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SECTION Vlll TWO-DIMENSIONAL HYDRODYNAMICS 

ON THE HYDRODYNAMICS OF SOAP FILMS 
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Several experiments aiming at tha exploration of the hydrodynamical properties of soap films are presented. Their 
interpretation takes into account the very specific equation of state of these films. It is shown that on short time scales each 
element of the film moves as a whole so that the film can be considered as a two-dimensional fluid with a local density 
proportional tn its thickness. 

When set horizontally, quasi two-dimensional turbulent flows can be obtained. The film behaves as an incompressible fluid 
whenever the motions occur at velocities sma~ compared to the velocity of its elastic waves. An estimate of the role of air 
friction is given. 

The static quasi eqifilibrium of a film when set vertical is discussed. Phenomena equivalent to the rise of buoyant bubbles 
can beobtidned. I t  is shown that lee waves can also be generated confirming that a vertical soap film has the dynamical 
properties of atwo-dimensional density stratified fluid. 

I. Introduction 

Specific properties of soap films such as their 
stability, their elasticity, their topology when 
stretched on various frames, etc., have been inves- 
tigated since a long time. Early studies are due to 
Plateau [1] and Gibbs [2]. A book by Boys [3] 
describes several remarkable experiments demon-- 
strating the properties of capi!la~ forces. More 
recent extensive articles on soap films are due to 
Mysels et al. [4] and to Rusanov and Krotov [5]. 

Our viewpoint in the present article will be 
different; we dispose with soap films of very thin, 
self-sustained, fluid layers in which classical hy- 
, ~ . s A x . t , t a t v a x t a t a a l t l 1 , , a t . ~ a  ~ l , t ~ l . J , ~ , t a x a a % , a a t ,  o ~,..~.a.aa u , ~ ,  , ~ .~ . .~aa ,~ .  a a l  

medium the velocity field is confined to a surface 
and is practic#Ay two-dimensional. But soap films 
are complex objects; it is our aim here to discuss 
their hydrodynamical properties as they can be 
built up from their very specific physics. We will 
briefly recall, to illustrate these properties, several 
experiments [6-12] that we performed previously, 

and we will present a few new ones. Experiments 
by Gharib and Derango [13] to be published in 
the present issue confirm the promises of the study 
of the hydrodynamics of soap films regarding the 
investigation of two-dimensional turbulent flows. 

2. Physical properties of soap films 

2.1. Solutions of surfactants 

Soap molecules are usually formed of a hy- 
drophilic polar head with a hydrophobic hydro- 
carbon tail. This o~,~-;~t;~,,, gb:,~ th,,~,, molecules 
their properties as surfactants. When dissolved in 
water, they tend to settle at the free surface so that 
their hydrophobic part avoids the contact with 
water. Common soaps are made of a mixture of 
several surfactants, and the water used is not pure 
so that the real situation is complicated. However, 
the general features of soap films properties can 
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be understood in a model system. We will here 
consider a standard solution of only one type of 
soap molecule, with an initial concentration c o , in 
pure  water. Quantitative data will be taken from 
Rusanov and Krotov [5] and correspond to solu- 
tions of Sodium Dodecyl Sulfate (S.D.S.). 

When a solution is set in a vessel, at equilib- 
rium, there is a concentration/'~ of soap molecules 
at the free surface and a concentration c~ in the 
bulk of the fluid. The values of F 1 and c 1 are 
determined by the equality of the chemical poten- 
tials of the molecules as the surface and in the 
bulk. 
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Fig. 1. (a) The surface concentration F ! of soap molecules 
adsorbed at the interface as a function of the volumic concen- 
tration q in the bulk of the ttttid (adsorption isotherms). 
(From Rusanov and Krotov [5], p. 460.) The segments AB and 
AC represent respectively a Marangoni and a Gibbs stretching 
of the film. (b) The isothermal dependence of the surface 
tension o on the concentration Co of the solution. (c) Cross 
section of a thick soap film. 

Fig. l(a) gives a typical relation between the 
values of F 1 and q .  Two ranges of soap concen- 
trations must be considered separately: 

i) Small concentrations: The relation between 
/'l and c 1 is linear, and we can write 

q = kq .  (1) 

For a standard surfactant as S.D.S., k is of the 
order of 4 #m, showing that, in these states, the 
surface concentration is much larger than the vo- 
lumic one. Typically, at the free surface the mean 
area per soap molecule is 1.5 nm 2, while in the 
bulk the mean volume per molecule is 3 x 10 4 
nm 3. A limit case is that of insoluble surfac- 
tants for which k = oo, so that F x 4= 0 while c x = 0. 

For both soluble and insoluble surfactants, at 
low concentrations, the equation of state of the 
molecules at the surface can be approximated by a 
perfect gas law. 

ii) Large concentrations: the relation between 
F t and c 1 is no longer linear and there is a sharp 
bend in the characteristics where F x practically 
saturates. It occurs at a value of cx called the 
critical mJcelles concentration (c.m.c.) because at 
this value, in the bulk, the molecules start forming 
clusters (called micelles) in which their hydropho- 
bic tail is isolated from the water. 

Generally, for a given solution of concentration 
c 0, the equilibrium values F 1 and c 1 will depend 
upon the shape of the container. In a usual vessel 
the free surface is very small so that the total 
quantity of soap at the surface is negligible, and c~ 
is equal to c 0 (except for very small concentra- 
tions). This is no longer the case if the soap 
solution is set in a thin layer where the ratio of the 
area to the volume becomes large. In soap films, 
which have two water-air  interfaces and a thick- 
ness of the order of a micrometer, we will always 
have to take into account the equilibrium between 
1~ and c x. 

2.2. Swface tension 

At a given temperature, the surface tension of 
the interface, o, is usually given as a function of 
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the solution concentration c o (for a bulk fluid c o is 
equal to cx) (fig. l(b)). For small concentrations a 
decreases linearly with c o . At concentrations larger 
than the critical micelle concentration, the de- 
crease of a with c o becomes very slow. The depen- 
dence is written 

a = a o - f ,  (2) 

where a 0 is the surface tension of pure water and 
/ is called the spreading pressure (of surface pres- 
sure) of the surfactant. More generally in a given 
object (solution, film,.. .) ,  f is related to the sur- 
face and interstitial concentrations (/'1 and cl) by 
the Gibbs adsorption law: 

d f =  R T F  1 d(ln "YlCl), 
where R is the gas constant and ~q is an activity 
coefficient. 

