The Saffman-Taylor instability: From the linear to the circular geometry
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The Saffman-Taylor fingers are studied in cells that have the form of sectors of a disk. The less
viscous fluid can be injected at the apex (divergent flow) or at the periphery (convergent
flow). As in the linear geometry, at large velocities, a unique finger tends to occupy a well
determined fraction A of the cell angular width. This fraction is a function of the angle of the
cell, being larger than 0.5 in the divergent case and smaller in the convergent case. In both
cases these fractions tend linearly toward 4 = 0.5 when the angle of the cell tends to zero. In
support of recent theories, these results show how the selection is changed when the geometry
induces an increase or a decrease of the curvature of the profiles. The formation of fingers in
the circular geometry is revisited. In a divergent flow, the circular front appears to break into
independent parts so that each finger grows as if it were contained in a sector shaped cell. The
rate of occupancy of the cell by one of the fiuids as a function of the distance to the center is
then discussed. Finally, the existence of the mathematical counterpart to the well-known
Saffman-Taylor finger solutions in a nonparallel cell is discussed in the Appendix.

I. INTRODUCTION

The nonlinear growth of Saffman-Taylor fingers at
large amplitude has been investigated in two geometries un-
til now. The cell initially used by Saffman and Taylor' was a
long narrow Hele-Shaw channel with parallel walls. The
axisymmetric geometry was introduced by Bataille’ and
further investigated by Paterson.’ It is a circular cell where
the less viscous fluid can be injected either at the center,
creating a divergent flow, or at the periphery, creating a con-
vergent flow. These two geometries, linear and circular, ap-
pear at first sight very different and have given rise to differ-
ent types of analysis.

In the circular case the experimental situation is basical-
ly unsteady because the perimeter of the front either in-
creases (divergent flow) or decreases (convergent flow) as
the pattern grows. In the divergent case, which has been
more widely investigated, the first destabilization creates
several fingers that grow simultaneously. As they reach a
larger perimeter, they in turn destabilize by tip splitting so
that complex patterns are formed. Attempts at interpreta-
tion of the finger shapes are due to Paterson,’ Howison,* and
Bensimon and Pelcé.® The statistical properties of these pat-
terns have been investigated by Rauseo et al.,° Ben Jacob et
al.,” and Sander,® and compared by these authors to fractal
structures.

In the channel with parallel walls, on the other hand, it
is possible to reach nearly stationary experimental condi-
tions where a steady solution of the finger shape is reached.
This situation is attractive and much effort has been devoted
to the understanding of the selection of the physically ob-
served fingers. Reviews on this problem can be found in Saff-
man,® Bensimon e al.,'° and Homsy."' These reviews are,
however, anterior to some recent findings quoted below.
Here we must summarize the main results.

Saffman and Taylor' showed that in the parallel channel
there exists (if surface tension is neglected) an analytical
expression for the possible fingers shapes. The axis Ox being

taken along the cell’s length in the middle of its width, the
two lateral walls are at y = + W /2. The solutions are then

x=s[W(1 — A)/m]log cos(mp/AW) , (1)

where A, the parameter of the family of profiles, is the ratio of
the width occupied by the less viscous fluid over the width of
the cell. (The parameter sis + 1 for fingers traveling in the
direction of increasing x and — 1 for fingers traveling in the
opposite direction.) These solutions are both solutions of
Laplace equation Vp = O (where p is the pressure inside the
viscous fluid) at a given time, and dynamically steady solu-
tions of the problem which, as they move, simply translate
along the channel.

At large velocities, the physically observed fingers are
selected among solutions of Eq. (1). Two types of selection
processes have been observed.

(i) Normal fingers: In the classical case, first described
by Saffman and Taylor,' the finger at large velocities tends to
occupy half of the channel. It is only recently that the selec-
tion mechanism of this finger was fully understood. Follow-
ing a numerical study by Vanden-Broeck, ' researchers such
as Combescot ef al.,"* Shraiman,' and Hong and Langer'*
have shown analytically how capillary forces select the ob-
served solution. Surface tension acting on the profile creates
corrective terms that can be calculated by the Wentzel-
Kramers-Brillouin method. These terms create a singular
situation at the tip; in order to maintain a continuous deriva-
tive along the profile it is necessary to satisfy a solvability
condition. As a result, only a discrete set of solutions is se-
lected. They all have a relative width 4 larger than0.5, which
tends toward this value when capillary effects vanish.

(ii) Anomalous fingers: We showed experimentally in
previous works (Couder ef al.'® and Rabaud et al.'”) that a
completely different type of selection is obtained when a lo-
cal] disturbance affects the tip of the finger (for instance a
groove etched in the glass plates along the axis of the cell).
The resulting fingers still have the shapes of members of the



family of solutions given by Eq. (1), but they are selected by
their radius of curvature p at their tip. As a result, fingers
with widths smaller than one-half can then be observed. In a
large range of velocities ¥, p is proportional to ¥ ~'/2. This
selection makes these fingers close analogs of the crystalline
dendrites. They also resemble dendrites in their general
shape and their stability. Their extremity is stabilized by the
perturbation so that the finger only destabilizes by the
growth, along its sides, of a wave giving rise to lateral side
branches. At very large velocities, a saturation is observed
when p becomes of the order of magnitude of the cell’s thick-
ness (it then remains constant at p~2.25). These anoma-
lous fingers have since been observed by Zocchi et al.'® and
Kopf-Sill and Homsy'® and discussed theoretically by Hong
and Langer.?°

The basic idea of the present work is to observe both
these selective processes in action in a different geometry
with other boundary conditions. We first undertook disturb-
ing slightly the conditions of the linear cell by having a
gradually varying width. Depending on whether the finger
travels in the direction of increasing or decreasing width, the
curvature along its profile (for a given A) is increased or
decreased. As a result we expected a change in the selected
solutions. We will see that we were able to extend this inves-
tigation to the cases where the walls diverge at a large angle.
The results can then be used to interpret the nonlinear be-
havior of the fingers in the circular geometry.

The remainder of this paper will be divided into three
sections. In the first section (Sec. IT) we will describe the
experimental setup; in the second section (Sec. III) we will
report the results concerning sector shaped cells and discuss
the finger shapes, their selection, and their stability. In the
third section (Sec. IV) we will recall some of the characteris-
tics of the patterns obtained in the circular cells and show
how we can interpret them using the results obtained in sec-
tor shaped cells. Finally, in the Appendix, we present partial
results about the mathematical self-similar counterpart of
the well-known continuum family of solutions obtained by
Saffman and Taylor.'

Il. EXPERIMENTAL SETUP
A. Cells

We built a new cell for each value of the angle we wished
to investigate. For small values of this angle (6§, ~ + 6°), the
channel was built as a linear cell but with tapered lateral
sides [Fig. 1(a)]. The plates were made of float glass 1.5 cm
thick. They were 150 cm long and 32 cm wide. The plate
spacing was (as in all the other cells) & = 0.1 cm. For larger
values of the angle (15° and 30°) the lateral walls actually
met. At their meeting point a hole was drilled through the
top glass plate. In this way air could be injected (in the diver-
gent case) or oil pumped out (in the convergent case) at the
apex of the angle. (The glass plates being longer, the channel
was completed with a wide linear section.) Finally, for very
large angles (40°-180°) a sector of a circular cell of diameter
50 cm was used. Radial spacers were placed at the desired
angle and the plates were clamped over them [Fig. 1(b)].

In order to obtain anomalous fingers we could stretch a
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FIG. 1. Here we see a (a) sketch of the small angle cell, (b) sketch of the
large angle cell, and (c) section of the circular cell showing the injection
system.

thin nylon wire (100 um in diameter) along the axis of the
cell.

