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ABSTRACT

Viscous fluid exiting a long horizontal circular pipe develops a complex structure comprising a primary jet above and a smaller secondary jet
below with a thin fluid curtain connecting them. We present here a combined experimental, theoretical, and numerical study of this
“Torricelli’s curtain” phenomenon, focusing on the factors that control its morphology. The dimensional parameters that define the problem
are the pipe radius a; the mean exit velocity U of the fluid; the gravitational acceleration g; and the fluid’s density q, kinematic viscosity �,
and coefficient of surface tension c. Rescaling of experimentally measured trajectories of the primary and secondary jets using a for the
vertical coordinate and LD ¼ Uða=gÞ1=2 for the horizontal coordinate x collapses the data onto universal curves for x < 10LD. We propose a
theoretical model for the curtain in which particle trajectories result from the composition of two motions: a horizontal component
corresponding to the evolving axial velocity profile of an axisymmetric viscous jet and a vertical component due to free fall under gravity.
The model predicts well the trajectory of the primary jet, but somewhat less well that of the secondary jet. We suggest that the remaining
discrepancy may be explained by surface tension-driven (Taylor–Culick) retraction of the secondary jet. Finally, direct numerical simulation
reveals recirculating “Dean” vortices in vertical sections of the primary jet, placing Torricelli’s curtain firmly within the context of flow in
curved pipes.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055974

I. INTRODUCTION

One of the oldest problems in fluid mechanics is to determine the
form taken by a jet of water issuing horizontally from a hole pierced in
the side of a water-filled container. The solution was first discovered by
Torricelli1 [Fig. 1(a)]. Torricelli’s work on horizontal water jets is found
in Book 2 of his treatise “On the Motion of Naturally Descending Heavy
Bodies,” in a section entitled “On the Motion of Waters.” He states his
conclusion as follows [Fig. 1(c)]: “In the first place it is evident that all
waters issuing from holes in any perforated tube describe parabolas.”
Torricelli’s discovery of the parabolic trajectories of water jets is one of
the founding results of the science of fluid mechanics. Dorfman2 provides
an accessible introduction to Torricelli’s life and work.

Why revisit now the nearly 400 year-old question of the shape of
horizontal jets? Our renewed interest in this problem began with a sur-
prising observation in a teaching laboratory setup designed to illustrate
the properties of Poiseuille flow. The working fluid is mineral oil,
which is pumped through a long (6m) pipe of inner radius 9.5mm
equipped with pressure sensors at fixed intervals. The flowing oil exits
the downstream end of the pipe into a transparent air-filled chamber,

whence it is recycled back to the upstream end. In view of Torricelli’s
well-known result, we expected the jet exiting the pipe to have a para-
bolic trajectory. What we saw instead was the complex structure
shown in Fig. 2. The initially round jet rapidly splits into a primary jet
above and a smaller secondary jet below with a thin fluid curtain con-
necting them. We baptized this phenomenon “Torricelli’s curtain” in
honor of Torricelli’s seminal contributions to our understanding of
horizontal liquid jets.

We soon discovered that Torricelli’s curtain was not confined to
our laboratory. The phenomenon can be seen in the pedagogical
movie “Turbulence” of the National Committee for Fluid Mechanics
Films (http://web.mit.edu/hml/ncfmf.html) when an increase in the
liquid viscosity causes the flow to become laminar. It can also be found
in nature. Figure 3 shows an example of what volcanologists call a
“firehose:” an initially horizontal jet of molten lava falling into the
ocean. The primary jet is visible as a band of darker red just below the
upper extremity of the curtain.

With its two jets connected by a thin sheet, Torricelli’s curtain
obviously involves separate pieces with different dynamics. The
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literature on both jets and sheets is immense, and a complete survey
would require a separate paper. Instead, to focus the discussion, we
concentrate on the aspects most relevant to our work: steady axisym-
metric laminar capillary jets exiting long pipes at high Reynolds num-
ber Re and planar fluid sheets. Finally, we briefly survey past
experimental work on buoyant jets injected horizontally into a quies-
cent fluid with a similar viscosity, a system that displays some striking
similarities to Torricelli’s curtain.

All beginning students of fluid mechanics know that steady lami-
nar flow in a long pipe has a parabolic (Poiseuille) velocity profile with
zero velocity but finite shear stress at the pipe’s inner wall. The maxi-
mum velocity at the center of the pipe is twice the mean velocity U.
When the liquid exits the pipe into air, the boundary condition on its
outer surface changes abruptly from one of zero velocity to one of zero
shear stress. In the absence of gravity and surface tension, the resulting
mismatch of the shear stress between the surface and the interior is
gradually erased by radial viscous diffusion, resulting in the establish-
ment of a uniform (plug flow) profile across the jet. The far-field veloc-
ity U1 ¼ ð4=3ÞU and radius a1 ¼

ffiffiffi
3
p

=2
� �

a of the jet are
determined by the requirements of conservation of volume flux and
momentum flux. This plug flow is established at a downstream dis-
tance x � 0:25aRe, where Re ¼ Ua=� is the Reynolds number.

At distances x � 0:25aRe, radial viscous diffusion is confined to
a thin boundary layer of thickness dðxÞ � a adjoining the surface of
the jet and has not yet been influenced by the jet’s finite radius. The
structure of the boundary layer can therefore be treated as a two-
dimensional problem of parabolic type with an outer boundary condi-
tion of constant shear _c given by the near-wall Poiseuille velocity
profile. This problem was solved by Goren,3 who found a self-similar

solution in which d � ð�x=_cÞ1=3. Goren and Wronski4 determined
the shape of an axisymmetric jet far downstream by linearizing the
Navier–Stokes equations about the jet’s final uniform state at
x=ðaReÞ ! 1. Subsequent studies considered vertical jets subject to
axial gravity and (in most cases) surface tension. Examples include
Duda and Vrentas5 and Tsukiji and Takahashi,6 who transformed the
boundary-layer form of the Navier–Stokes equations to streamline
coordinates and solved them numerically to obtain the structure of the
jet at all distances x=ðaReÞ. Philippe and Dumargue7 used matched
asymptotic expansions to obtain a semi-analytical solution for the jet
structure, but did not consider the effect of surface tension. Oguz8

solved the boundary-layer equations for an axisymmetric jet without

FIG. 1. Torricelli’s (1644) work on the shape of horizontal jets. (a) Portrait of
Torricelli by Lorenzo Lippi (ca. 1647). (b) Torricelli’s sketch of a vertical tube AB
filled with water to the level G and perforated at C. CD is the parabolic trajectory of
the jet. (c) Torricelli’s enunciation of the parabolic trajectories of water jets. Source
for part (a): “Evangelista Torricelli,” Wikipedia, Wikimedia Foundation, 20 January
2021, https://en.wikipedia.org/wiki/Evangelista_Torricelli. Source for parts (b) and
(c): https://books.google.fr/books?id=UQsOAAAAQAAJ&printsec=frontcover&hl=fr#v
=onepage&q&f=false.