- In the small concentration range, the activity 
coefficient is ~'x = 1 and the relation (1) is valid so 
that the Gibbs law can be integrated. The equa- 
tion of state of the soap molecules at the interface 
is then a two-dimensional perfect gas law: 

f = RTF1, (3) 

observed in white light, show bright interference 
colors. Their thickness ranges from 0.1 to 10/~m. 
We will call them thick films. They are formed 
(fig. l(e)) of two superficial layers with a surface 
density of soap F~ separated by unorganized inter- 
stitial fluid of a soap solution of concentration cx. 
In thick films there is no direct interaction be- 
tween the two surface layers so that the film 
thickness can have any value. These films are not 
stable in the gravity field and we will discuss their 
drainage in section 3. 

After drainage some films reach a state where, 
owing to their very small thickness, they hardly 
reflect light. They are called black films and can 
be in two states; the common black film has a 
thickness of the order of 30 nm, the second black 
film (Newton's black film) is oaly 4.5 nm thick. In 
thin films the two surface layers are also separated 
by some interstitial fluid but the strong interaction 
between the two surface layers determines the 
film's thickness. The potential of the interaction 
has a double well so that two thicknesses are 
observed. These films are in a metastable state; 
they can burst but cannot undergo further 
drainage, they cannot become thicker again either. 

where R is the gas constant. 
- For large concentrations, the situation is more 

complicated: ~'x deviates from unity and the ad- 
sorbed concentration/'1 increases only very slowly 
with q .  The evolution of f is then usually de- 
scribed by a Szyszkovski-Langmuir equation [16] 

c, ), (4) f= Rrr  1 (1 + 

where F~ and a~ are empirical constants chosen 
for a given soap to fit the observed concentration 
dependence of f. 

2.3. Films thickness 

Before discussing their stability, we must recall 
the two characteristic states in which soap films 
are observed to exist. The usual soap bubbles, 

2.4. Formation, stability and elasticity of soap films 

A film is usually formed by dipping a frame in a 
soap solution of concentration c o. The stretching 
of the film on the frame is rapid and we can 
consider that the molecules do not have time to 
diffuse from one region of the film plane to an- 
other. The global concentration of soap in all 
regions of the film is the same and equal to c o , 
and 

Co= cl + 2Fl/e,  (5) 

where c~ is the concentration of the interstitial 
fluid, 1-'~ the concentration on each interface and e 
the film thickness. (The validity of this hypothesis 
which is an essential ingredient of the following 
analysis is not obvious, see note added in proof.) 



Y. Couder et aL / Hydrodynamics of soap films 387 

The relative stability of soap films is due to 
:heir elasticity. We will consider a film with an 
~quilibrium state represented on fig. l(a) by the 
point A (F  t, cl). A local stretching disturbs the 
equilibrium between/'x and c 1. 

- I f  the disturbance occurs on a short time 
scale, the soap molecules do not have time to 
diffuse out from the inner fluid to the surface, so 
that same number of molecules initially present at 
the interface are now scattered on a larger area. 
The state of the stretched film is represented by 
point B. The decrease o f / ' t  results in an increase 
of the surface tension which opposes the stretch- 
ing. This process is called the Marangoni elasticity 
and explains the film stability to rapid distur- 
bances. 

- I f  the time scale of the film stretching is 
longer, the molecules of the interstitial fluid have 
time to diffuse out to the surface. At each time 
there is a thermodynamic equilibrium between F~ 
and c x. The stretching will displace the state of the 
film on fig. l(a) from A to C. The resulting in- 
crease of the surface tension corresponds now to 
the Gibbs elasticity of tbe film.. 

Since the original work of Gibbs [2] the elastic- 
ity of soap films has been widely investigated [5, 
14-16] and we will summarize here the results in 
the simplest cases. 

The elasticity modulus of a film is defined by 

E = 2 d o / d 0 n  A), (6) 

where A is the surface of the film. Due to relation 
(2) and since the fluid is incompressible, equiva- 
lent definitions are 

d f  do 
E =  - 2 A ~  = - 2 e d e .  (7) 

presence of impurities makes the equilibrium more 
difficult to reach so that Marangoni elasticity can 
be observed up to times of the order of a second. 

The values of the elasticities can be deduced in 
each of the concentration ranges defined in section 
2.1: 

i) For small concentrations the Marangoni elas- 
ticity is 

E M = 2 f =  2 R T F  1, (8) 

where F t can be deduced from (1) and (5): 

ek 
/'l = Co e + 2k" (9)  

The Gibbs elasticity E G can also be calculated: 

= 2 do ek 2 
EG - e-d-e = 4RTc° ( e + 2k )2"  (10) 

It is related to E M by 

2 E M k  (11) 
E G - e + ~..=~ 

In the limit of thin films (e<< 2k), EG=E~:  
because the interstitial fluid is too thin to provide 
soap molecules to tile surtace. 

ii) For large concentrations of soap the relation 
(1) is no longer valid and relation (4) replaces 
relation (3) so that the expression of the Gibbs 
elasticity becomes more complex. 

For simplicity, in the following, we will limit 
ourselves to small concentrations. It will be useful 
to remember that, typically, for a 2 ~m thick film 
of a dilute solution of S.D.S., the Gibbs elasticity 
is E~ = 30 × 10 -3 N/m.  

In principle, the limit between the Marangoni and 
the Gibbs elasticity is given by the time scale 
rD = e 2 / D  which characterizes the diffusive mo- 
tion of soap molecules through the film thickness. 
As the diffusion coefficient D = 4 × 10 -6 cm2/s, 
for films 1 ~m thick T D is of the order of 0.01 s. 
However, Rusanov and Krotov [5] argue that the 

2.5. Waves propagation in films 

G.I. Taylor [17] investigated the propagation of 
the waves in thin plane jets of pure water. In the 
most easily excited mode, the sinusoidal transverse 
motions of the two surfaces are in phase with each 
other (fig. 2(a)). For these waves (called antisym- 
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Fig. 2. Waves in a liquid film. (a) Antisymmetrical mode. (b) 
Symmetrical mode. (c) Elastic mode. 

metrical waves by Taylor) the restoring force is 
due to surface tension and their velocity is 

~ /2o  
VAs = ~--~, (12) 

where p is the density of water. 
The second mode that Taylor called symmetri- 

cal is a peristaltic mode where both surfaces move 
with opposite phases (fig. 2(b)). This mode, which 
involves viscous motion of the fluid from the 
nodes to the antinodes, is dispersive and propa- 
gates at 

( l e  
os = k0~/~-~, (13) 

where .O~ar is the density of air and k 0 the wave 
vector. 