The most viscous fluid was either a silicon 0il Rhodorsyl
47 V 100 with viscosity 1 = 96.5x 107" kg/m sec at 25°C
and surface tension T=20.9X 10"* N/m, or a silicon oil
47V 20 with g =19%x10"" kg/msec at 25°C and T
=20.7 X 107* N/m. The less viscous fluid was air or nitro-
gen.

B. Injection

The flow in a given direction could be forced in two
ways. We could inject air at one end of the cell from a high
pressure gas cylinder through a series of pressure reducing
valves. A flow meter showed that in this case a nearly con-
stant volumic rate of injection was obtained. In the circular
cell we could also extract oil from the periphery. For this
purpose the periphery of the cell formed a toroidal airtight
reservoir [a section of it is shown in Fig. 1(c)]. This reser-
voir was connected to a larger vessel opened at the top. The
cell, the reservoir, and part of the vessel were first filled with
oil. The vessel was then lowered so that oil was siphoned out
of the cell by hydrostatic pressure and air penetrated at the
center. The level of the free surface in the vessel was main-
tained constant by an overflow pipe that evacuated the with-
drawn oil [Fig. 1(c)]. This technique provided a constant
applied pressure measured by a pressure gauge.

Both techniques were used because they resulted in dif-
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ferent velocity evolution along the cell and also created dif-
ferent flexions of the glass plates.

With the constant rate of injection the velocity of the
finger can, in a first approximation, be deduced from the
geometry. Insofar as the finger retains the same type of shape
(self-similar growth), the width of a divergent finger in-
creases linearly with the distance r, from the apex it has
reached. Its velocity then decreases as 1/7,. A convergent
finger for the same reason will become narrower and its ve-
locity will increase as 1/7,.

With constant pressure pumping, the local velocity has
to be deduced from the Darcy law:

V= _—(b¥12p)Vp. (2)

It is nontrivially related to the distance 7, from the cen-
ter. A divergent finger will slow down at the beginning of its
growth, because the curvature of the isobar decreases with
r,- When it approaches the extremity of the cell, it will accel-
erate because the difference of pressure between the two ex-
tremities is applied on a decreasing length. In the same ex-
perimental conditions a convergent finger will have, near the
apex, a steadily increasing velocity because both effects will
now be of the same sign. A complete derivation of the veloc-
ity of a circular front is given in Sec. IV A 1.

C. Flexions of the plates

In the classical cells with parallel walls, the glass plates
are clamped together on their lateral sides at a distance W,
and for narrow cells the flexions can usually be neglected.
Flexions become a matter of concern in the sector shaped
cells and are the main limiting factor in experiments in circu-
lar cells.

An estimate of the effect in this later case can be ob-
tained. We will only consider a circular cell in which a con-
stant excess of pressure §p has been applied. The increase of
the plate spacing &b is maximum at the center and can be
calculated from the flexions of the two glass plates of radius
R and thickness e (with clamped boundaries, b = byand db /
Jr=0inr=R);

8b =2{[3(1 — 0*)/16E ] (8pR */") }, (3)

where E is the Young modulus of the glass and ¢ the Poisson
coefficient.

In fact, the experimental situation is more complicated
because a gradient of pressure exists in the cell so that (3)
gives only an upper limit of the effect. Furthermore, the dis-
tribution of pressure changes with time. In the case where
injection of air at the center is used, the deformation of the
plates increases during the pattern’s growth and the plates
spacing tend to widen in front of the growing fingers. This
dynamical increase of & tends to accelerate the front.

When oil is extracted out of the periphery, the flexions
are of opposite sign and maximum at the beginning of the
experiment. Flexions decrease as air at atmospheric pressure
penetrates the cell so that, again, the advancing fingers move
in aregion where b tendstoincrease with time. However, the
directions of the thickness gradient are opposite in the two
cases.

In the experiments presented here we have limited §p to
1% of the atmospheric pressure. We have measured the de-
formation of the plates and checked that we always had 66 /
5<0.02.

D. Visuallzation

The velocity of the fingers and their width were mea-
sured using videotape recordings and hard copies of the
screen images. The finger shapes were analyzed on photo-
graphs that showed the profile with more precision.

HI. THE SECTOR OF A DISK GEOMETRY: RESULTS AND
INTERPRETATION

A. Normal fingers

With nonparallel cells, we lose the translational invar-
iance and the possible stationarity of the solutions.

Experimentally, the actual control parameter is either
the pressure or the flow rate, and the velocity of the front
results from the value of this parameter. In tapered cells, as
the finger grows, the width of the channel varies and the
velocity becomes time dependent. The value of the angle 6, is
a measure of the unsteadiness imposed by the geometry dur-
ing the growth. Small angles will correspond to a quasistatic
limit and we will present this case first.

1. Small angles (0, =0’ and 6°)

We first performed a series of experiments intended to
compare the fingers’ shape and selection in a traditional par-
allel cell of constant width W = 12 cm, and in a cell with
gradually varying width.

In the parallel case the experimental evolution of the
width A with increasing velocity is in perfect agreement with
previous results, when expressed in terms of the dimension-
less number 1/B:

1 12uV (W )2

B T \b/’
where W and b are the width and the thickness of the cell,
respectively, u the viscosity of the most viscous fluid, 7" the
surface tension, and ¥ the velocity of the finger. This dimen-
sionless number was introduced by Tryggvason and Aref 2!
and used by Park and Homsy* and Tabeling ef al.,* who
showed that the data about the finger selection obtained in
all linear cells were almost reconciled by its use. To under-
stand why 1/B is the relevant parameter we can note that it
can be written

2 2
RSy ATV
B IE 12

<

(4)

, (5)

where /. is the wavelength of maximum instability of a plane
interface moving at velocity V, given by the linear stability
analysis of Chuoke et al.?*:

I, =2n/k, =abT/uV . (6)

Therefore 1/B measures how far the geometrical length
scale W is from the length scale of spontaneous destabiliza-
tion.

The cell with slightly tapered lateral walls was designed
so that the angle between the two sides was 8, = 6°. The apex
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FIG. 2. Fingers obtained at large veloc-
ities: (a) in a cell with 8, = 6°, the finger
moving in the divergent direction,
A=054; and (b) in a cell with
8, = — 6, the finger moving in the con-
vergent direction, 4 = 0.46. The dots
show the best fits with the approximate
solutions given by Eq. (8).

{b)

of the angle was far out of the cell and the width of the cell at
midlength was also 12 cm. Figures 2(a) and 2(b) show the
shape of fingers moving in this cell, respectively, in the wid-
ening and narrowing directions. In order to describe the fin-
ger width, we will consider the same region of the cell where
the width is 12 c¢m, and vary the velocity to reach different
values of 1/B in this region. If we measure the width of the
finger far from its tip in this region of the channel, we observe
a dependence on 1/B that is very similar to that observed in

227 Phys. Fluids A, Vol. 1, No. 2, February 1989

the linear case. However, the limit values of A at large veloc-
ities are different from the value 4 = 0.48 obtained in chan-
nels with parallel sides. (Here 0.48 differs from the ideal
value 0.5, as shown by Tabeling et al?’) We find
A, = 0.50 1+ 0.01 when the finger moves in the direction of
the widening channel (divergent finger), and A,
= 0.46 + 0.01 when it moves in the narrowing direction

(convergent finger).
An approximate solution for the finger shape in the ab-
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sence of surface tension can be obtained by transforming the
solution given by Eq. (1). Our geometry is in the shape of a
sector of a disk. We choose the apex of the angle as the origin
and call 6, the value of the angle. The axis Ox is the bisector
of this angle. By a series of successive conformal transforma-
tions it is easy to show that if we write

r=roexp(@x/W) and 6=6,y/W, @)

we transform the boundaries of the parallel cell into those of
a sector shape with an angle 6,. (We have simultaneously
gone from Cartesian coordinates to polar ones.) Because of
the potential nature of the flow, the transformed of the iso-
bars in the first geometry will be isobars in the second one.
By applying transformation (7) to the solutions given by
(1), we find

r = rolcos(m8 /A6) 5 ~ @

with — 0,/2 <0 <6,/2 and 6, < 27

In order to compare Eq. (8) to the real fingers, we have
used 7,, the distance of the fingertip to the origin, as the
scaling factor. The finger profiles obtained with s= + 1
correspond to fingers moving in the divergent direction
s= —1 to convergent fingers. The convergent profiles
when r— o and the divergent profiles when r—0 tend to-
ward asymptotes given by 0., = + A6,/2.