FIG. 2. Structure of Torricelli’s curtain. A jet of mineral oil is ejected horizontally at
mean speed U¼ 0.97 m s�1 from a 6m long pipe with inner radius a¼ 9.5 mm.
The initial jet splits into a primary jet above and a smaller secondary jet below with
a thin fluid curtain between them. For typical horizontal and vertical cross sections
of the whole structure, see Fig. 13.

FIG. 3. A natural example of Torricelli’s curtain, formed by a horizontal jet of molten
lava on the flank of Kilauea volcano, Hawaii on 28 January 2017. The distance
from the outlet to the sea surface is about 28 m. The numbers 1, 2, and 3 indicate
the primary jet, the secondary jet, and the curtain, respectively. Public domain
source: https://www.usgs.gov/media/images/open-lava-stream-continues-ocean-entry.
Credit: U.S. Geological Survey, Department of the Interior/USGS.
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surface tension using eigenfunction expansions and a Galerkin numer-
ical method. Finally, in the context of a stability analysis, Sevilla9 deter-
mined the steady state of a high-Re capillary jet using a numerical
method of lines due to Gordillo et al.,10 which we too shall use in the
sequel.

Turning to vertically flowing fluid sheets, we first note a seminal
contribution of G. I. Taylor, who in the appendix to Brown11 derived a
one-dimensional equation for the steady-state velocity of a falling liq-
uid sheet governed by a balance of gravity, inertia, and extensional vis-
cous forces. Taylor derived his equation assuming that the velocity was
constant across the sheet (plug flow). The equation was later general-
ized to include the effects of surface tension and nonstationarity.12,13

For our purposes, the most interesting phenomena connected with liq-
uid sheets are those that occur near a free edge retracting under the
influence of surface tension. Taylor14 and Culick15 considered the
retraction of the edge of an effectively inviscid liquid sheet with thick-
ness h in the absence of gravity. By balancing surface tension and iner-
tia, they found that the velocity of retraction is Utc ¼ ð2c=qhÞ1=2,
where c is the coefficient of surface tension and q is the density.
Keller16 and Keller et al.17 analyzed the shape of the growing rim on
the edge of a retracting inviscid sheet and found it to be a cylinder
whose radius increases as the square root of the time. Brenner and
Gueyffier13 solved numerically the one-dimensional thin-sheet equa-
tions mentioned previously. They found three different regimes
depending on the Ohnesorge number Oh ¼ �ðch=qÞ�1=2 and the
Reynolds number Ref ¼ VL=�, where L is the lateral extent of the
sheet perpendicular to its edge. Both regimes with Ref � 1 show the
formation of a growing rim, with inward-propagating capillary waves
when Oh� 1. Song and Tryggvason18 and S€underhauf et al.19 solved
the full two-dimensional Navier–Stokes equations in a thin sheet
geometry to investigate rim formation. Both studies found that for
Oh� 1 there is a growing quasi-cylindrical rim with inward-
propagating capillary waves. Roche et al.20 studied experimentally the
shape of the hole downstream of a needle piercing a vertically flowing
liquid curtain and found good agreement with a theoretical model
including the effect of surface tension acting on the rim. Savva and
Bush21 performed a theoretical and numerical study of viscous sheet
retraction and deduced new analytical expressions for the retraction
speed at rupture and the evolution of the maximum sheet thickness.
Gordillo et al.22 presented both two-dimensional and one-dimensional
numerical solutions for retracting sheets and determined an analytical
solution of the one-dimensional equations that is valid in the asymp-
totic limit of large times. This is also an appropriate place to mention
recent theoretical work by Benilov23 on the related problem of a two-
dimensional liquid curtain with strong surface tension ejected from a
horizontal slot in a field of gravity.

Finally, there have been a number of experimental studies of
buoyant jets injected horizontally into a quiescent ambient fluid, the
source of the buoyancy being either a temperature difference24,25 or a
compositional one.26–29 These experiments are similar to the configu-
ration of Torricelli’s curtain in that gravity acts normal to the jet axis,
but different in that the jet and the ambient fluid have comparable vis-
cosities and no surface tension. In the context of our work, the obser-
vations of Arakeri et al.26 are particularly noteworthy. These authors
performed their experiments by injecting pure water jets into denser
brine solutions, so that the effective gravitational force is directed
upward. They observed that in many cases the jet bifurcated into a

primary jet and a rising “plume” in the form of a thin sheet parallel to
the flow direction. In fact, Fig. 8 of Arakeri et al.26 shows a shadow-
graph image that looks very much like an upside-down version of
Torricelli’s curtain, with primary and secondary jets connected by a
(presumably) much thinner vertical sheet of the same fluid. The obser-
vations of Arakeri et al.26 were broadly confirmed by subsequent
work.27–29

II. DIMENSIONAL ANALYSIS

As a prelude to our subsequent investigations, we use dimen-
sional analysis to determine the dimensionless groups governing
Torricelli’s curtain. The parameters of the experiment are the fluid
density q, the kinematic viscosity �, the coefficient of surface tension
c, the pipe radius a, the mean exit velocity U, and the gravitational
acceleration g. Of these six parameters, three have independent dimen-
sions. Buckingham’s P-theorem then tells us that three independent
dimensionless groups can be formed from the six dimensional param-
eters. To help us choose the definitions of these groups, we note two
facts. First, a typical experiment consists in varying U for fixed values
of the other dimensional parameters. This suggests that U ought to
appear in only one dimensionless group, which we choose to be the
Reynolds number

Re ¼ Ua
�
; (1)

which measures the ratio of inertia to viscous forces. The second fact is
that the curtain can be considered to be due to gravity acting on a jet
that would otherwise have been horizontal and axisymmetric. This
suggests that g should appear in only one dimensionless group. We
choose this group to be the ratio of two characteristic length scales.
The first is the “Dean length” LD, the distance from the pipe exit at
which a fluid particle moving with a horizontal speed �U has fallen a
distance �a under gravity. Assuming a ballistic (parabolic) trajectory,
we find

LD ¼ Uða=gÞ1=2: (2)

The second lengthscale L� ¼ aRe is the distance from the pipe exit at
which radial viscous diffusion over a length �a has occurred. Our sec-
ond dimensionless group is thus the “Dean number” De ¼ L�=LD, or

De ¼ a3g
�2

� �1=2

: (3)

The third dimensionless group measures the effect of surface tension
and should contain neither U nor g. This group is the Laplace number,

La ¼ ca
q�2
� ðc=aÞðqU

2Þ
ðq�U=aÞ2

: (4)

As (4) shows, La can be interpreted as a characteristic value of the sur-
face tension force times inertia divided by the square of the viscous
force.