The propagation of waves in soap film has been 
investigated by Lucassen et al. [18]. The motion of 
a peristaltic mode involves two possible processes 
of change in the local film thickness. The fixst one 
(i}e/i}t)r is due to the internal viscous flows from 
one region to the other related, as in films of pure 
water, to variations of the Laplace pressure (fig. 
2(b)). In the second one, the changes (Oe/bt)s :s 
due to the elastic stretching of the surface films in 
the antinodes (fig. 2(c)). It can be shown [5] that 
the order of magnitude of the ratio of these two 
effects is 

_ 

"~ ' )s  - 4'rr 2 << 1, (15) 

where 2~r/k o is the wavelength. As a result, in the 
soap films, the pure Taylor symmetrical mode can 
be neglected, and the waves are the elastic waves 
investigated by Lucassen et al. [18] where the 
variation of tNckness are related to variation of 
the surface density of the surfactant molecules 
(fig. 2(c)). These waves propagate at a velocity 

~/2E (16) 
ULF = pe 

Using a Marangoni elasticity E M = 2 f  = 80 x 10-3 
N / m  we find VLV = 4 m / s  in a 10 ~m thick film, 
and VLV = 13 m / s  in a film 1 ~m thick. 

where k 0 is the wave vector. 
In a soap film the propagation of the antisym- 

metrical mode is easily observed. A correction 
however must be applied; as the thickness of the 
film is very. small, the surface density of-the dis- 
placed fluid must be corrected to take into ac- 
count the air motion. The thickness of the column 
of air set into motion by the vibration of the film 
is of the order of magnitude of the wavelength so 
that the effective surface density is given by 

(pe)eff = pe + 2,rrpa~/ko, 

3. The near hy~iostalic equilibrium of a vertical 
soap film 

When a soap film, stretched on a rectangular 
frame, is set vertical it first shows a turbulent 
motion as its zone of unequal thickness are ad- 
vected by their weight upwards or downwards. 
After a characteristic time ~'x (~'x = ! 0 s) this vio- 
lent motion stops and, when lit with monochro- 
matic light, the film shows a patteln ol ho6zenta i. 
interference fringes corresponding to a wedge-like 
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thickness. At this stage, in a 30 cm high frame, the 
thickness will vary typically from 0.2 #m at :be 
top of the frame to 10 /~m at the bottom. ~'h: ~ 
observed fringes are not stationary; they move 
slowly downwards as the film thins down. 

3.1. The thinning 
The thinning of soap films has been investigated 

in details by Mysels et al. [4]. They showed that 
several processes could be observed, depending 
upon the state of the surface layers. We are only 
concerned here by their mobile films where the 
surface layers have a fluid behavior. In this case 
they observed that the thinning velocity depended 
mainly on the width of the frame. They showed 
that this rather surprising result is due to the 
general convective motion of the film created by 
mcrginal regeneration. 

3 1.1. Marginal regeneration 
This process is linked with the existence between 

the film and the frame of a meniscus called the 
Plateau border. Inside this meniscus, because it is 
concave outwards, the capillary Laplace pressure 
is negative; it exerts a suction on the film nearby 
and creates zones of reduced thickness. For reasons 
discussed below, these zones are buoyant and move 
towards the top of the frame, pushing down the 
rest of the film. This convection has no threshold 
on the vertical part of the frame, so vertical borders 
are the active zones; the narrower the frame, the 
faster the thinning. 

3.1.2. Viscous thinning 
If we consider now a film without a vertical 

frame (e.g. a spherical bubble or a film stretched 

observed thinning is slower by three orders of 
magnitude. There is no more global displacement 
of different zones of the film and the remaining 
thinning can be ascribed to the viscous flow of the 
inner fluid between motionless surfaces. The only 
acting forces are gravity, surface tension, and 
viscous friction (now the classical pressure in the 

film is everywhere equal to the atmospheric 
pressure). For a stationary viscous flow between 
motionless parallel interfaces, the velocity profi,e 
is parabolic (Poiseuille flow). For a film 1 /~m 
thick, the maximum vertical velocity is then w - 2 
~m/s .  

In the two surface layers a vertical gradient of 
surface tension opposes the viscous stress exerted 
by the inner fluid: 

do dz---~t ~ x _ e / 2 - - g p e ( z ) , / 2 .  (17) 

This later equation means that the gradient of 
surface tension in the superficial layers carry, the 
inner parts of the film. It could have been 
established more simply by neglecting altogether 
the Poiseuille flow and writing that the surface 
tension gradient balances the weight of an element 
of the film. There is then a strong analogy with the 
static equihbrium of a classical fluid. It is made 
more evident if we write eq. (17) using the 
spreading pressure defined by eq. (2): 

d f  2-a-- ~ = - g p e ( z ) .  (18) 

This is the equation of the equilibrium of a two- 
dimensional fluid where pe(z) is the surface 
density and 2(df/dz) is the gradient of a two- 
dimensional hydrostatic pressure. 

3.2. Thickness profiles 
The film behaves as a compressible medium; its 

isothermal compressibility is the inverse of its 
~ln~tieity. To seek its possible thickness profiles, 
we use the equation of state of the fluid. We will 
consider a film which, if it was perfectly horizon- 
tal, would have a constant thickness e* and a 
constant tension o*, and seek its equilibrium when 
set vertical. The simplest situation is obtained for 
insoluble surfactants where /'1 4=0 and c~ = 0. 
Then, using eqs. (2), (3) and (5) together with (18) 
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the thickness is given by and the thickness is given by the implicit relation 

pge*z ] 
e(z) = e * e x p  - 2 ( 0 o _ 0 , )  . 09) 

This thickness profile, shown on fig. 3(a), is the 
equivalent of the density profile of an isothermal 
atmosphere. The only difference is that, in the 
atmosphere the gas carries its own weight only, 
whereas here, the soap molecules carry the inter- 
stitial fluid as well. As a result, at room tempera- 
ture, the vertical variation of the density is much 
larger, and a 20 cm high soap film simulates an 
atmosphere a few kilometers thick. 

For small concentrations of a soluble soap, Ru- 
sanov and Krotov [5] using (9) find 

de pgee*(e + 2k)2 
dz  = - 4k (oo -O*) (e*  + 2k) (20) 

(o o - a*)(e* + 2k) 
z = pgke* 

e e* e(e* + 2k) / 
x e + 2k e* + 2k In e*(e + 2 k ) / "  

(21) 

Fig. 3 shows two thickness profiles calculated from 
(19) and (21) respectively. These equations give 
possible iPstantaneous profiles of films; they have 
been found taking e* and o* to be constant, an 
assumption which is equivalent to considering that 
the total quantity of fluid of the film is constant. 
In fact drainage occurs and some fluid is trans- 
ferred to the frame so that e* and e* vary slowly 
with time. Experimentally most usual soaps are 
made of several components, the equation of state 
is more complicated and the profiles of fig. 3 are 
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Fig. 3. Thickness profiles of a vertical film as a function of height z: (a) deduced from eq. (19) (with k/e* = 0.4), (b) deduced from 
eq. (21). 
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only two among a large variety of observed thick- 
ness profiles. 