(8)

We must emphasize that these are not exact solutions of
the problem. By using the conformal mapping we have
transformed a solution, at a given time, of the Laplace equa-
tion in the linear channel into a solution at a given time in a
sector shaped cell. But the solutions given by Eq. (1) were
also dynamical solutions and these fingers had translational
invariance along the cell. This invariance is not transformed

into self-similarity by the conformal transformation (such a
transformation does not preserve the gradients). In other
terms a finger with a shape given by Eq. (8) can exist at a
given time, but it will not grow into a similar finger at a later
time (for more details see the Appendix).

However, for small values of 8, the observed fingers in
the asymptotic regime are very close in shape to the solutions
of Eq. (8), asis shown in Fig. 2. For this reason, and as long
as G, 1s small, we can consider the solutions given by (8) as
approached solutions. A few interesting characteristics can
be noticed. We calculate the curvature X at the tip where

=0
Sl
—+ 1.
In order to compare it to the curvature of the finger in a
linear geometry, we can note that the local width of the cell
at ry is W= 0,r,. Expressed in terms of W, the curvature

becomes
Tfl—A4

K(6=0)= —SW( ' )
The first term is the curvature of the finger in a linear cell of
width W, the second is the curvature added by the geometry.
In the divergent case both contributions are of the same sign,
so that for given A and W, the curvature is larger than in a
parallel cell. In the convergent case the terms are of opposite
sign and the curvature smaller. However, in the experiment,
the divergent fingers actually observed at large velocity [ Fig.
2(b)] have a smaller curvature at the tip than the conver-
gentones [Figs. 2(a) and 2(b) ], because the selected values
of A in the former case are larger than in the latter one.

(9

K@=0)= —L s(l
To

6

W

(10)

FIG. 3. At low velocity in a divergent cell,
6, = 43°, the finger has a constantly de-
creasing relative width.
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(b)

FIG. 4. Superimposition of successive photographs showing that at large velocities the fingers have self-similar shapes as they grow. (a) Divergent case,
6, = 23°, A = 0.64, (b) convergent case, 6, = — 32°, A = 0.38. Dots are the best fit by Eq. (8).

2. Large angles (6,> 10°)

The cell is now in the shape of a sector of a disk and the
air is injected either at the apex or at the periphery. In the
divergent case there is direct formation of one single finger
{whenever 6, < 90°) that moves outward.

In the convergent case the air penetrates at the periph-
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ery forming several fingers at the scale of /, [Eq. (6) ]. These
fingers compete and screen each other off. Finally only one
finger survives and moves at increasing speed toward the
origin of the cell. These fingers are very stable, they are nar-
row, and not necessarily well centered in the middle of the
cell. It is worth noting that this process is not limited to small
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angle cells and is observed in cells of all angular widths up to
g, = 360".

a. Finger shapes. As seen previously, in each region of
the cell, the finger width reaches a limit value, which will be
characterized by the ratio A = 8 ,,, /6, of the local angular
width of the sides of the finger to the angular width of the
cell. At low velocities (Fig. 3) the extrapolation of the finger
sides does not cross exactly at the apex of the cell, but behind
it (in both the divergent and convergent case). This shows
that the maximum width of the finger is a slowly varying
function of the distance to the apex and the general finger
shape does not have exact self-similarity. At larger velocities
the situation becomes simpler. Figures 4(a) and 4(b) show,
respectively, in the divergent case with 8, = 23° and in the
convergent case with 6, = - 32°, superimposed photo-
graphs of fast fingers. In the region shown by these photo-
graphs, the value of A has remained constant at Ao (to the
accuracy of the experiment) so that the extrapolations of the
linear finger sides now cross at the apex of the cell. Varying
the photographic enlargement, we can superimpose exactly
successive states of the same finger; the shape of the tip is
identical, showing that in this range of velocities the fingers
have a self-similar growth.

This is an indication that, in the absence of surface ten-
sion, there is an underlying family of exact solutions that has
self-similar growth, and that a selection of the type observed
in parallel cells takes place. The experimentally observed
profiles have well defined shapes that differ somewhat from
the solutions of Eq. (8). In the divergent case [Fig. 4(a)]
the extremity of the finger given by Eq. (8) is flatter than the
observed profile. In the convergent case [Fig. 4(b) ] the dif-
ference in shape is smaller; the finger given by Eq. (8) has
only a slightly sharper tip.

We failed to find an analytical expression for this family
of finger shapes in the absence of surface tension. One of us
(V.H.) has found such a continuous family of solutions in
the particular case where 6, = 90° (his calculation is pre-
sented in the Appendix), but comparison with the experi-
ment is not possible; at this value of the angle, as we will
show, the growing finger is not stable.

b. Fingers selection. Even though the analytical expres-
sion of the fingers’ shape is not known, it appears that the
selective process that takes place is in continuity with the
linear case and can be investigated. In order to do so, we
must remember that the parameter 1/B changes as the finger
moves.

Most of our experiments were performed with a con-
stant applied pressure. For distances 7, in the range 5-50 cm
and in our particular experimental setup, the velocity of the
fingers was found to vary as r, ®** %" in the divergent case,
and as 7, **%!in the convergent one. So the decrease of the
velocity in the divergent case does not compensate the in-
crease of the width of the cell, and 1/B increases constantly
as the finger moves out. In the convergent case, on the con-
trary, 1/B decreases slightly during the finger motion.

We have to choose a measurement procedure adapted to
this unsteady situation. To investigate the finger selection we
will assume that, in the range of low values of 1/B, we can
still measure a local finger width as a function of the local

%)Sc?vvnloade
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value of 1/B. On a given image, when the fingertip has
reached a distance 7, from the origin, the front part of the
finger extends over a length of the order of the local width of
the cell W(r,) = 6,7y, so the finger has approximately
reached its maximum width at », = r, — W(r,) for diver-
gent fingers and r, = r, + W(r,) for convergent ones. We
choose to measure the angular ratio A at this distance r, from
the origin. In order to show the similarity in behavior with
the fingers in a linear cell, we will plot the observed values of
A(r,) as a function of a local value of 1/B(r,),

1 _ 12uv ( Oor )2
B T \ b/’
where 6,7, is the local width W, of the channel and ¥V is the
local mean velocity between r, and r,,

Figure 5 shows a cumulative plot of all the measured
values of A in a divergent cell with 6, = 23° for several values
of the velocities and at three different positions in the cell.
Though there is a certain scatter of the values, the general
evolution of A is similar to the evolution in a linear cell,
except for the saturation value A,. This supports the proce-
dure we have followed and shows that 1/B is the correct
parameter for the evolution of A. The fingers observed at low
velocity, which have a spatial variation of A (Fig. 3), corre-
spond to the range of values of 1/B where A changes rapidly.
The self-similar fingers shown on Fig. 4 are observed at val-
ues of 1/B where A has practically reached its limit.