A fourth dimensionless group that we shall have occasion to use
is the Weber number

We ¼ qaU2

c
; (5)

which measures the ratio of inertia to surface tension. It is not inde-
pendent of the three groups defined previously becauseWe ¼ Re2=La.
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III. LABORATORY EXPERIMENTS
A. Experimental setups

We used two experimental setups. The first (setup 1) is the teach-
ing setup built by Plint and Partners Ltd. (Deltalab) for the analysis of
Poiseuille flow that we mentioned in the Introduction. The working
fluid is mineral oil (Total Azolla ZS22) with dynamic viscosity g
¼ 0:039 Pa s, density q ¼ 860 kg m�3, and surface tension coefficient
c ¼ 0:037 N m�1.

In order to be able to change the working fluid and pipe radius
and to make local measurements of the curtain thickness, we built a
second setup (setup 2). This involved a 1.2m long pipe with inner
radius a¼ 5.5 or 8.5mm, through which fluid is forced by a centrifugal
pump. The jet/curtain falls into a large tank whence it is pumped back
to the reservoir supplying the pipe. The flow rate is controlled by
adjusting the frequency of the pump. The working fluids were water/
glycerine mixtures, water/glucose syrup mixtures, and silicone oil. At
25 �C, the silicone oil had q ¼ 960 kg m�3 (decreasing with tempera-
ture at a rate of 1 kg m�3 per K) and c ¼ 0:0207 N m�1. Its kinematic
viscosity was about 3	 10�5 m2 s�1 and decreases with temperature
by about 1% per K. Viscosities were measured with an Anton Paar
MCR 501 rheometer and surface tension with a Kruss DSA30
tensiometer.

Each of the two experimental setups has shortcomings that
should be kept in mind. The main disadvantage of setup 1 is that it
cannot be disassembled, making it impossible to change the pipe or
the working fluid. Moreover, the fluid is ejected into a closed chamber
that prevents access to the curtain. In setup 2, there is a small (ampli-
tude 0.1mm) oscillation of the pipe transmitted from the pump
through the hoses. When the curtain is very thin, the oscillation leads
to the formation of bubbly surfaces alternately on the two sides. A sec-
ond disadvantage is that the temperature of the liquid increases as

passes repeatedly through the pump, changing its viscosity and modi-
fying the flow rate. Finally, the flow rate is not perfectly constant on
shorter time scales and oscillates with a typical frequency< 1Hz.
Consequently, the curtain moves a little in its own plane, typically by
about 1 cm in x.

B. Observations

We begin by using setup 1 to examine how the morphology of
the curtain depends on the Reynolds number Re. Figure 4 shows the
shape of the curtain for five values of Re. All five experiments have
De¼ 58 and La¼ 160. As Re increases, both the primary and second-
ary jets become more horizontal, as one would expect from purely bal-
listic considerations. For Re 
 180, the primary and secondary jets
move progressively further away from each other with increasing dis-
tance downstream. For Re¼ 120 [Fig. 4(a)], by contrast, the two jets
first diverge and then begin to approach each other.

The approach of the primary and secondary jets in Fig. 4(a) raises
the question of what would happen further downstream if the jets had
not been blocked by the bottom of the transparent chamber. This can
be explored using experiments with setup 2 and diluted glucose syrup,
for which the large surface tension effect pulls the secondary jet
strongly upward toward the primary one. Figure 5 shows a close-up
view of one such experiment with Re¼ 1360, De¼ 160, and
La¼ 4300. The approaching primary and secondary jets eventually
collide to form a “fluid chain.”30

At large flow rate and for a¼ 8.5mm in setup 2, the film grows
quite thin far downstream from the pipe exit and becomes unstable.
Sinuous waves of rapidly growing amplitude are observed, reminiscent
of the flutter instability studied recently by Dighe and Gadgil.31

Further study of this instability is beyond the scope of this paper.

FIG. 4. Shape of the curtain observed in setup 1 as a function of the Reynolds number Re ¼ (a) 120, (b) 180, (c) 245, (d) 310, and (e) 450. The approximate values of the
Dean and Laplace numbers are De¼ 58 and La¼ 160. The grid squares in the background are 1 cm across.
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1. Rescaling of the curtain shape

Next, we ask whether the trajectories of the primary and second-
ary jets can be rescaled to yield universal curves. Figure 6(a) shows

8 profiles of the upper boundary (top) and the lower boundary (bot-
tom) of the primary jet for different values of the mean exit velocity U,
obtained using setup 2 with silicone oil and a pipe having a¼ 5.5mm.
For these experiments, Re 2 ½160; 330�, De¼ 40, and La¼ 120.

To rescale the curves in Fig. 6, we choose new scaled variables
Y ¼ y=a; X ¼ x=LD, where LD is the Dean length defined by (2).
Figure 7 shows the rescaled versions of the curves of Fig. 6. All the
data collapse onto a universal curve for X< 10. For larger values of X,
significant differences among the scaled curves are evident, especially
for the lower rim [Fig. 7(b)].

Proceeding in a Torricellian way, we now determine the parabola
that best fits the curves in Fig. 7. The equation for the parabolic trajec-
tory of a particle having an effective horizontal velocity Ueff and initial
position y ¼ 7a is

y ¼ 7aþ gx2

2U2
eff

! Y ¼ 71þ 1
2

U
Ueff

� �2

X2; (6)

where the plus and minus signs correspond to the top and bottom of
the jet at the pipe exit. Using a simple least squares fit to the data in
Fig. 7, we obtain the parabolas shown by the red and green lines in
that figure. The parabolic fit to the data is good for the upper boundary
[Fig. 7(a)] but less good for the lower boundary [Fig. 7(b)]. The best-
fitting parabolas for the upper and lower boundaries have Ueff =U
¼ 1:43 and 1.28, respectively. Note that Ueff =U must be less than 2
because the fastest particles on the pipe axis have velocity 2U.