Finally if, instead of being vertical, the film is 
set inclined at an angle a with the vertical, the 
component of the weight normal to the surface 
gives it a slight curvature. The equilibrium gives 
the resulting local radius of curvature R0: 

dz 2 o ( z )  (22) 
R ° =  ~ = pe(z )gs in (a )"  

For a film 2 /tm thick at a = 60 °, R o ---5 m. In 
the following we will neglect this curvature and 
consider the film as plane. The equilibrium in the 
plane of the films is then the same as that of a 
vertical film but, with a reduced gravity g ' =  
g cos a. Eq. (17) becomes 

d o  
2-dT = og ' e (  z ). (23) 

Fig. 4. The interference fringes of a film in a circular shear 
flow, showing four co-rotating vortices. 

4. Soap films set into motion by an air flow 

The previous d!scussion of the physical proper- 
ties of soap films wa~ a necessary preliminary to 
the desctpt ion and understanding of fluid dynam- 
ics experiments performed in soap films. The in- 
teraction of the film with the surrounding air is a 
dominant feature of these experiments and we will 
treat separately the experiments where the flow is 
dominated by the inertia of air or by that of the 
film. We will first describe two experiments where 
the film is set into motion by an air flow. 

4.i. interaction of a film with a two-dimensionai 
air flow 

A soap film is easily dragged into motion by an 
air flow parallel to its surface (Couder et al. [6], 
Rabaud and Couder [7] and Chomaz et al. [11]). 
The film then provides an excellent visualization 
of the flow. We had investigated a shear in a 

cylinder of very small height in which the air was 
set into two concentric circular motiop. A steady 
pattern of regular vortices was created in the cell. 
For symmetry reasons the air flow in the central 
plane of the cell was two-dimensional and the 
introduction of a soap film in this plane did not 
disturb it. As the fi!m has a small kinetic viscosity, 
it was easily set into motion. Whenever the air 
flow was steady, the film drained slowly and 
reached thickness profiles which were related to 
the pressure distribution. Fig. 4 shows the ob- 
served interference fringes; in the central region, 
as well as around each vortex core, concentric 
fringes were observed. 

In a two-dimensional system, rotating at angu- 
lar velocity ~, the centrifugal forces are usually 
expressed as the gradient of a scalar quantity 
½~o2r 2 where r is the distance to this axis of 
rotation. In an enclosed classical fluid this term is 
bala.q~ed by a radial pressure gradient and the 
situation is analogous to the equilibrium in the 
gravity field. Submitted to the centrifugal forces, a 
soap film in rigid rotation is in a state similar to 
the quasi equilibrium described in section 3. Oh- 
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served over a long time the fringes move slowly 
outwards. This is only due to the very slow 
PoiseuiUe flow of the interstitial fluid. If it is 
neglected, each element of a film in solid rotation 
is in a Gibbs quasi equilibrium which can be 
described in polar coordinates using the spreading 
pressure f: 

( d f  f )  ) t~r.  (24) 2 ~-~+ = p e ( r  

In the shear flow experiment, the film thickness 
results from the superposition of the centrifugal 
forces due to the rotations around the center and 
around the vortices. 

In unsteady regimes the film still shows the 
structure, but the vis lalization is of a different 
type. it the time scale of the motion is too short 
for the equilibrium to settle, the regions of differ- 
ent thickness are advected by the flow as if they 
were an unevenly spread passive scalar. 

4.2. Interaction of a film with a three-dimensional 
air flow 

Observation of a soap bubble shows that it is 
very sensitive to the drafts of the s u ~ e = ~ n g  Mr. 
To investigate the interact m of the three-dimen- 
sional motion of air with the film we set a simple 
experiment where a thin air jet impinges on a 
plane film. It is rather surprising that we did not 
find a description of this experiment in the litera- 
ture with the sole exception of an allusion in an 
article by Kitchener and Cooper [19] who quote it 
as an imaginary experiment for pedagogical pre- 
sentation of the film elasticity. 

The soap film is stretched on a horizontal circu- 
lar rim, at a distance h (h--  1 cm) above a com- 
partment in the center of which one single hole 0.5 
mm in diameter is pierced. By this hole air escapes 
in a thin jet perpendicular to the film's surface. 
The soap film shows a slight bulge at the point 
where the air jet impinges on its surface. The 

Fig. 5. The circulations observed in a horizontal film, when an air jet impinges perpendicularly to its surface. This picture shows the 
two outwards and the two inwards flows. 
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observation of the film in monochromatic light 
shows fast motions in its surface. The axisymme- 
try of the system is broken, and the axis of the jet 
become a saddle point separating four regular 
steady circulations (fig. 5). They result from two 
effects; the deflected air flow drives the film in a 
radial outward motion, but the local increase of 
the surface tension due to the stretching and thin- 
ning of the film, tends to create a radial inward 
motion of the film. These two opposite effects 
break the axisymmetry of the system. The air 
motion creates in the film plane two strong thin 
opposite radial jets while the surface tension gra- 
dient generates large recirculations of fluid to- 
wards the center. 

If the jet is not initially perpendicular to the 
surface the axisymmetry does not exist initially 
and only two circulations are observed. 

This experiment dearly demonstrates the stabi- 
lizing influence of the film's elasticity that we 
described in section 2.4. From the two preceding 
experiments we can also deduce the boundary 
conditions that are imposed (in a steady regime) 
to the velocity u~r of an air flow at the surface of 
the film: 

(Uair)  ± = 0  , 

(~a i r )  ii :# 0,  (25)  

(div Uairll) = O, 

as the film surface is incompressible in stationary 
regimes. These conditions show that the air flow is 
two-d mensional near the film. 

5. Flows in a horizontal film 

In this paragraph we will investigate the situa- 
tion where a flow is generated directly in the film. 
The surrounding air, initially motionless, is only 
set into motion by the flow in the film. Experi- 
ments of this type had been undertaken by us to 
investi3ate turbulent flows in a nearly two-dimen- 
sional medium. We limited ourselves to decaying 
turbulence in which energy is provided to the 
system at an initial time. In our first series of 
experiments [8] we showed that grid turbulence 
could be generated by towing in the film a comb 
formed of regularly spaced cylinders. They created 
parallel interacting wakes in which the vortices 
grew in time by pairing processes (fig. 6). The 
growth of the vortices size was linear in time, a 
behavior predicted for two-dimensional decaying 
t~ rbulence [22]. 