The scatter in the results is not a surprise. It is due to a
slight dependence of the observed value of 4,(7,) on the
local aspect ratio of the cell 8y7,/b (which in Fig. 5 ranges
30-120). This is identical to the effect observed by Tabeling
et al.? in linear cells. They found that the values of A are
shifted down by about 5% when the aspect ratio of their cell
is changed from W /b = 112.5to W /b = 34, We find an ef-
fect of the same sign and of the same order of magnitude.
They have shown that this shift is due to the perturbing effect
of the oil films left on the glass plates. Reinelt?® and Sarkar
and Jasnow’® have calculated this correction and found
quantitative agreement with the experiment. This effect also
affects our results, and a numerical simulation or analytical

(11)
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FIG. 5. The evolution of the observed local value of 4, as a function of the
local value of 1/8 in a divergent cell with 6, = 23°, in regions of different
widths and at various velocities. (B) W, = 30 mm, =75 mm; (X)
W, =50mm, r, = 123 mm; (A) W, = 120 mm, r, = 295 mm.
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FIG. 6. Experimental evolution of A with
1/B. Value taken for the same width
W=12 cm and for a different angle [ (W)
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calculus in sector shaped cells would give slightly larger val-
ues of A,.

The general trend of the evolution of A is the same for a
parallel cell and for a cell with a small angle or a large angle.
The stability range and the limit value A, both depend on the
angle of the cell, and on whether the finger moves in the
divergent or convergent direction. We now wish to study
these limit values as a function of the angle. In order to have
comparable experimental conditions and to avoid the scatter
as a result of different aspect ratio, we will now always con-
sider the region of the cells where the width is about 12 cm
and vary the velocity to reach at this point different values of
1/B.

Figure 6 shows a comparison of the evolution of 4 as a
function of 1/B for two divergent cells of angle 40° and 15°,

6000

and a convergent cell of angle — 23°, In the three cases the
evolution for small values of 1/B is similar, but the limit
values at which the fingers become unstable are very differ-
ent. This stability limit will be discussed more completely in
the next section. It is sufficient here to note that fingers in
convergent cells are more stable than in parallel ones, and
that divergent fingers become increasingly unstable when
the angle of the cell increases. The asymptote where A satu-
rates at A, is clearly observed for all convergent fingers and
for divergent fingers up to a value of the angle of approxi-
mately 20°. For larger angles the fingers become unstable
before they have reached their limit width. As a result, for
divergent fingers the range of near self-similarity reduces
and finally vanishes.

Table I gives the smallest values A,, of A observed for

TABLE I. Experimental values of minimum width A,, of instability threshold (1/B), and of maximum value of ///_, for various values of the cells’ angle
(negative values of the angle correspond to convergent cells, positive ones to divergent cells).

Angle of the cells Limiting value of First mode
(in degrees) Am 1/B 171 unstable
—90° 0.21 +0.01 50 000 + 10 000 43+09 side branching
— 60° 0.29 + 0.01 e e side branching
-3 0.38 + 0.01 side branching
—22° 0.41 + 0.01 e s side branching
—15 0.43 + 0.01 10 000 + 2000 37408 side branching
-6 0.46 + 0.01 8500 + 1000 39+05 side branching
0 0.48 + 0.01 7000 + 1000 37+05 side branching
6 0.50 + 0.01 6000 + 1000 36+ 06 side branching
15° 0.53 + 0.01 5000 + 500 3.6+04 side branching
27 0.61 + 0.01 2500 + 500 29+06 side branching
23y 0.64 + 0.01 e side branching
32 0.70 + 0.01 1000 + 100 20+02 side branching
40° 0.73 + 0.01 e T side branching
44° 0.76 + 0.01 side branching
50° 0.75 + 0.01
56° 0.76 + 0.01 700 + 100 19+03 e

69° 0.85 + 0.01 e e tip splitting

8 0.85 + 0.01 100 + 50 08 +04 tip splitting

105° 0.91 +0.01 e e tip splitting
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stable fingers in all the cells that we used. These values are
plotted as a function of 6, in Fig. 7 (where negative angles
represent the convergent cells and positive ones represent
divergent cells). For all the observed convergent fingers
—90° <6, <0 and for the divergent fingers in cells with
6, < 20° where the measured 4,,, coincide with the asympto-
tic limit A, we find a linear variation that can be written

Ao =0.48 + (3.25 + 0.10)107°6,, (12)

where 8, is expressed in degrees.

The curve interpolates at 8, = O at the value 4, = 0.48,
which is the limit value observed experimentally in a linear
cell of the same width.

For divergent fingers in cells of larger angle 8, > 20", the
limit value departs from this linear dependence because the
asymptotic value A, cannot be reached before instability. For
angles 20° < 8, < 50°, however, there is still a range where 4
varies slowly with 1/B, so that a near self-similarity is ob-
served. We noticed that at the minimum value 4,,, the width
of the oil remaining on the side of various cells was approxi-
mately the same:

(1=24,)68,/2=5".

Indeed the limit value 4,,,
are well fitted by

A, =1—10/6,.
This empirical law is unexplained and could be due to a mere
coincidence. However, it will be useful in Sec. IV A. For
50° < 8, < 100° it is possible to obtain wide, single divergent
fingers, but they are always of the type shown in Fig. 3; their
width decreases as they move until they undergo tip split-
ting.

Altogether, the results presented above show that the
selection of the asymptotic solution in sector shaped cells is
in continuity with the usual selection in linear. cells. The
curvature introduced by the geometry affects the whole pro-
file and shifts the selecied A,. Equation (10) gives the curva-

(13)
shown in Fig. 7 for angle 6, > 20°

10
A'1’
0.5
0
o
00 —
-100° convergent 0° divergent 100°

FIG. 7. Evolution of the minimum value 4, for divergent (positive angles)
and convergent (negative angles) fingers as a function of the angle of the
cell. (0)) results obtained in sector shaped cells; ( + ) values from radial
fingers of primary and secondary patterns obtained in the circular geome-
try; (—) fit of the asymptotic values A, by relation (12).
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ture at the tip of the approximate solution (8). A simple
conservation of the curvature at the tip would only give a
weak dependence of 4, on §,, and does not account for the
selection given by relation (12). A complete calculation of
the selective effect of surface tension in these cases will be
needed to interpret the results.

3. Fingers stability

Three phenomena are to be considered for the stability
of Saffman-Taylor fingers. These are side branching, tip
splitting, and screening off. We will first describe the ob-
served thresholds for the first two instabilities in sector
shaped cells.

In the discussion of the fingers stability, we will have to
compare the actual width of the finger / (/ = A,, W) to the
length /,:

i=1m1= '1”’_ €. (14)

. I #J12 B

Side branching results from the progressive amplifica-
tion of a disturbance as it is advected along the curved profile
of the finger sides. It is a convective instability with a spatial
amplification rate. It is best observed in structures that have
a stabilized tip, such as anomalous fingers (Rabaud et al.'”)
or crystalline dendrites, where it gives rise to periodic waves.
In linear Saffman-Taylor cells, side branching is the first
instability to be observed for normal fingers. In this case it
only creates, at the threshold, a unique isolated bump. This
was observed by Tabeling et al.?® to occur at values of 1/
B=7000 (or ! /1, =3.7). Itis difficult, however, to establish
a threshold for this instability, because it depends on the
accuracy with which a distortion of the profile can be detect-
ed. Bensimon®’ has shown that the system is exponentially
sensitive to the amplitude of the noise incident at the tip, so
that the cleanliness of the glass is important in this problem.