Figure 8 is the same as Fig. 7 but for a suite of 17 experiments with
a larger pipe radius a¼ 8.5mm. The upper boundary of the primary jet
[Fig. 8(a)] is again well fit by a parabola with Ueff =U ¼ 1:46, nearly the
same value as for the parabola in Fig. 7(a). By contrast, the data for the
lower boundary of the secondary jet [Fig. 8(b)] clearly do not collapse
onto a universal curve and are consequently poorly fit by a parabola
(green line corresponding to Ueff =U ¼ 1:04) that is shown only for
completeness. The secondary jet is clearly strongly affected by Re, being
lower (in this dimensionless representation) when Re is larger.

2. Thickness measurements

The thickness of the curtain in the z-direction (into the plane of
the page) is measured in setup 2 using a local optical probe
(Chromapoint from STIL, http://point.stil-sensors.com/?lang=EN).
Incident white light traverses a chromatic lens and the reflected light is
analyzed. The color of the reflected light gives the distance to the inter-
face. With a transparent liquid, two resolved peaks can be observed in
the spectrogram and, if the optical index of the liquid is known, the
film thickness h(x, y) can be measured with a 10lm resolution and at
a 1 kHz acquisition frequency. The optical probe can be translated ver-
tically or horizontally by an x–y carriage. Unfortunately, thicknesses in
the two jets cannot be measured with this method as the slopes of the
interfaces are too large there. We note that the background grids visi-
ble in Figs. 2, 4, 5, and 10 are solely for calibration of distances in the
x- and y-directions and play no role in the measurements of the cur-
tain thickness.

The black dots in Fig. 9 show (a) vertical and (b) horizontal pro-
files of the thickness measured in a laboratory experiment with
Re¼ 380, De¼ 80, and La¼ 194. The thickness of the sheet in
between the two jets increases in x and decreases in y. The solid and
dashed lines show theoretical predictions that will be discussed later.

FIG. 6. Profiles of (a) the upper boundary of the primary jet and (b) the lower
boundary of the secondary jet for different values of the mean exit velocity U,
obtained using setup 2 with silicone oil and a pipe having a¼ 5.5 mm. The corre-
sponding dimensionless parameters are Re 2 ½160; 330�, De¼ 40, and La¼ 120.

FIG. 5. Fluid chain resulting from the collision of the primary and secondary jets.
The experiment is performed using setup 2 with a¼ 5.5 mm and diluted glucose
syrup as the working fluid. The values of the dimensionless groups are Re¼ 1360,
De¼ 160, and La¼ 4300. The grid squares in the background are 2 cm across.
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3. Dean recirculation

Using setup 2, we were able to inject dye into the upper side of
the jet close to its exit from the pipe. The dye was observed by eye to
follow spiral trajectories down the jet, corresponding to a secondary
flow comprising two cells having longitudinal vorticity of opposite
sign. Such behavior is reminiscent of Dean recirculation in curved
pipes.32 We will have more to say about Dean recirculation below in
Sec. VB.

IV. THEORETICAL ANALYSIS
A. Simple ballistic model

To start simply, we present a zeroth-order model for the curtain
by supposing that fluid particles exiting the pipe do not interact with
one another in any way. This amounts to ignoring viscosity and sur-
face tension. Each particle therefore describes a parabolic trajectory
corresponding to its initial velocity of exit from the pipe. The exit

velocity uxðrÞ as a function of the radius r across the pipe is that of a
developed Poiseuille flow and is

uxðrÞ ¼ Uf0ðrÞ; f0ðrÞ ¼ 2 1� r2

a2

� �
: (7)

The equations governing the trajectories are the ballistic equations
_x ¼ uxðrÞ and €y ¼ g, where dots denote derivatives with respect to
the time t. Solving these and eliminating the parameter t, we obtain

y ¼ r þ gx2

2uxðrÞ2
: (8)

The red and green dashed lines in Fig. 10 show the trajectories (8)
with r¼ 0 (red) and r¼ a (green), for an experiment using setup 1.
The red dashed line is a parabola corresponding to the maximum exit
velocity uxð0Þ ¼ 2U . It follows reasonably closely the trajectory of the

FIG. 7. Rescaled curves from Fig. 6.
Parts (a) and (b) correspond to parts (a)
and (b) of Fig. 6. The red and green
curves are parabolas that best fit the
experimental data and correspond to
Ueff =U ¼ 1.43 and 1.28, respectively.
The arrows show the sense of increasing
Reynolds number Re. Part (c) shows the
two parabolas together to facilitate
comparison.

FIG. 8. Same as parts (a)–(c) of Fig. 7,
but for 17 experiments with a¼ 8.5 mm.
The corresponding dimensionless param-
eters are Re 2 ½150; 480�, De¼ 80, and
La¼ 200. The best-fitting parabolas (red
and green lines) have Ueff =U ¼ 1:46 and
1.04, respectively.
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primary jet, but is systematically too high. The vertical green dashed
line is the (degenerate) parabolic trajectory corresponding to the mini-
mum exit velocity uxðaÞ ¼ 0. It bears no relation to the trajectory of
the secondary jet, indicating that a simple ballistic model is not valid
for particles exiting the pipe near its wall.

The expression (8) for the trajectories allows us to derive an
expression for the thickness h(x, y) of the curtain. We sketch the deri-
vation here to illustrate the basic idea, which will be applied to a more
realistic model in Sec. IVB. For simplicity, we neglect the finite radius
of the pipe, which is equivalent to making a “far-field” assumption
ðx; yÞ � a. Equation (8) for the trajectories now becomes

yðx; rÞ ¼ gx2

2uxðrÞ2
: (9)

Denoting by h1 the thickness predicted by the simple ballistic model,
we equate the flux of fluid exiting the pipe through an annulus of area
2prdr to the flux crossing a vertical plane at some fixed downstream
position x. This requires

2pruxðrÞdr ¼ h1uxðrÞdy; (10)

where dy is the infinitesimal height of the portion of the curtain
through which fluid from the annulus of width dr passes. Rearranging
(10), we obtain

h1 ¼ 2pr
@y
@r

� ��1
: (11)

Differentiating (9) with respect to r and substituting the result into
(11), we obtain

h1ðx; yÞ ¼
pa2

4U
g
2y3

� �1=2

x: (12)

Introducing H1 ¼ h1=a, the foregoing equation can be written in
dimensionless form as

H1ðX;YÞ ¼
p

4
ffiffiffi
2
p Y�3=2X: (13)

Equation (13) predicts that for constant Y the curtain has a thin
“wedge” shape with H1 / X. We shall compare the prediction (12)
with observations after introducing a corrected ballistic model that
accounts for the effects of viscosity.