We also investigated the two-dimensional evolu- 
tion of a turbulent wake. In this case to make the 
system as two-dimensiopal as possible we towed a 
disk of aluminum paper (8 #m thick) suspended in 

Fig. 6. Gr, d turbulence in a soap film (the cylinders are moving from left to fight). 
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the film [12]. It was held by two thin needles 
which had a negligible wake in the air. Depending 
upon its velocity, we observed in the films the 
various types of 'wakes that a long cylinder pro- 
duces in a classical fluid. A difference appears at 
large velocity because in classical fluid the Von 
Karman wake becomes three-dimensional and tur- 
bulent. In the soap film it retains its two dimen- 
sionality. We showed [12] that two modes were 
observed. In the first one (fig. 7(a)) the destabiliza- 
tion occurs through pairing and merging of like- 
wise vortices [20]. The growth in size of the 
vortices, which are the energy carrying structure, 
is observed directly. This phenomenon is the ele- 
mentary process of the inverse energy cascade and 
characterizes two-dimensional turbulence. At 
larger velocities (fig. 7(b)) we observe the forma- 
tion of singular structures formed of two vortices 
of opposite sign. These couples are very fast and 
move into the quiescent zone,; of the fluid, thus 
diffusing turbulence. Both processes, the pairing 
and the formation of couples, have been observed 
in numerical simulations [21, 12] and are intrinsic 
features of two-dimensional flows. 

In these experiments, however de;";ado,~ were 
observed from a strict two-dknensional behaviour. 
In both the grid and the wake turbulence a general 
damping of the motion of the structures of al! 
scales was observed at large time and ascribed to 
the effect of air friction. This friction also affects 
the threshold at which a Von Karman wake is 
formed in the film. In normal fluids it occurs at a 
threshold value of the Reynolds number based on 
the velocity v and the diameter D. For various 
cylinders the product oD is constant at threshold. 
In soap film it increases with D. Furthermore it is 
also a function of the film tlfickness. This mani- 
fests the fact that we must consider two frictions: 
the viscous friction in the film and the damping 
due to the surrounding air. 

In section 5.1 we discuss the equatians of mo- 
rion of soap films and show under which re- 
strictions they can be considered as those of 
incompressible two dimensional flows. In section 
5.2 we give an estimate of the effect of the air 
friction. 

5.1. Equation of motion 

For the reasons discussed in section 3, the flow 
of inner regions of the film relative to the zurfaces 
is very slow. We will neglect it completely here 
and only consider motions in which an element of 
the film moves as a whole. 

We will particularly discuss in which conditions 
the motion includes local stretching, in other terms 
whether or not the fluid behaves as an incompress- 
ible two-dimensional fluid. We will first limit our- 
selves to a model situation where the film at rest is 
horizontal, has constant thickness e* and surface 
tension o*, and where the concentration in soap is 
small. 

The equations of motion of an element of a 
horizontal film of thickness e are the Navier- 
Stokes equation, the equation of conservation of 
the fluid and the equation of conservation of soap. 
(The later gives the film its elasticity.) 

In the Navier-Stokes equation the usual pres- 
sure term is replaced by surface tension and can 
be written 

2 V o -  2do E(e) r e =  - - V e .  (26) de e 

We will write as Ff the sum of all the damping 
terms due to the film's viscosity and to the air 
friction. These will be discussed separately in the 
next paragraph. We then have 

oo } 
D---} - = -  r e +  Fr pe ' 
De 
D--7 = - e div u, 

(27) 

substantive derivative (D/DT = a/~t + u • V ) 
On short times scales the elasticity E(e) to be 

considered is the Marangoni elasticity given by 
eqs. (8) and (9). It is related to the film thickness 
by 

e EM(e)= EM(e*)7~, (28) 
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(a) 

(b) 

Fig. 7. The two modes of destabilization of a Von Karman wake: (a) by pairing of vortices of the same sign, (b) by formation of 
couples of vortices of opposite signs. 
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where e* is the thickness of the film at rest. We 
will then say in short that the film has a Marangoni 
dynamics. 

On longer times scales the film has a Gibbs 
dynamics and its elasticity is given by eq. (10) so 
that 

e (e*+2k) 2. EG(e)=EG(e*)e e+2k (29) 

Eqs. (27) are those of the motion of a two- 
dimensional compressible fluid of surface density 
pe. The propagation of elastic waves is the equiva- 
lent of propagation of sound waves in a normal 
fluid: their velocity OLF is given by (16). In the 
following, we introduce a dimensionless number 
M which is analogous to the Mach number: 

M =  u = u ¢  pe* . (30) 
Vt.F 2E(e*)  

We can scale u by [Jr, x by L, t by L / U  and 
write e = e*(1 + M2e'). if we assume a Marangoni 
dynamics, eqs. (27), when written in an adimen- 
sional form, become 

Du Ve'  L 
D¢ = 1 + mZe ' + Fr UZe*p-~(l + mZe') ' 
De '  1 + MZe ' ~( 
Dt = M2 div u. ) 

(31) 

If the dynamics is of a Gibbs type, 

2k )Z  
Du I + - ~ -  
DI ( 2k)  2We' (1 + M~') 1 + M2e '+  - ~  

+F~ . . . . .  
" U ' e ~ p ( 1  + MZe') ' 

De '  1 + M2e ' 
div De M 2 

reaching large velocities the dynamics of the film 
would be that of a compressible two-dimensional 
fluid and would, on short time scales, be described 
by eqs. (31). In the experiments that we describe 
in the present article the fluid velocity is smaller 
than the wave velocity. M 2 is thus small and, at 
first order in M 2, eqs. (31) or (32) reduce to 

o .  L} 
Dt = - r e '  + F r UZe, p , 

d i v u = 0 .  
(33) 

5.2. Damping terms 

5.2.1. Film viscosity 
The first dissipative term in eqs. (27) is the 

viscous friction in the film plane 

~s 2u (34) r . =  , 

where/t  s is the surface viscosity of the film. The 
interstitial fluid has the viscosity of pure water bt w 
but the two superficial layers [4] have a specific 
surface viscosity ~s which del: ends on the nature 
of the soap and on its concenm fion. The resulting 
surface viscosity is 

#s = e,Uw + 2/~s. (35) 

In the films we used, ~s is of the order of 10 -8 
kg/s  (valid quantitative data on this parameter 
are very difficult to find in the literature). 

The ratio of the inertial forces to these viscous 
forces is a Reynolds number: 

Re = peUL _ , - , . .s ,  (36) 
p,W ~ -v- z,b~ s 

which depends on the film thickness. 

(32) 

The elastic wave velocity (section 2.5) is of the 
order of a few meters per second. In experiments 

5.2.2. Damping by air 
If the film is set into motion in a motionless air, 

two boundary layers of thickness 8 grow on each 
side of the film. The friction of a fluid on a 
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translating plate impulsively started is treated in 
Landau and Lifshitz [23]. It is expressed as a 
function of the derivations of the velocities at 
earlier times. We will limit ourselves here to an 
estimate of this effect. 