The second instability, tip splitting, has such a large
growth rate that it divides the fingertip without being ad-
vected along the finger side. It was observed by Tabeling et
al.** to occur in linear cells at 1/B =~ 14 000. At this value the
width of the finger is /=5.2/,.

12
In (1/B) \
unstable by '\
side branching
\
\
\
\
\
8t \ Unstable by
Stable + \ lip splitting
\
\
\
\
Convergent cells Divergent cells *
4 v ©
-100° 0 100°

FIG. 8. Logarithmic plot of the instability threshold 1/8 as a function of the
cell’s angle: (—) side branching and (- - -) tip splitting.

232



In sector shaped cells, the measurements of thresholds
are more difficult because the value of 1/B changes while the
finger grows. We choose to measure the local value of 1/B
where a distortion of the finger became visible. These values
of 1/B at the threshold are given in Table I and plotted in
Fig. 8 as a function of the angle of the cell. In spite of the
large uncertainty of the measurements, the general tenden-
cies are clear. In terms of 1/B, the fingers appear to be much
more stable in a convergent cell than divergent ones. This
result is partly misleading; it is mainly due to the decreasing
values of 4, in these cells. If we compare (Table I) the actual
width of the finger to the unstable wavelength /., we find a
much smaller dependence in all the convergent cells and in
the divergent ones for 8, < 20°. It is only for wider angles that
the range of stability of the finger reduces; for values of the
order of 80°, the finger becomes unstable as soon as its width
becomes of the order of /.. For wide angles there is also a
crossover: whereas side branching was always the first insta-
bility to occur, tip splitting becomes dominant in divergent
cells with 8, > 50° (Fig. 8).

An explanation can be found in the curvature imposed
by the geometry. The configuration of successive isobars in
front of growing fingers in a divergent cell and a convergent
cell, respectively, are necessarily different. In the divergent
case, the fingertip is relatively flat and the pressure gradient
in front of the finger is almost the same over a wide zone. Tip
splitting, therefore, does not require a strong disturbance of
the tip. In contrast, in the convergent case, the curvature of
the isobars near the fingertip and near the apex of the cell are
of opposite sign and the pressure gradient along the axis of
the cell is enforced. It creates a focusing effect and a strong
“geometrical anisotropy” that inhibits tip splitting.

In the preceding discussion we have taken the terms side
branching and tip splitting in their usual sense. If we analyze
very unstable patterns obtained in various geometries we are
led to conclude that the distinction between the two pro-
cesses is not clear cut. The experiments of Park and Homsy?*
and the numerical simulations of Liang?® have shown that
during the nonlinear growth following a tip splitting, there
always exists an infinitesimal difference between the two re-
sulting fingers, so that one of them will be screened off and
stopped. At this point it appears rather to have been a large
side branch of the main finger. In the parallel configuration
all the tip splitting finally fails in this way and only one path
connects the two ends of the cell. This is not always the case;
in the sector shaped cells of a very large angle, the two fingers
resulting from a tip splitting finger will both survive. This
process will be commonly observed during the pattern’s
growth in the circular cells.

B. Anomalous fingers
1. Width and shape

We have described in previous articles (Couder ef al.'®
and Rabaud et a/.!”) three different techniques by which the
tip of a growing finger can be locally disturbed so that the
regime of growth is completely changed. An anomalous fin-
ger of this type is selected by its radius of curvature p at the
tip. In a large range of velocity, p is scaled on the capillary
length, so thatpoc V'~ 172 (At very large velocities a satura-
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tion is observed when p becomes of the order of magnitude of
the cell’s thickness; it then remains constant at p~2.25.)

In the present work we have stretched a thin wire from
the origin to the periphery of the cell along its axis to obtain
anomalous fingers in sector shaped cells.

Figures 9(a) and 9(b) show a stable and an unstable
divergent finger obtained in a cell with 8, = 30°. The injec-
tion was performed at a regulated pressure and the velocity
of the finger was approximately constant in the observed
region. As in the linear geometry, the anomalous fingers are
narrower than normal ones and more stable. The fingers are
not self-similar and they do not show well defined asymp-
totes. In the divergent case, the relative angular width A oc-
cupied by the finger decreases as it grows; in the convergent
case it increases. The fact that they are, more than normal
fingers, sensitive to the unsteadiness of the experimental
condition, is a result of their specific selection mechanism. In
both cases, as the finger velocity is nearly constant, the finger
cannot have self-similarity. Instead, the finger width 4 in-
creases or decreases continuously so as to maintain a con-
stant curvature at the tip.

This is a direct confirmation of the difference in the se-
lection process of normal and anomalous fingers. Normal
fingers are scaled on the cell’s width and, in a sector shaped
cell, they tend to lead to self-similar solutions even when 1/B
varies. Anomalous fingers are scaled on the capillary length
and would only be self-similar if 1/B was kept constant by
specific injection conditions. { This could only be realized in
the regime where p ¥ ~'/* if the injection condition gave
the finger a velocity Ve« 1/r7.)

2. Stability

The parabolic tip of anomalous fingers is very stable as a
result of the artificial local anisotropy introduced by the
wire. The process of the side branching has been described
elsewhere in the case of linear cells (Rabaud er al.'”). It
results from the selective amplification of perturbation inci-
dent at the tip, amplified in the parabolic region of the finger
and damped further. In linear cells, the Saffman—Taylor so-
lutions given by Eq. (1) can be approximated by a parabola
near the tip. The extent of the region to which this approxi-
mation is valid increases with decreasing A. Observations in
the sector shaped cells are thus well explained: a divergent
finger always destabilizes at some point, because A decreases
constantly. In the convergent cells A increases, the fingers
are more and more stabilized by the walls, and side branch-
ing becomes inhibited as the finger approaches the center. In
both cases the lateral spacing of the side branches is scaled on

p-

V. CIRCULAR GEOMETRY: RESULTS AND
INTERPRETATION

We have obtained in sector shaped cells (in spite of the
lack of exact solutions) clear cut results about the fingers’
width selection and about their stability. We will now show
in this second part that these results permit an accurate de-
scription of the evolution of the patterns in the circular ge-
ometry. We must first briefly recall the situation of the prob-
lem.
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(a)

(b)

As noted above the main experimental results in this
case are due to Bataille’ and to Paterson.” The theoretical
problem has been approached in several ways.

In the first attempt to interpret the finger shapes ob-
served in the circular geometry, Paterson used a conformal
transform approach. He suggested that the finger shapes ob-
served in the circular geometry were fitted by solutions that
he wrote,

FIG. 9. Anomalous fingers obtained
when a thin wire is stretched along the
axis of a divergent cell, 8, = 30%; (a) at
low velocity and (b) at large velocity.

(r/ry)® =cos p@,

where a and p were fitting parameters.

This solution is identical to our Eq. (8). In our terminol-
ogypis7/(0,A) and ais w/[6,(1 — 4)]. Though this solu-
tion fits to a reasonable approximation the finger shapes ob-
tained for small angles 6, they are not exact solutions of the
problem for the reasons discussed above (Sec. III A 1).
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Paterson’s presentation, leaving both @ and p free fitting
parameters, did not give a relation between A and 6. Conse-
quently, a selection of the finger width by the value of the
sector angle and the similarity with the parallel cell did not
appear.

A completely different approach has also been tried.
The search for solutions in the absence of surface tension
consists in solving a Stefan problem. A field must be found
that satisfies the Laplace equation in a system having bound-
aries that move with a velocity proportional to the gradient
of the field itself.

Shraiman and Bensimon?®® and Sarkar®® had shown that
generally, in the absence of surface tension, the evolution ofa
front with a polynomial shape “blows up” and leads to the
formation of cusplike singularities in a finite time. Howison*
and Bensimon and Pelcé’® found, using a complex variable
method, that there existed nontrivial solutions that do not
blow up in this way. In the axisymmetric case, by introduc-
ing m poles in the complex plane, they obtain an m-fold
periodic pattern where the interface stops moving in m re-
gions, forming tongues of oil.