B. Corrected ballistic model

In this section, we propose a corrected ballistic model for the
morphology of the jet. The idea is to model the flow as the composi-
tion of two components: the axisymmetric flow within a steady hori-
zontal jet in the zero-gravity limit and a downward vertical velocity
due to free fall under gravity. The model differs from the simple ballis-
tic model of Sec. III by accounting for the effects of viscosity on the
axisymmetric horizontal jet.

The first task is to determine the steady axisymmetric flow in a
horizontal jet in the absence of gravity. Figure 11 shows a definition
sketch of the jet. The velocity within the jet is u ¼ urer þ uxex , where
er and ex are unit vectors in the directions indicated by subscripts. The
radius of the jet is R(x), and the radius of the pipe is a.

Following Sevilla,9 the governing equations in the boundary-layer
approximation are

r
@ux
@x
þ @

@r
ðrurÞ ¼ 0; (14)

ux
@ux
@x
þ ur

@ux
@r
¼ cR0

qR2
þ �

r
@

@r
r
@ux
@r

� �
; (15)

FIG. 9. Black dots: vertical (a) and horizontal (b) profiles of the curtain thickness h
measured in a laboratory experiment with Re¼ 380, De¼ 80, and La¼ 194. The
locations of the profiles are shown in the insets. Dashed and solid lines are the pre-
dictions (12) and (22) of the simple and corrected ballistic models, respectively.

FIG. 10. Trajectories predicted by the simple (dashed lines) and corrected (solid
lines) ballistic models, compared with an experiment with Re¼ 450, De¼ 64, and
La¼ 200. Red lines are trajectories of particles exiting the pipe at the center y¼ 0,
and green lines are for particles exiting at the bottom y¼ a. The black double-
headed arrow indicates a typical difference d0 between the prediction of the cor-
rected ballistic model and the observed lower extremity of the secondary jet.
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where c is the coefficient of surface tension and R0 ¼ dR=dx. Equation
(14) is the continuity equation, and (15) is the axial momentum equa-
tion. The radial momentum equation in the boundary-layer approxi-
mation simply states that the pressure does not vary across the jet.
This allows one to set the pressure everywhere equal to the capillary
pressure pc. Because R(x) is assumed to vary slowly over a length scale
aRe, the capillary pressure gradient �dpc=dx � cR0=qR2 is due only
to the azimuthal curvature of (circular) jet cross sections and does not
take into account the second (and much smaller) principal curvature
in the axial direction.

Equations (14) and (15) must be solved subject to the conditions

uxð0; rÞ ¼ Uf0ðrÞ; f0 ¼ 2ð1� r2=a2Þ; (16)

@ux
@r
ðx; aÞ ¼ 0; (17)

urðx; 0Þ ¼
@ux
@r
ðx; 0Þ ¼ 0; (18)

urðx; aÞ ¼ R0uxðx; aÞ: (19)

Condition (16) states that the flow exiting the nozzle x¼ 0 has a
parabolic (Poiseuille) profile with a mean exit velocity U.
Condition (17) states that the outer surface of the jet is free of
shear traction. Conditions (18) state that the radial velocity and
the radial derivative of the axial velocity vanish on the axis r¼ 0 of
the jet. Finally, condition (19) is the kinematic condition on the
jet’s outer surface.

We now nondimensionalize the foregoing boundary-value prob-
lem by introducing new dimensionless variables r/a, x=ðaReÞ; ux=U ,
and urRe=U . The only two dimensionless groups that appear are then
Re and We. We solved the dimensionless problem numerically using
the method of lines outlined by Gordillo et al.10 Of primary interest
for our corrected ballistic model are the axial velocities uxðx; 0Þ and
uxðx; aÞ along streamlines corresponding, respectively, to the central
axis r¼ 0 and to the outer surface r¼ a of the jet. These are shown in
Fig. 12 for We¼ 10 (dashed lines) and 1000 (solid lines). Fluid on the
outer surface accelerates rapidly, and fluid on the axis decelerates
more slowly, both tending toward the same final plug flow velocity
ð4=3ÞU . This behavior is due to radial viscous diffusion of vorticity
consequent upon the sudden change in the outer boundary condition
from rigid to free when the jet exits the pipe. The dashed and solid
curves in Fig. 12 are almost identical, indicating that surface tension
plays only a minor role in the dynamics of horizontal jets when
We� 1.

1. Particle trajectories

The horizontal velocities shown in Fig. 12 can now be trans-
formed into nominal particle trajectories by adding a vertical compo-
nent of motion corresponding to free fall. Let y be the downward
vertical coordinate with origin at the center of the pipe. The horizontal
velocity of the axisymmetric jet is

ux ¼ Uf f; rð Þ; f ¼ x
aRe

; (20)

where r 2 ½0; a� is the radial coordinate across the pipe. The function
f ðf; 0Þ is the upper curve in Fig. 12, and f ðf; aÞ is the lower curve in
that figure. We now combine (20) with the free fall equation €y ¼ g,
obtaining

yðx; rÞ ¼ r þ g
2

a2

�
Iðx; rÞ

� �2
; Iðx; rÞ ¼

ðx=ðaReÞ
0

df
f ðf; rÞ : (21)

The dimensionless integral I is just the time required for a particle
starting at a radius r to travel a distance x, measured in units of the
characteristic viscous diffusion time a2=�.

The red and green solid lines in Fig. 10 show the trajectories pre-
dicted by the corrected ballistic model for the reference experiment.
The solid red line now follows closely the position of the primary jet,
indicating that the corrected ballistic model is accurate for that jet. The
solid green line staring at y¼ a is also much closer to the position of
the secondary jet than was the prediction of the simple ballistic model
(dashed green line). Nevertheless, the corrected ballistic model still
predicts that the lower extremity of the secondary jet lies substantially
lower than its true position. There are at least two possible reasons for
this discrepancy. One is that the model envisions purely radial viscous
diffusion in an axisymmetric jet, which is no longer a valid assumption
when the lower part of the jet has become strongly non-axisymmetric.
A second reason is the neglect in the model of the surface tension-
driven retraction of the secondary jet and the attached thin fluid

FIG. 12. Velocities uxðxÞ on the axis (red lines) and the outer surface (green lines)
of an axisymmetric horizontal jet in the absence of gravity, for We¼ 10 (dashed
lines) and 1000 (solid lines).