We write that the velocity gradient is extended 
over the thickness 8 of the boundary layer: 

L 

where ~'a is the kinematic viscosity of air, #a its 
density. The order of magnitude of the resulting 
friction on the film is 

2PaPa U 3/2 
Ff:, -- q~- . (37) 

simultaneously created in the film and the gas so 
that the shear in the gas near the film is reduced. 
Even though the wake is three-dimensional in the 
gas it is forced to remain two-dimensional in the 
vicinity of the film. 

6. Surface tension driven buoyancy 

A vertically stretched soap film is in a particular 
state of quasi equilibrium (described in section 3) 
where a surface tension gradient opposes the in- 
fluence of gravity. The effect of this gradient is 
equivalent to that of a two-dimensional hydro- 
static pressure and we can obtain the two- 
d imensional  equivalent  of some classical 
three-dimensional buoyancy experiments. 

The ratio of the inertial forces to this dissipative 
term is 6.1. A two-dimensional balloon • 

C =  O eVr-U (38) 
2pa V a ~  " 

We can compare the two dissipations by writing 
their ratio: 

Frz = 2PaV~-~UL3 (39) 
Fn ~we + 2t~ s"  

This gives the interpretation of the anomalous 
thresholds observed for the formation of the Von 
Karman wake. In the range of diameters that we 
use, L = 0.1 cm to L = 1 era, there is a crossover 
between the two dissipative processes. It is only 
for small diameters in thick films, that the 
Reynolds number retains its critical role. For large 

dominant, so that the wake only appears when a 
critical value of C is reached. 

It is possible to reduce this effect by towing a 
long cylinder in a film immersed in a gas of a 
kinematic viscosity value close to that of the film. 
(This is almost reafized using sulfur hexafluoride, 
a gas of large density.) A sirrfilar wake is 

We first repeat a popular demonstrative experi- 
ment showing the effect of surface tension (Plateau 
[1] or Boys [3]). We knot both ends of a fine 
thread (e.g. a thin hair of diameter 30 p ~)  to form 
a closed loop which we place in the soap film. 
Breaking the enclosed part of the film, the surface 
tension of the outer film gives a circular shape to 
the loop and we obtain a circular hole bordered by 
the thread. 

Placed in a vertical frame this hole will be 
submitted to two forces; its weight mg (where m 
is the mass of the thread plus the mass of the 
attached meniscus) and a buoyancy force equal to 
the weight of the excluded surface of fluid. The 
resulting force is 

F = m g - p g f f  e ( z ) d y d z .  (40) 

~f the film is set incJined at an angle ~ with the 
vertical, the in-plane forces will have the same 
expression, replacing g in (40) by g' = g cos ~. 

When the loop is placed at the bottom of the 
frame where the film is thickest, there is a buoya- t  
force and the loop moves upwards. During this 
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During its ascent the hole has an oscillatory mo- 
tion, where it simultaneously rotates and sideslips 
alternatively on one side and the other, in reaction 
to the alternate emission of vortices. The wake 
behind the loop tends to engulf regions of larger 
thickness in thinner regions; gravity will then tend 
to bring back each region at its equilibrium level. 
This leads to a rapid collapse of the vortices which 
form motionless regions of disordered medium. 
This effect is classically observed in experiments 
on bulk stratified fluids, where the collapsed zones 
are often called billows. 

Fig. 8. A photograph showing the rising motion of a loop of 
diameter 1.9 cm in a vertical film and the aspect of its wake. 

motion the surrounding film becomes thinner and 
the loop loses its buoyancy until it becomes mo- 
tionless at a level of equilibrium where F = 0. This 
motion is exactly similar to that of a balloon rising 
in the stratified atmosphere where the density 
decreases with height. We have here an experi- 
mental demonstration of the similarity of the equi- 
librium of a vertical film with the equilibrium of 
the atmosphere discussed above (see eqs. (19) and 
(21)). 

Fig. 8 shows the motion of a ho~e of diameter 
d = 1.9 cm rising in a f~lm inclined with a = 60 °. 
~fhe velocity of rise is ~) cm/s ,  and the Reynolds 
number is Re = 200. For this value the wake of an 
infinite cylinder moving in a bulk fluid is charac- 
terized by direct alternate shedding of vortices 
behind the cylinder forming a Von Karman street. 

6.2. The buoyant motion of two-dimensional 
"bubbles" 

The film is formed of a solution of concentra- 
tion c o which remains constant and characterizes 
the fluid. It is possible to create, at will, zones of a 

different two-dimensional density by touching the 
film with a needle covered with pure soap. A local 
larger soap concentration c~ is thus created. The 
surrounding film stretches rapidly this region 
where the surface tension has been lowered. This 
stretching will continue until the surface concen- 
tration F~ has decreased restoring a value of sur- 
face tension in equilibrium with the surrounding 
film. This process creates a thinner zone with a 
constant thickness e 2. If the frame is horizontal 
the zone is circular. The creation of these thin 
zones is difficult to control: the quantity of soap 
deposited by the needle is variable and the effi- 
ciency of the process seems to depend upon the 
difference in pH between the film and the pure 
soap. Whenever too much soap is deposited the 
stretching can be so large that no equilibrium is 
reached until the whole film on the frame is re- 
placed by black film. Depending on the type of 
soap that is used this thickness corresponds either 
to one of the black films (e 2 = 4.5 or 30 nm) or to 
the silver5, white of the first light fringe (e z = 100 
nm). The limit between the thin zone and the film 
is sharply defined. A tentative description of the 
probable aspect of the rim is given on the sketch 
of fig. 9. When the zone is no longer spreading the 
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Fig. 9. Sketches of the shape of the rim of thicker fluid sur- 
rounding a thin zone. 

radial equilibrium of the rim can be written 

rim out of ;:he film's plane (fig. 9a~. In this case it 
would be 

X=oi(ez-el). (42) 

There can also be corrections due to the con- 
tact line itself. We did not find quantitative data 
about X. 

Created near the bottom of the frame and sur- 
rounded by thicker fluid these zones are submitted 
to a buoyant force: 

F=pg[e2S- ffse(z)dydz ], 

2o I cos0 = 2 o ~ -  Ape 2, (41) 

where a~ and o z are the surface tensions of the 
surrounding film and of the thin zone respectively, 
0 the angle of contact and A," the Laplace pres- 
sure jump on the rim due to its curvatures. The 
rim's radius of curvature in the film plane is large, 
but in the perpendicular direction we can proba- 
bly assume that it is of the order of the film 
thickness so that Ap---o~/e~ and the pressure 
term, though small, is probably not negligible. 
This, together with the fact that 0 is probably 
large, shows that at equilibrium a, < o~ and the 
surface concentration of soap remains larger in 
the zone than outside. 

