��|

= � 1

4⇤
⌅
x2 + y2 + (z � �)2

. (2)

The second term inside the square bracket of (1) is the
correction for the free surface, and it is easy to verify
that the Kelvin linearised free-surface condition

Gxx + k0Gz = 0 (3)

holds on z = 0.
Although the ability to represent free-surface flows by

Havelock sources has been available for about a century,
an apparent inhibition for routine use has been the sheer
computational task of evaluating the double integral (1).
When Havelock sources are distributed over a spatial
region, at least two further numerical integrations have
to be performed, and if detailed flow fields are then re-
quired at many (x, y, z) values, some billions of values
of G may be required! There is therefore a premium on
efficient evaluation of this double integral.
Newman (1987) made a significant advance in this

direction by providing economised polynomial approxi-
mations for the “local” portion of the Havelock source,
namely

GL(x, y, z; �) = G(�|x|, y, z; �) . (4)

This is an even function of x which is identical to G
when x < 0, i.e. ahead of the source, and so is not wave-
like. Thus G = GL + GF where the “far-field” por-
tion GF is identically zero for x < 0, and for x > 0
is given by �2⇤i times the residue at the pole, namely

2

Figure 6: Dimensionless wave drag for a parabolic strut (fig-
ure 1 of Ref. [11].

This wave drag coefficient is maximum for Fr � 0.37, fol-
lowed by a decrease as CW � 1/Fr4 at large Froude num-
bers. Interestingly, this maximum is very close to the critical
Froude number Frc � 0.49 at which the wake angle starts de-
creasing. Both results are consequence of the finite extent of
the wave spectrum excited by the disturbance: as the Froude
number is increased, the surface deformation in the vicinity
of the boat is no longer able to supply energy to the waves
of wavelength ⇤g = 2⌅U2/g, resulting in a combined de-
crease of the wake angle (� � 1/Fr) and of the wave drag
(CW � 1/Fr4).

The overall shape of CW computed by Eq. 7 is surprisingly
similar to the experimental curve of Chapman [2] with com-
putation by Tuck et al. [11] (figure 6). This curve is usually
interpreted as the result of the lift of the hull and the result-
ing decrease of the immersed volume at Fr > 0.5. However,

in our analysis, the prescribed pressure P (x, y) does not de-
pend on the velocity, so it does not contain the physics of the
dynamical lift on the hull. This suggests that the dynamics
of the planing and the decrease of the immersed volume are
not necessary ingredients for the decrease of the wave drag at
large Froude number. Note that the decrease of the wave drag
at large velocity is often partly hidden by the increase of the
other sources of hydrodynamic drag, which increase as Fr2.

5 CONCLUSIONS

At large velocity many racing sailing boats are now planing
under the action of the strong hydrodynamic lift. The fact
that the dynamically immersed volume is smaller than in static
condition provides a reasonable argument for the diminution
of the wave drag. We propose here an alternative interpreta-
tion, in which the combined decrease of the wave drag and
the wake angle both follow from the finite extent of the wave
spectrum excited by the ship. This interpretation is based on
our simulations of the wave pattern generated by an imposed
pressure disturbance, suggesting that the narrow wake angles
at large Froude number can be observed without lift and thus
without planing regime. Further investigations are necessary
to better describe the relative importance of trim and sinkage
evolution of planing boat to better understand the relative im-
portance of the finite size of the boat compared to dynamic
lift.

We note that the present description is by construction lim-
ited to stationary motion, i.e. boat translating on a flat sea sur-
face. In real situations, when in planing conditions the wind
and thus the wind waves are usually large, inducing a periodic
motion of the boat at the wave encounter frequency. This non
stationarity increases the hydrodynamic drag when sailing at
close reach but can also decreases the drag when surfing on
swell.
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- Narrow wave wakes exist, and are not explained 
by the classical Kelvin argument 

-  Capillary regime is under progress. 

 
-   Fr > 1 =>  1) Narrow Kelvin wake 

  2) Planing hull 
  3) a decrease of the wave drag
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NASA satellite image (MODIS imager on board the Terra satellite) of a 
wave cloud forming off of Amsterdam Island in the far southern Indian 
Ocean. Image taken on December 19, 2005. 
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