FIG. 11. Definition sketch of a steady axisymmetric horizontal jet in the absence of
gravity. The axial and radial components of the velocity are ux and ur, respectively.
The radius of the nozzle is a, and the radius of the jet is R(x), where x is the dis-
tance from the nozzle.
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curtain, which counteracts their tendency to move downwards under
gravity. This effect will be estimated shortly in Sec. IVB 3.

2. Curtain thickness

The corrected ballistic model allows us to predict the curtain’s
thickness h2ðx; yÞ as a function of position. Balancing fluxes as we did
in Sec. IVA, we obtain

2prUf0ðrÞdr ¼ uxðx; rÞh2dy ! h2ðx; rÞ ¼ 2pr
f0ðrÞ
f ðf; rÞ

@y
@r

� ��1
;

(22)

where y(x, r) is given by (21). Equations (21) and (22) are two para-
metric equations for y(x, r) and h2ðx; rÞ with r as a parameter and
must be solved numerically. It is easy to verify that (22) reduces to the
corresponding inviscid result (12) by setting f ðf; rÞ ¼ f0ðrÞ and mak-
ing the far-field assumption by neglecting the first term (¼ r) on the
right-hand side of (21).

We are now in a position to compare the predictions h1ðx; yÞ
and h2ðx; yÞ of our two ballistic models with the experimental mea-
surements shown by the black circles in Fig. 9. That figure also
shows (a) vertical and (b) horizontal profiles of h1 (dashed lines)
and h2 (solid lines) for the parameters of the experiment. Both bal-
listic models do a reasonably good job of predicting the vertical
profile [Fig. 9(b)], including the rapid thickening for small values
y � 0:05–0.06 m as the primary jet is being approached. The situa-
tion for the horizontal profile of Fig. 9(b) is more complicated.
Each ballistic model predicts well a portion of the observations at
small values of x< 0.32. However, neither model predicts the rapid
increase in thickness for larger values of x.

3. Effect of surface tension

We now investigate whether the discrepancy between the
observed and calculated positions of the secondary jet (Fig. 10)
is due to the (hitherto unmodeled) effect of surface tension. To
begin, we recall the expression derived by Taylor14 and Culick15

for the velocity Utc of surface tension-driven retraction of the
free edge of a two-dimensional viscous sheet with constant
thickness h,

Utc ¼
2c
qh

� �1=2

: (23)

Formula (23) translates the balance between surface tension and iner-
tia at the free edge. Refer now to Fig. 10, in which the black double-
headed arrow indicates the typical distance d0 between the numerically
predicted and true lowermost streamlines of the secondary jet. The
corrected ballistic model also predicts the travel time of a fluid particle
from the pipe exit to any point on the green streamline; let s0 be the
travel time to the point at the base of the black double-headed arrow
in Fig. 10. We now ask: can the separation d0 be accounted for by
Taylor–Culick (T–C) retraction of the curtain’s free lower edge
during the time s0? Because we do not know the appropriate value
of h to use, we solve the equation d0 ¼ Utcs0 for h ¼ heff . We
obtain

heff ¼
2cs20
qd20

: (24)

The quantity heff is the effective thickness of the curtain for which the
T–C formula (23) predicts retraction by an amount d0 in a time s0.
For the experiment of Fig. 10, d0 ¼ 0:032 m and s0 ¼ 0:20 s, whence
(24) predicts heff ¼ 3.5mm. This value of heff is significantly larger
than the typical curtain thicknesses h � 0:3–1mm shown in Fig. 9.
For such thicknesses, T–C retraction is too fast (by a factor of �3–4)
to explain the observed separation d0 in Fig. 10. However, the forego-
ing calculation is subject to significant uncertainty given that the T–C
formula applies to an idealized inviscid two-dimensional sheet of con-
stant thickness. Moreover, we note that in our experiments with sugar
syrup, the secondary jet is strongly “pulled up” toward the primary jet,
an effect that is certainly due to the large surface tension of the syrup.
This observation leads us to conclude that surface tension plays an
important role in determining the trajectory of the secondary jet, both
for sugar syrup and (to a lesser extent) for the mineral oil used in the
experiment of Fig. 10.

V. DIRECT NUMERICAL SIMULATION

To gain further insight into the morphology and dynamics of
Torricelli’s curtain, we performed a direct numerical simulation using
the volume-of-fluid code Gerris flow solver (GFS).33 This code solves
for the flow in a system comprising two fluid phases, oil and the sur-
rounding air in our case. Our flow domain is a rectangular box,
0 � x � 24a;�2a 
 y 
 14a, and 0 � z � 4a, where the origin is
the center of the nozzle and y increases downward. Because the jet has
mirror symmetry across the vertical x–y plane, we solve the problem
only for the half-domain z> 0. On the left boundary x¼ 0, we impose
the boundary condition (7) corresponding to a developed Poiseuille
flow. The two fluid phases are distinguished by values of a phase vari-
able T¼ 0 (air) and T¼ 1 (oil), separated by a thin diffuse interface
across which T varies rapidly from 0 to 1.

Torricelli’s curtain is quite challenging to simulate numeri-
cally due to the three-dimensionality of the problem and the wide
separation of lengthscales between the pipe diameter and the thin-
nest part of the curtain. It is therefore necessary to exploit the
octree adaptive grid refinement capacity of GFS, which divides
cubes at a given refinement level into eight smaller cubes. The
numerical flow domain initially consisted of 24 cubes with sides
equal to 4a. We used a maximum grid refinement of a factor of
28 ¼ 256, so that the smallest cube of the refined grid has a side
equal to a=64. At the end of our simulations, the grid comprised a
maximum of �1:6	 106 cubes.

For our first simulation, we chose parameter values correspond-
ing to one of our laboratory experiments with setup 2 using silicone
oil, for which the values of the dimensionless groups are Re¼ 480,
De¼ 80, and La¼ 200. We ran the simulation for a dimensional time
t¼ 0.63 s, which corresponds to 5.3 transit times across the length
(¼ 24a) of the numerical box at the mean velocity U. We verified that
this run time was sufficient to achieve a steady state by comparing
three solutions obtained using a grid refinement of 27 for times 0.33,
0.46, and 0.58 s. The shapes of the jet at 0.33 and 0.46 s were noticeably
different, but those for 0.46 and 0.58 s were indistinguishable.
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A. Shape and thickness of the curtain

Figure 13(a) shows the thickness h(x, y) of the simulated curtain.
For comparison, the brick red lines show the upper and lower extremi-
ties of the primary and secondary jets measured from a photograph of
the laboratory experiment. The agreement between the experiment
and the numerics is acceptable for the primary jet, but poor for the sec-
ondary jet. Results were similar for other simulations for parameters
corresponding to other laboratory experiments. In Sec. VI, we specu-
late on the likely causes of the discrepancy between the numerics and
the experiments; briefly, we think that it is due to a difference in the
effective upstream velocity boundary condition. However, we pursue
the simulations here in order to obtain valuable information that is
not accessible in the laboratory experiments.