These zones, once created, are stable and be- 
have as if they were formed o ~ a different, immis- 
cible fluid. Restoring a thickness comparable to 
that of the surrounding film would require that 
interstitial liquid flows back between the superfi- 
cial layers; a Poiseuille flow of that kind wauld be 
extremely slow and, in the case where the zone is 
black, the interaction between the two surfaces 
opposes any thickening. 

The circular shape of the zones at rest shows 
that there exist a line tension X around these 
zones. This line tension can result simply from the 
normal surface tension acting on the side of the 

and rise up in the frame until they reach the level 
where e(z)= e 2. The velocity of their motion as 
well as their shape during the ascent is the two- 
dimensional equivalent of the motion and the 
shape of rising bubbles in a classical fluid. 

A large number of articles have been devoted to 
the shape of bubbles and drop. Reviews ef this 
subject can be found in harper  [24], Wegener and 
Parlange [25], Cliff et al. [26]. An article by Bhaga 
and Weber [27] also gives an extensive study of 
the subject. 

The case of plane bubbles, which is particularly 
relevant for comparison to our experiments, was 
studied experimentally in normal fluids enclosed 
in a Hele Shaw cell. Results in this type of geome- 
try were obtained by Waiters and Davidson [28]. 
Collins [29], Grace and Harrison [30], Crabtree 
and Brigwater [31], Hills [32] and Maxworthy [33]. 

In normal fluids the shape of rising bubbles and 
the nature of their wakes are usually described as 
a function of a set of severn! parameters represent- 
ing the relative importance of buoyancy, inerda. 
viscosity and surface tension. Various sets of pa- 
rameters are in use. One of the most usual is 
formed of the Reynolds number of the motion, the 
Ertv~Ss number which is the ratio of buoyancy 
over capillary forces and the Morton number 
which characterizes the fluid. The5, are de!ined as 
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follow [26]: 

Re = pd~U Eo = g Ap d~ z Mo = g~4 Ap 
~ 9  ~ 9  o O~e s ' 

(43) 

where d~ is the diameter of the sphere of equiva- 
lent volume. 

In order to keep to those number the same 
significance in our two-dimensional case, they must 
be modified. AO, the difference in density between 
the two fluids, is here o(e 2 -e~).  The equivalent 
of the interfacial tension o is the line tension X. 
The viscosity # must be replaced by the film 
surface viscosity #s given by relation (35). Instead 
of being the diameter of the volume equivalent 
sphere, d e is the diameter of the surface equiva- 
lent circle. The gravity acceleration, g ' =  g cos a, 
takes into account the possibility of working in 
inclined films. The numbers become 

R e  -- 
pe2deU 

2#Ss + ~wel 
~2 

Eo = g'p( 6,2 -- e~)ae X ' (44) 

M o = 
g'p(2~ s+~awe2)(e 2 -  e,) 

#2e~X2 

In the case where X is given by relation (42), the 
E&vSs number simplifies and becomes indepen- 
dent of the film thickness: 

Eo = pg'd~ ~z (45) 

Clift et al. [26] give m classical ~lmds a plot of 

function of their ESwSs number. This dependence 
is pa:a~etrlzed by the Morton number of the 
fluiu. In soap films the situation is more compli- 
cated because the liquid is very strongly density 
and viscosity stratified. For a given bubble, both 
the Reynolds number and the Morton number 
change du6ng the ascent. The EStv~3s number is 

Fig. 10. Shape of a rising black zone shortly after its creation. 
The indentation at the top of the spherical cap corresponds to 
the initial stage of development of a Rayleigh-Taylor instabil- 
ity (which will at later times split the zone). Secondary vortices 
created by the shear roll up to form the main trailing vortices. 
The maximum width of the black zone, d = 3 cm, gives the 
scale. (The marginal regeneration is also visible on the vertical 
border of the frame.) 

only constant if it is given by eq. (45). As a result 
there is a constant evolution of the bubble shape. 
Though we did not investigate this point systemat- 
ically we observed that roughly the various regimes 
correspond to those given by the diagram of Cliff 
et al. [26]. Zones of small area, rising in a thin 

rising in thick:r film have a spherical cap shape. 
The initia~ motion for large zones corresponds 

to the formatl-m of a circular cap with two at- 
tached trailing vortices. The distortion is very. rapid 
and corresponds to the description of Walters and 
Davidson [28], figs. 10 and 11 show this shape. 
The top part of the bubble becomes circular and 
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Fig. 11. Three stages at times t---0.6, 0.9 and 1.2 s of  the rise of a thin zone, showing the detachment of the traiting vortices. 
(Cont inued  on next page.) 

the shear near the edge gives rise to two lines of 
vortices which roll up into two large trailing vor- 
tices. 

Figs. 11 (a, b and c) show the later evolution of 
the wake. The two trailing vortices are formed 
with thick film collected at the early stage of the 
rising motion; they become unstable as the bubble 
moves up to thinner regions, they detach and faU 
down. 

Davies and Taylor I34] showed that the spheri- 
cal shape of the upper surface of three-dimen- 
sional bubbles corresponds to an equilibrium of 
the dynamic pressure at the interface. They found 
a relation between the radius of curvature of the 
sphere and the limit velocity of ascent. In two 

dimensions the corresponding relation derive:l by 
Collins [29] is 

0.5 , ,/ gR ) £  • (46) uv= 
V p ' 

adapted for soap films it is 

Ux 0.5 ~/g ~R (e~-  e~) ( ~ '  
e 2 

We meas~red ~oca~ velocities and curvatures of 
ascending spherical caps and find that they de 
satisfy relation (47) to the uncertainty of the mea- 
sures. 
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• . . . .  

Fig. 11. Continued. 

Finally a specific effect is observed when the 
bubbles reach the upper regions of the film. As 
their buoyancy decreases, the bubbles become un- 
stable and repeatedly break into two. Fig. 12 
shows the four bubbles resulting from two succes- 
sive splitting. 

This effect is not well understood. Classical 
bubbles usually break due to the Rayleigh-Taylor 
instability. Cliff et al. [26] give a upper limit for 
the size of stable bubbles: 

f ~j 

In soap film o must be replaced by the line 
tension which is not well known. If it satisfies 
relation (42) then d e does not depend on the film's 

Fig. 12: 'Fhe four zones resulting from two successive split- 
tings. The falling back of thick zones dragged by the wake 
creates oscillations of the stratified fluid. 

thickness which seems unrealistic. Another possi- 
bility is that, as the buoyancy decreases, so does 
the bubble velocity, so that the Davies and Taylor 
equilibrium is destroyed and the bubble breaks. 