Finally, the statistical properties of complex patterns
obtained at large velocities have been investigated by Ben
Jacob et al.,” Sander,® and Rauseo ef al.® in relation to the
current interest in fractal structures. The results that we
present here cannot be compared to theirs, as we limit our-
selves to initial stages of the growth, where no scale of the
pattern ever becomes very large compared to the capillary
scale.

A. Divergent flow
1. Velocity profile

Before investigating its destabilization, we first sought
the velocity of a stable circular front. Here we consider the
case where the cell is initially full of oil and where the injec-
tion is through a pinhole at the center of the cell. In the case
of a constant volumic rate of injection Q, mass conservation
gives the velocity ¥ of an interface of radius r,

V= (Q/2mb)(1/r) . (15)

With this type of injection, the velocity is infinite at the ini-
tial time and decreases steadily through the cell.
Experimentally, it is easier to have a pressure controlled
injection. In this case, if P, is the injection pressure of air and
P, the oil pressure at the external boundary of the cell of
radius R, it is easy to solve the Laplace equation for the
isobars, and Eq. (2) gives the velocity at the interface,

v(r) =b*(P, — P,)/12urin(R/r), (16)

where P| = P, — T(2/b + 1/r) takes into account the sur-
face tension induced pressure drop (2/bis the vertical curva-
ture of the interface and 1/r the horizontal one). As we inject
with a hole of diameter larger than b,

1=P,—2T/b.
Equation (16) shows that the velocity, initially very
large, decreases rapidly and remains almost constant (with-

in 10%) for 0.2 < r/R < 0.6 and diverges near the outer bor-
der when r tends to R.
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Equation (16) can be integrated (for r> b) and we ob-
tain the following relation r(¢):

(-2

2. First and second destabillzation

(17)

During the growth, the stability of the circular front is
related to the ratio of its perimeter L(t) = 2#7r(¢) to the
capillary length scale /. given by relation (6). With the as-
sumption that the linear analysis of Chuoke er al.?® is still
valid for a curved interface, the front is certainly stable
whenever this ratio is smaller than unity.

With a constant volumic rate of injection, using relation
(15) we find

L/l =JuQ /7Tb%) Jr. (18)

With a constant injection pressure, using relation (16) we
find

L_ [Fi-A A (19)

1 T In(R /r)

The two possible evolutions of L /1. are shown in Fig. 10 for
typical arbitrary values of the experimental parameters. In
both cases the ratio grows with r(¢). In an ideal radial mo-
tion the front is stable near the center where L /I, <1 and
becomes unstable as it moves out. At large injection ratesit is
difficult to maintain this initial stable state, because the radi-
us of the injection hole is no longer negligible comparedto /..
This nonideal situation can also be obtained purposefully
when a circular bubble is present at the center before the
beginning of the injection. Unless specifically stated, all the
following description refers to the situation of an ideal radial
motion with negligible size of the injection hole.

The initial destabilization can be observed easily at low
injection rate. Usually the first noticeable deviation from cir-
cularity corresponds to an n-fold symmetry with n=23.
However, this initial deformation does not lead to the forma-

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10. The evolution of the ratio of the perimeter of the circular front L
over the capillary length scale /_, as the front moves outward in a cell of
radius R. ([]) injection at constant volumic rate [Eq. (18)]; (4) injection
at constant pressure (Eq. (19)].
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tion of a corresponding number of fingers. As the front keeps
moving outward, other modes with larger values n = 4and 5
become unstable and grow. Figure 11 shows the front at this
stage. It is irregular for two different reasons; its deforma-
tion results from the superposition of the first three modes,
and it is related to the imperfection of the cell. No matter
how carefully the cell has been built, there are always small
imperfections in the state of its surfaces that are determinant
in the excitation of the instability. This can be induced from
experiments where all the injection conditions are exactly
reproduced. The patterns obtained in two different runs,
though irregular, are very similar to each other.

The separation in fingers occurs when the dips formed
in the slow parts of the front become deep enough so that
screening off is dominant. These regions of the front are no
longer submitted to a dynamical pressure gradient and they
become practically motionless. At this point the waves have
entered the nonlinear regime of growth, which gives rise to a
pattern of fingers.

The circular front is, from then on, divided into several
independent sections by these motionless regions, often
called fjords, in which the oil remains blocked. In the ideal
case, the initial number #, of fingers ranges between five and
seven. (A larger number of fingers is observed if a finite
circular motionless front exists in the cell when the fluid
motion starts.) Figure 12 shows one of these patterns at
three stages of its growth. Several important characteristics
can be noted.

The primary fingers do not tend to screen each other off
and they have the same velocity so their outer envelope re-
mains circular. As they grow, their width increases so that
they become unstable. When their width becomes of the or-
der of 2/, tip splitting occurs. If all the , sectors were equal,
all the tip splitting would be simultaneous and the pattern
would be very regular; but the initial pattern is somewhat
irregular and the broader the finger the more unstable it is.
On the whole, the formation of these secondary fingers re-

FIG. 11. The initial destabilization of the circular front.

FIG. 12. Photograph of three successive states of a pattern obtained for a
divergent flow in a circular cell.

sults in a larger pattern with n,~2n,. Here we limit our-
selves to these primary and secondary patterns.

If we examine the shape of one of the fingers (Fig. 13),
three regions can be distinguished in its interface. Region I
corresponds to the blocked zone where the screening off is
total. There is a very slow change in the shape of this zone
under the smoothing influence of surface tension. It takes
the shape of an arc of a circle with a radius that increases
slowly with time. Region II corresponds to the sides of the
finger, and region III to its tip.

An important element for the interpretation of the
shape of these fingers is that their lateral sides are straight
lines that can be extrapolated and usually cross at the center
of the cell. In order to show how the results of Sec. III can be
used to interpret the shape of these fingers we have to recall
the discussion by Saffman and Taylor!® of their experiment.
They grew a single finger in a linear channel. Seeking analy-
tical solutions of the interface, they replaced the actual later-
al boundaries by a periodic condition so that they considered
an infinite set of equal fingers growing in parallel cells at the
same speed. They argued that on the straight line halfway
between neighbors there is no transverse component of the
velocity, so that the effect of the lateral walls is reproduced.
This possibility of replacing the lateral walls by a periodic
boundary condition has since been used in many numerical
simulations of Hele-Shaw flows.”!

We use the same argument in reverse. When the neigh-
boring radially growing fingers are of similar width and ad-
vance at the same speed, we do have periodicity in the ortho-
radial direction. We can thus draw (Fig. 13) radial lines
along the bisectors of the angle formed by the sides of the
neighboring fingers. Because of the symmetry, there is no
motion of oil across these lines and they could, without
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FIG. 13. Detail of a finger obtained in a circular cell showing the three regions of its front and the virtual sector shaped cell (—} in which it grows. This virtual
cell has an angle of 6, = 23’ and the finger shape is identical to that obtained in a sector shaped cell of the same angle shown in Fig. 4(a).

changing the flow, be replaced by walls. We can therefore
consider that the growth of the primary fingers occurs in n,
sector shaped cells limited by virtual radial walls.