We begin by examining some vertical and horizontal cross sec-
tions of the curtain shown in Fig. 13(a). The locations of the cross sec-
tions are indicated by the vertical and horizontal black lines labeled
(b)–(d). The corresponding thickness profiles are shown in parts
(b)–(d) of the figure. After remaining nearly circular out to distances
of a few pipe diameters, the cross section of the curtain develops a pro-
nounced up–down asymmetry, with a nascent curtain beneath the pri-
mary jet (profile b). By the time the fluid has reached a distance
x¼ 0.2 m, the initial asymmetry has developed into the now-familiar
structure comprising primary and secondary jets connected by a thin
curtain (profile c). The horizontal profile in part (d) shows that the
thickness of the curtain between the two jets increases approximately

linearly with x, in qualitative agreement with the predictions of the
two ballistic models.

B. Particle trajectories and Dean recirculation

The simulations also allow us to calculate three-dimensional par-
ticle trajectories within the curtain. Because these are difficult to visual-
ize, we instead examine the motion of a handful of material particles.
Figure 14(a) illustrates the motion of 13 material particles in a GFS
numerical simulation with Re¼ 245, De¼ 58, and La¼ 161. The par-
ticles are initially distributed uniformly over the circular cross section
of the jet as it exits the pipe. Figure 14(b) shows five representative tra-
jectories in the symmetry plane z¼ 0 of the curtain; the progressive
vertical widening of the curtain with distance downstream is evident.
Finally, Fig. 14(c) shows the positions of the 13 material particles at
the distance x ¼ 24a corresponding to the right boundary of Fig.
14(b). Note that the fluid in the secondary (lower) jet originates mainly
from the outermost layer of the jet exiting the pipe, which flows down-
ward around the circumference of the primary jet.

Finally, we use our simulations to investigate the velocity field
within a vertical cross section of the jet close to the pipe, where the
cross section is still nearly circular. To make clearer the structure of
the velocity field, we first subtract from it the mean vertical (down-
ward) velocity of the section. The result is shown in Fig. 15 for a sec-
tion at x ¼ 2a in the same numerical simulation shown in Fig. 14. The
flow consists of a recirculating vortex with downward flow on the out-
side of the jet, together with a mirror-image vortex on the other side
z< 0 of the jet. Even though we are at a relatively short distance
(¼ 2a) from the pipe exit, the amplitude of the horizontal velocity uz
is already about 68% of the mean exit velocityU.

Recirculating vortices are prominent features of flow in curved
pipes, in which context they are known as Dean vortices.32 Such vorti-
ces are required by the conservation of angular momentum and can
be understood in terms of vortex-line tilting. When the fluid exits the
pipe, the vorticity vector is everywhere azimuthal, and the vortex lines
are concentric circles around the center of the pipe. As the fluid moves
away from the pipe exit, the vortex lines are gradually tilted by the
action of gravity. This imparts to the vorticity a small horizontal

FIG. 13. (a) Thickness h(x, y) of a curtain simulated using Gerris Flow Solver33

with Re¼ 480, De¼ 80, and La¼ 200. Brick red lines are the experimentally
observed extremities of the curtain for the same parameters. (b)–(d) Vertical and
horizontal cross sections of the curtain along the black lines labeled (b)–(d) in
part (a).

FIG. 14. Trajectories of selected material particles predicted by direct numerical
simulation of a curtain with Re¼ 245, De¼ 58, and La¼ 161. (a) Distribution of 13
material particles over the cross section of the jet exiting the pipe. (b) Selected tra-
jectories in the symmetry plane z¼ 0. (c) Positions of the 13 material particles in
the curtain at the distance x ¼ 24a corresponding to the right boundary of part (b).
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component, which must be compensated to ensure that the total hori-
zontal component remains zero. The compensation occurs by means
of an induced recirculation comprising two counterrotating Dean vor-
tices on either side of the central symmetry plane of the jet.

To quantify the foregoing argument, we recall that the axial
velocity uxðrÞ of the fluid exiting the pipe is given by (7). The vorticity
associated with this velocity profile is ð4Ur=a2Þeh � xðrÞeh, where eh

is an azimuthal unit vector. Therefore, x � U=a because r � a. Now
as the fluid moves away from the pipe exit, gravity tilts the vortex lines
by a small angle hðxÞ. This gives rise to a small axial component of
vorticity �6ðU=aÞh, where 6 indicates that the axial component has
opposite signs over the right and left halves of the jet section. This vor-
ticity must be compensated by an axial component of vorticity
�7UDean=a associated with Dean recirculation, where UDean is the
amplitude of that recirculation. Thus, we have UDean=U � h. To esti-
mate h, we consider the ballistic trajectory of a particle with horizontal
velocity �U , which is y ¼ gx2=ð2U2Þ. The slope of that trajectory is
dy=dx ¼ gx=U2 � h. Now define x ¼ na, where n is the dimension-
less distance from the pipe exit. Recalling the definitions of Re and De,
we find UDean=U � nðDe=ReÞ2. For the case shown in Fig. 15,
Re¼ 245, De¼ 58, and n ¼ 2, which gives UDean=U � 0:11. This
value is comparable to the total amplitude UDean=U � 0:16 found in
the numerical simulation of Fig. 15.

VI. DISCUSSION

Returning to Torricelli’s discovery of the parabolic trajectory of
water jets, we can now see why the simple behavior he observed is so
different from the one we have investigated here. The fundamental

difference between the two situations is that the velocity profile across
a (turbulent) water jet issuing from a hole is nearly constant, whereas
the profile across a (laminar) jet issuing from a long pipe is parabolic.
As a consequence, all particles in a water jet follow nearly the same
ballistic (parabolic) trajectory, whereas particles issuing from a laminar
flow in a pipe follow different trajectories depending on their different
initial velocities. Torricelli’s curtain is therefore only observed if the
flow through the pipe is laminar; as soon as it becomes turbulent, we
recover the situation of a water jet issuing from a hole. The dramatic
change in jet morphology that occurs at the laminar/turbulent transi-
tion is clearly visible in the NCFMF film Turbulence cited in the
Introduction.