6.3. In terna l  waves 

In the preceding paragraphs we have investi- 
gated the buoyancy of artificially introduced ex- 
traneous immiscible objects. In the present part 
we will examine the possibility that a stable strati- 
fied state of a vertical film can propagate internal 
waves. 

Let us consider a vertical film in a Gibbs equi- 
librium (of the type described in section 3) and a 
motion which displaces upwards an element of the 
film. The surface tension in this element becomes 
smaller than in the surrounding film and it is 
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submitted to ap els :tic stretching. T~,fis stretching 
can be of the _hbbs type, in this case the film 
element alway remains in equilibrium with its 
surrounding_, ~ d  there will be no restoring force. 
On th~ other hand if the stretching is of the 
Marangoni type, the element, when the equilib- 
rium of surface tension is reached, is still thicker 
and heavier than the surrounding film. It will be 
submitted to a restoring force and will possibly 
oscillate with a Brunt-Vais~ilii frequency. 

In a soap film this frequency will be 

g' de N = - (49) e ( z )  d z  " 

" principle the time scale over which the elasticity 
is considered to be of a Gibbs type are shorter 
( -  10-2 s) than the expected period ( -  1 s) of the 
internal oscillation, so that no wave should be 
observed. As discussed above, other results hint 
towards a much longer time for a Gibbs equilib- 
rium to establish in the case of complex solutions. 

To settle which is the actual situation, we re- 
peated in a soap film the lee wave experiments 
first performed by Long [35] of which a complete 
theoretical treatment was done by Miles and 
Huppert [36]. We tow in the lower part of an 

inclined film a large disk of aluminum paper of 
radius R~ (R~ = 3 cm) at a velocity U. The frame 
on which the film is stretched has a width H 
( H > >  R l ) .  VaBdng the velocity of the disk we 
change the Froude number of the flow 

U 
F r =  NR"--~" (50) 

Theory. predicts [36] that the waves increase in 
amplitude when the Froude number decreases. A 
critical value Fr¢ is defined as the value for which 
the wave reaches such a large amplitude that a 
density inversion appears at a point of the flow. In 
the geometry that we consider, Miles and Huppert 
[36] found Fr¢ = 0.787. 

The observed patterns in soap films are in good 
agreement with the prediction for both the 
Brunt-Waisal~ frequency and the critical Froude 
number. Fig. 13 showr, the interference fringes 
behind a disk moving with Fr slightly below Fr~. 
Their aspect is in very good agreement with the 
streamlines calculated by Miles and Huppert [36], 
and an inversion of density is observed. 

This observation confirms that over periods ~f 
time of the order of a second or more, a Marangoni 
dynamics is still observed in films which are in a 

~ 7  ...... . ~ ~ 1 ~ 7  ~̧ ~ ~ , , ~  

Fig. 13. The lee wave created by the motion of a large disk of aluminum paper moving (on the picture from left to right) in an 
inclined soap film. 
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Gibbs equilibrium. (If the hypothesis c o = const. 
(eq. (5)) is met, see note added in proof.) 

7. Conclusion 

We have presented very briefly several experi- 
ments aiming at the exploration of the dynamical 
properties of soap films. Though more work is still 
needed, we established some general characteris- 
tics. 

-The  physical properties of soap films are well 
known. We recalled classical results about their 
thermodynamics. The main asset is the chemical 
equilibrium between the soap molecules at the 
surfaces and the molecules of the interstitial fluid. 
Depending on the considered time scale of the 
film motions, the chemical equilibrium has time to 
establish itself or not. Therefore ';::lp films have 
two elastic constants. On long t '~e  :.:'ales it has a 
Gibbs elasticity, and the fast response of the film 
is characterized by the Marangoni elasticity. 

The Gibbs elasticity gives its quasi static state 
to a film. In the gravity field vertical films reach a 
quasi equilibrium where their two-dimensional 
thickness profiles are similar to the vertical density 
profile of the earth atmosphere. We have shown 
that such a quasi equilibrium is also reached when 
a film is set into a steady motion by a two-dimen- 
sional air flow. The film then reaches a thickness 
profile which provides an accurate visualization of 
the flow. 

The Marangoni eiasticity F.~ M cll,inc~erises the 
dynamical response of the film. Our experiments 
are coherent with a film elasticity of this type on 
time scales up to the order of a second. 

On short time scales each element of the film 
_ .11 1 1 _  muvc~ a~ wno~c so that the ',nrn"' can be considered 

as a two-dimensional fluid with a local density 
Woportional to its thickness. We have written the 
equations of motion of a film where a surface 
tension term replaces the usual pressure term. Our 
experiments show that quasi two-dimensional tur- 
bulent flows are obtained in horizontal films. The 
film can be considered as incompressible whenever 

the motions have velocities small compared to the 
velocity of its elastic waves (which are the equiva- 
lent of sound waves in gases). The main diver- 
genee from two di~..ensionality is due to the effect 
of air friction which damps the motion on all 
scales. 

We showed that in a film set vertically buoy- 
ancy experiments could be performed. The motion 
of rising bubbles confirms that in the film at rest, 
surface tension gradient has the role of the hydro- 
static pressure in normal fluids. 

In the two-dimensional analogy the film's den- 
sity is proportional to its thickness; a vertical film 
is from this point of view a strongly stratified fluid 
in wlfich internal waves are observed. 
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Note added in proof 

The analysis carried out in the present article 
relies on the assumption that the overall soap 
concentration of a film element is the same every- 
where in the fi!m: 

("0 = C] + Z.~ 1 '~ "" = C O D S t .  

This hypothesis, used previously by Rusanov and 
Krotov [5], is necessary to carry out the calcula- 
tion of the equilibrium profile of the film as well 
as the equations of its dynamics. However it is not 
obviously valid. The initial stretching of the film 
out of the bulk solution is not a well-controlled 
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process. If this stretching has been fast, the Gibbs 
equilibrium has not been maintained everywhere, 
and this could lead to films with regions of uneven 
soap concentration Co. The surface of the film 
being large, the diffusive relaxation of these un- 
evennesses in concentration would be very slow. 
The whole analysis of the initial equilibrium would 
then be upset and a correlation would appear 
between the thickness of a region and its soap 
concentration. The film would then be similar to a 
concentration stratified fluid. The existence of lee 
waves would then be linked to this characteristics. 
These waves corresponding now to the advection 
of regions of different chemical composition, it 
would no longer be necessary to explain their 
observation to assume a long typical time constant 
for the settling of the Gibbs equifibrium. 
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