The fingers resulting from the tip splitting can, in turn,
be considered as growing in sector shaped cells of smaller
angle. It is worth noting that, as shown in Fig. 12, the two
lateral sides of the initial finger are apparently not affected
by its division. The two outer sides of the secondary fingers
are aligned with those of the primary one,

We can now compare each finger’s shape, width, and
stability with those observed in sector shaped cells of the
same angle. Figure 13 was chosen because the angle of the
virtual cell 8, = 23° is the same as the angle of the real cell
shown in Fig. 4(a). The profiles of the fingers obtained in
both cases can be superposed, showing their strict identity.
The only difference is that in the circular geometry there
exists the blocking zone 1. This suppresses the region, ob-
served near the apex of sector shaped cells, where 1/B is
small and where 4 has not reached its limit value. The
fingers’ sides are linear and extrapolate at the center as only
the region where their width has reached its asymptotic val-
ue is observed.

In each of these virtual sector shaped cells, we measured
the ratio of the angular width of the air finger to 8,. The
observed values, plotted in Fig. 7 as a function of 6, are the
same as the limit values 4,, that we observed in real sector
shaped cells.

Finally the limit values of 1/8 at which a finger becomes
unstable and its instability type (tip splitting or side branch-
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ing) are also in agreement with those observed above.

The previous argument is only strictly valid when the
neighboring fingers have similar angular widths. If such is
not the case, the symmetry argument is no longer valid and,
a priori, there would be no reason for the bisector of the fjord
to be a virtual wall. Let us consider two fingers next to each
other and the fjord in between them. Our experimental re-
sults lead us to conjecture that there is still a virtual wall and
that the width of these fingers can be written, respectively,
A 1.6,and A}, 6,. The wall then has to divide the angle of the
fjord in the ratio (1 — 4 ,)6,/(1 — 41 2,)8,. The procedure
to determine 8, and @, and to fix the virtual walls turns out to
be very simple because of the empirical law (14): in practice
(1 —A21)8,~ (1 —A42)8,,s0that the virtual walls can still
be chosen along the bisector of the fjords. The analysis of
various patterns confirms the validity of this procedure.

The present results differ markedly from the character-
istics of the model proposed by Howison* and Bensimon and
Pelcé® where the fjords have parallel sides. This would only
be obtained in our description for A = 1, a limit where the
angular width of the fjord would be zero. The finite constant
thickness of the fjord in their model is due to the introduc-
tion of a fitting parameter, whereas the experimental evi-
dence points toward a radial structure of the fjords with
A<l

The results that we obtained about the finger selection
can be used to predict some general characteristics of the
circular patterns. When the pattern grows, the number of
virtual cells increases, the limit values of A become smaller,
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and the finger will have a larger stability. (Figure 12 shows
that secondary fingers are observed longer.) From the
change in the selected values of A in each cell results a change
in the statistical properties of the pattern. When we draw a
circle centered at the origin, it cuts the fingers and we can
measure the proportion p, of its perimeter occupied by air
fingers,

3V A6,
po={A) ="+,
2

where the summation is extended to the n, fingers.

From the dependence 4,, (8,) (Table I} we can deduce,
for ideal patterns formed of n, equal cells, the expected de-
pendence p, (n,). The values measured on actual patterns
after their first and second destabilizations have been plotted
in Fig. 14 as a function of the number of fingers. The cells’
angles are not really equal, but the observed values p, are in
good agreement with those predicted. For primary patterns
Pp. is of the order of 0.8, for secondary ones p, =0.6.

This result shows how the effect of surface tension af-
fects the overall aspect of the pattern. Because the selective
action of surface tension is related to the curvature, the sta-
tistical properties of a region of an axisymmetric pattern, in
the initial stages of its growth, will depend upon the distance
of this region to the center.

(20)

3. Further evolution

The secondary fingers correspond to virtual sectors of
angular width of the order of 20°-30°. For these values of the
angle we have seen, in Sec. III A 3, that the first instability to
appear is side branching. This is also observed here. The side
branches have a direction of growth that forms an angle with
the radial direction; they can now reach large amplitudes but
they usually do not lead to the formation of long-lived
fingers. The main directions of growth are radial, and the
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FIG. 14. The occupation of the cell by air as a function of the number of
fingers. The points (B} are deduced from the values of 4,, shown in Fig. 7
with the hypothesis of patterns formed of equal fingers. The experimental
points ( + ) correspond to values measured in real patterns.
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original primary and secondary cells continue to divide the
pattern far from the center and define the main directions of
growth. Each of these cells is filled with a very unstable cha-
otic finger that generates constantly new side branches. The
study of the resulting large scale patterns is beyond the scope
of the present paper and will be developed elsewhere.

B. Convergent flow

In order to avoid disturbance by the spacers, the experi-
mental procedure had to be adapted. During the first filling
of the cell we inject oil at the center and stop the injection
when it has invaded a circular region of radius R, < R. Then
we siphon the oil out of the center. The circular front desta-
bilizes at a wavelength scaled on /.. As the perimeter of the
circle reached by the fingertips shrinks, the fingers tend to be
pushed against each other and the further evolution is char-
acterized by systematic competition between the initial
fingers. In the moderate range of velocity we investigate
here, no tip splitting or side branching occurs. (Side branch-
ing is observed to occur at very large velocity, but always
gives rise to very short-lived branches. ) There is a hierarchy
of successive screening off, shown on Fig. 15, and only one
finger will reach the center. Even though the last finger
moves in a wide cell with 8, = 360°, the finger does not wid-
en. (As mentioned before there is a strong focusing effect;
the isobars curvatures, near the fingertip and near the apex
of the cell, are of opposite sign so that the pressure gradient
along the axis of the finger is enhanced.) The experiments
performed in sector shaped cells are not very useful here in
interpreting the shapes and width of the fingers. The virtual
cells cannot be defined, because the strong competition

between neighbors constantly break the orthoradial symme-
tries. The fingers are always in transient states because their
environment changes constantly.

V. CONCLUSION

In the present article we have shown that, in sector
shaped cells, the width of Saffman-Taylor fingers is selected
by a process that appears in continuity with the selection
classically observed in the parallel cells. Though we could
not find them, except in the particular case where 8, = 90, it
is likely that there is an underlying family of self-similar so-
lutions. Even when it is small, the effect of surface tension is
to select among these a particular solution. In comparison
with the parallel case, a divergent finger profile of a given A
tends to be more bent by the geometry. This could explain
that in reaction, fingers with larger relative width A, are se-
lected. A finger moving in the convergent direction is sub-
mitted to less curvature constraint from the boundaries, so
that narrower solutions can exist.

The stability of the fingers is also affected by the geome-
try. For divergent fingers the instability threshold is lowered
and tip splitting becomes the dominant instability because
the fingertip becomes broader. Convergent fingers are more
stable than parallel ones and tip splitting is practically inhib-
ited.

We have also shown that these results permit an accu-
rate description of the simple divergent patterns obtained in
circular cells. After the first destabilization of the front, a



number 7, of fingers are formed and the further evolution
occurs as if the disk was divided in n, cells. In each of these
virtual cells the finger shape and selection correspond to
what is observed in real sector shaped cells of the same angle.
The rate of occupancy of the circular cell by air, and its
evolution during the growth of the pattern, can be deduced
from the fingers selection.
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APPENDIX: EXISTENCE OF THE MATHEMATICAL
SAFFMAN-TAYLOR FINGERS IN NONPARALLEL
GEOMETRY

The experiment described in the main text led us to won-
der whether the results that have been obtained'-'*~'* for a
finger moving in a parallel channel could be generalized to
nonparallel geometries. A first step in this direction would
be to find the equivalent of the Saffman-Taylor continuum
family. This is, however, more subtle than appears at first
sight, as we explain later, and our findings have been very
partial.