Our corrected ballistic model assumes that the velocity of a parti-
cle is the composition of the (dominantly horizontal) motion in an
axisymmetric jet and a vertical motion due to free fall under gravity.
This assumption is valid if the typical horizontal velocity �U of the
axisymmetric jet is greater than or comparable to the free fall velocity
V everywhere within the “developing” portion of the axisymmetric jet,
i.e., before the plug-flow velocity profile has been achieved. The latter
occurs at a distance x � 0:25aRe � x0 from the pipe exit. The charac-
teristic free fall velocity at this distance is V � gx0=U . Using the defi-
nitions of De and Re, we find that

V
U
� 1 if

De2

Re
� 4: (25)

Taking the experiment of Fig. 10 as an example, we find
De2=Re ¼ 9:2, or a factor 2.3 larger than the criterion (25). Thus, we
conclude that the experiment of Fig. 10 does not quite satisfy our
velocity composition assumption. By contrast, the assumption is
strongly violated for the experiments with Re¼ 120 and 180 in Fig. 4.

A question raised by our work is whether the distinct secondary
jet we observe is a consequence of surface tension. Our experiments
cannot by themselves answer this question because surface tension
cannot be eliminated in our setups. By contrast, the effect of surface
tension is negligible in experiments on miscible buoyant jets injected
horizontally into a fluid of comparable viscosity.26,29 Because a second-
ary jet is clearly seen in a number of these experiments, we conclude
that surface tension is not a necessary condition for its existence.
However, if surface tension is present, it will of course influence the
position of the secondary jet by causing Taylor–Culick retraction of
the jet’s free edge.

Figure 13 has shown that our direct numerical simulations of
Torricelli’s curtain disagree with experiment in at least one important
respect: the vertical extent of the curtain is significantly smaller in the
simulations than in reality. A possible reason for this is limited numer-
ical resolution. In our most highly resolved simulations, the smallest
cube in the grid has dimension a=64, or 0.13mm for setup 2 with
a¼ 8.5mm. For typical curtain thicknesses h¼ 0.5–1.0mm measured
using this setup (Fig. 9), there are therefore two to four grid cubes
across the half-thickness h=2, which should be adequate to resolve the
structure of the curtain. To verify this, we compared a simulation with
resolution a=64 to one with lower resolution a=32 and found that the
vertical extent of the curtain was the same to within a few percent.

A second possible reason for the discrepancy is that our simula-
tions were not run long enough to reach steady state. However, this is
unlikely in view of the test we reported previously in which we found
that simulations run for different times gave indistinguishable results.

FIG. 15. Velocity field (projected onto the section) in a vertical plane x ¼ 2a, for
the numerical simulation shown in Fig. 14. The velocity field shown does not
include the mean downward velocity of the section, which has been removed.
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A final possible reason for the disagreement between simulation
and experiment is a difference in the effective upstream boundary con-
dition at the pipe exit. In the simulations, this condition is a radially
symmetric parabolic velocity profile corresponding to a developed
Poiseuille flow in the pipe. In the laboratory, however, this simple con-
dition may not be realized. Evidence for this is the non-horizontality
of the jet just after its exit from the pipe, clearly visible in Fig. 2. This
feature may be due to retroaction of the external low-pressure ambient
air on the fluid in the pipe just upstream of the exit, modifying the par-
abolic profile and imparting a downward component to the exit veloc-
ity. Such a downward component would have a stronger influence on
the relatively slow-moving secondary jet than on the primary jet,
which is consistent with Fig. 13. In summary, we believe that different
effective boundary conditions are the most likely explanation for the
discrepancy between experiment and simulation evident in Fig. 13.

Torricelli’s curtain has remarkable similarities with the flow in
curved rigid pipes.32,34 To investigate flow in a pipe whose axis has a
radius of curvature R, one first seeks a scaling for the axial arc length
coordinate s and the transverse (in-section) velocity utrans that render
the centrifugal force terms in the transverse momentum equations
comparable in magnitude to the inertial and viscous terms. The scaling
that does this is s � ad�1=2; utrans � d1=2U , where d ¼ a=R. Now for
a free horizontal jet whose curvature is due to gravity, the ballistic equa-
tion y ¼ gx2=ð2U2Þ implies R ¼ U2=g at x¼ 0. The axial length scale
ad�1=2 then takes the form Uða=gÞ1=2, which is just the expression for
the Dean length LD that we introduced in Sec. II. Furthermore, the
Dean number for a curved pipe is defined as De ¼ d1=2Re, which for
our problem turns out to be De ¼ ða3g=�2Þ1=2. The expression
De ¼ d1=2Re shows that the Dean number is an effective or “reduced”
Reynolds number for flow in a curved pipe. In fact, in the so-called
“loosely coiled pipe” limit d� 1,De is the only dimensionless parame-
ter that appears in the rescaled Navier–Stokes equations, implying that
all curved pipe flows with the same value of De are dynamically simi-
lar.35 For our experiments using setup 1, d � ag=U2 2 ½0:020; 0:52�,
which spans the range from the loosely coiled [e.g., Fig. 4(e) with
d ¼ 0:02] to the strongly coiled limits [e.g., Fig. 4(a) with d ¼ 0:20].
Of course, a liquid curtain differs from classical curved pipe flow in
important respects: the outer surface of the fluid is free and deformable,
and surface tension plays an important role in the dynamics.
Nevertheless, it is illuminating to regard Torricelli’s curtain as a free-
surface curved pipe flow problem in which the shape of the “pipe”
must be determined as part of the solution.

In closing, we return to the lava firehose observed at Kilauea vol-
cano, Hawaii in January and February 2017 (Fig. 3). Judging by the
color of the (basaltic) lava, its temperature is �1200 �C, whence its
kinematic viscosity is � � 0:012 m2 s�1 and its density is q � 2500 kg
m�3.36 The coefficient of surface tension is c ¼ 0:37 N m�1.37 From
Fig. 3, we estimate a � 1 m, and assuming a ballistic trajectory for the
upper jet, we find U � 3 m s�1. To obtain an independent upper
bound onU, we used videos to estimate the velocityVad at which holes
in the curtain are advected downstream and found Vad � 7 m s�1.
Not surprisingly, Vad > U because Vad includes a component of verti-
cal motion due to free fall. The foregoing values of U, a, �, and c imply
Re � 250; De � 260, and La � 1. While La � 1 is much smaller
than in our experiments, the values of the more important parameters
Re and De are of the same order. We therefore conclude that lava fire-
hoses are natural examples of Torricelli’s curtain, an intriguing

phenomenon that to the best of our knowledge has not previously
been studied in depth.
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