As is well known (see Ref. 10 for a review ), the motion
of the interface satisfies
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FIG. 15. Photograph of a typical pattern
obtained for a convergent flow in a cir-
cular cell. The photograph was taken
when the fastest finger has reached the
center. All the other fingers have been
screened off and are motionless.

v, =nVg, (Al)
where ¢ is the velocity potential such that
V¢=0. (A2)

The boundary conditions on the velocity potential are

b= +rx (A3)
on the finger interface (« is the local curvature of the one-
dimensional interface and y a parameter proportional to the
surface tension) and V¢ is parallel to the side of the channel
(so that no fluid escapes from the cell).

We are interested in obtaining an exact self-similar solu-
tion of the above equations. Let us first consider the zero-
surface-tension case (i.e., ¥ = 0) with a constant extraction
rate at infinity normalized to 27 by convention, i.e.,

¢~ (27/0,)logyx* +y*, when x2 4y oo .

It is convenient"'® to use the hodograph method and
consider z = x + iy as an analytic function of the complex
velocity potential = ¢ + . The interface equation of mo-
tion (A1) is just

dx dy dy t?x)

—— e e =T e | — l, = .
(az o 3t ov on ¢=0 (A4
For an exactly self-similar motion

x(t¢=04) =f(x($), y(t,6 =0,0) =f()y(¥), this

reduces to (with a suitable choice of the time zero)

imfe ) 1

A5
Ew (A5)
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(where z* is the complex conjugate of z), while f'satisfies

£ ‘—1{1—([’1= 1, ie, f(1)=ya+1.

The normalization has been chosen such that the side of
the channel is located at ¢ = + 7. The mathematical prob-
lem of finding the self-similar equivalent of the well-known
constant velocity Saffman-Taylor solution in a parallel
channel has thus been reduced to finding an analytic func-
tion z in the semi-infinite strip >0, — 7 <¥ <, such that
(i) arg z = + G,on the half-lines 1 = + 7 (theside bound-
ary of the cell), (ii) z~exp(w6y/2m) when ¢— + o0, and
(iii) z satisfies Eq. (A3) on the segment ¢ = 0.

The whole difficulty and difference with the usual case is
that (AS5) is a nonlinear condition. This is a kind of nonlin-
ear Riemann—Hilbert problem, and we do not know of any
general method to handle it.

The approximate finger shape obtained by conformal
transformation [ Eq. (8) of the main text] reads in our nota-
tion

z=£%"(1 4 £ )OO P with £=expw.

This satisfies conditions (i) and (ii) but does not satisfy
(iii), contrary to what is asserted in Ref. 3. [ The problem is
that v, transforms like a length under the conformal trans-
formation, but V¢ transforms like the inverse of a length so
(A1) is no longer satisfied after a conformal transformation
if the local dilatation factor is not constant. ] It is possible to
correct this defect for 8, = /2. In this particular case it is
easy to check that a continuous family of solutions is given
by

z=é—l/4[(1 _5—1/2)(1—1)/2(1 +é——l/2)(l+/l)/2

+Q _§—l/2)(|+1)/2(1 +§—1/2)<1—A>/2] ,

for 0<A<1. This suggests that the analog of the Saffman—
Taylor family exists for any angular cell. Unfortunately, we
have not yet succeeded in guessing the solutions for values of
8, not equal to 7/2.

As a last remark, we note®' that for nonzero surface
tension, arcs of circle are the only exactly self-similar solu-
tions of Eqs. (A1), (A2), and {A3) when a constant extrac-
tion rate is imposed at infinity. Indeed in that case, the con-
servation of mass implies that the dilatation factor fsatisfies

df
— = Cte,
fdt ¢

which in turn implies that v,, (+) = 1/f v, (0). This is a Neu-
mann condition for @, on the finger interface. The unique
solution of the Laplace equation that satisfies this boundary

condition on the interface, together with the other condi-
tions on the side of the channel and at infinity, is

(x,t) = dx/f (0),y/f (1),0) +a(r),

where a(¢) is a time-dependent constant.

This is compatible with Eq. (A3) onlyif y = Oorifxisa
constant, that is, for an arc of circle. Therefore a necessary
condition for the existence of exactly self-similar solutions at
arbitrary y is to impose a time-dependent extraction rate. In
fact, the previous argument read in reverse order shows that
the extraction rate should evolve in time as ¢ ~!/3. This last
remark is, of course, not in contradiction with the experi-
mental results. If these self-similar interface solutions tend
to an asymptotic shape for a high time-dependent extraction
rate, then this shape would also be the one seen with a con-
stant extraction rate.

'P. G. Saffman and G. I. Taylor, Proc. R. Soc. London Ser. A 245, 312
(1958).

2J. Bataille, Rev. Inst. Pet. 23, 1349 (1968).

L. Paterson, J. Fluid Mech. 113, 513 (1981).

4S. D. Howison, J. Fluid Mech. 167, 439 (1986).

*D. Bensimon and P. Pelcé, Phys. Rev. A 33, 4477 (1986).

¢S. N. Rauseo, P. D. Barnes, and J. V. Maher, Phys. Rev. A 35, 1245
(1987).

E. Ben Jacob, G. Deutscher, P. Garik, N. D. Goldenfeld, and Y. Lareah,
Phys. Rev. Lett. 57, 1903 (1986).

8L. M. Sander, in Fractal in Physics, edited by L. Pietronero and E. Tossatti
{North-Holland, Amsterdam, 1986), p. 241.

°P. G. Saffman, J. Fluid Mech. 173, 73 (1986).

D, Bensimon, L. P. Kadanoff, S. Liang, B. I. Shraiman, and C. Tang, Rev.
Mod. Phys. 58, 977 (1986).

''"G. M. Homsy, Annu. Rev. Fluid Mech. 19, 271 (1987).

12J. M. Vanden-Broeck, Phys. Fluids 26, 2033 (1983).

13R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, and A. Pumir, Phys.
Rev. Lett. 56, 2036 (1986); Phys. Rev. A 37, 1270 (1988).

'B. Shraiman, Phys. Rev. Lett. 56, 2028 (1986).

SD. C. Hong and J. Langer, Phys. Rev. Lett. 56, 2032 (1986).

%Y. Couder, N. Gerard, and M. Rabaud, Phys. Rev. A 34, 5175 (1987).

'""M. Rabaud, Y. Couder, and N. Gerard, Phys. Rev. A 37, 935 (1988).

'8G. Zocchi, B. E. Shaw, A. Libchaber, and L. P. Kadanoff, Phys. Rev. A
36, 1894 (1987).

"A. R. Kopf-Sill and G. M. Homsy, Phys. Fluids 30, 2607 (1987).

D. C. Hong and J. Langer, Phys. Rev. A 36, 2325 (1987).

2'G. Tryggvason and H. Aref, J. Fluid Mech. 154, 287 (1983).

22C. W. Park and G. M. Homsy, Phys. Fluids 28, 1583 (1985).

23P. Tabeling, G. Zocchi, and A. Libchaber, J. Fluid Mech. 177, 67 (1987).

24R. L. Chuoke, P. Van Meurs, and C. Van der Pol, Trans. AIME 216, 188
(1959).

2D. A. Reinelt, Phys. Fluids 30, 2617 (1987).

268, K. Sarkar and D. Jasnow, Phys. Rev. A 35, 4900 (1987).

’D. Bensimon, Phys. Rev. 33, 1302 (1986).

28, Liang, Phys. Rev. A 33, 2663 (1986).

*°B. Shraiman and D. Bensimon, Phys. Rev. A 30, 2840 (1984).

305 K. Sarkar, Phys. Rev. A 31, 3468 (1984).

¥'The following argument was pointed out by A. Pumir (private communi-
cation).

24Qwnload BNy 5\9?%2\48"1@&95.21'&%%%&?3%bution subject to AIP license or copyright, see http://ojps.aip.gpgmﬂﬁﬁﬁécr.jsp 240




