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Foiling multihulls are now capable of sailing much faster than the wind in all directions, so they are in
fact sailing always close to the apparent wind. We will discuss some general consequences of these high
speeds and in particular: (i) the existence of a hysteresis cycle with two very different speeds for the same
wind and heading conditions, (ii) transformations in the speed diagram which gives the boat speed in all
sailing directions, (iii) the possibility of having not to ease but to trim in the sails during a bear-away and
(iv) the effect of the atmospheric boundary layer on the twist angle of the sails of fast boats.

NOMENCLATURE

Symbol Definition (unit)
CD Drag coefficient
CDi Induced drag coefficient
CL Lift coefficient
Fa Aerodynamical forces (N)
Fh Hydrodynamical forces (N)
Lf Span of the foils (m)
bf Chord of the foils (m)
M Mass of the boat (kg)
G Vertical wind gradient (m−1)
Sf Horizontal foil surface (m2)
Va Apparent wind speed (AWS) (m/s)
Vb Boat speed (m/s)
Vt True wind speed (TWS) (m/s)
Vc Take-off velocity (m/s)
X Speed ratio Vb/Vt
z0 Altitude of reference (m)
β Apparent wind angle (AWA) (◦)
γ True wind angle (TWA) (◦)
ρw Density of water (kg.m−3)

1 INTRODUCTION

Over the last few decades, architects and shipbuilders have
succeeded in greatly reducing the hydrodynamic drag of sail-
ing yachts, first by reducing their weight, then by modifying
hull shapes to facilitate planing and, today, by adding foils
that allow the hull to be partially or totally lifted out of the
water. As a result, sailing speeds have been greatly increased,
and now exceeding 40 knots for long periods of time is rel-
atively common for the new foiling multihulls or the AC75
monohulls of the next America cup. All the actions that allow
such a foiling transition are therefore very important to win
races. Furthermore, as the boat speeds become significantly
greater than the true wind speed (TWS), the decrease of the
apparent wind angle (AWA) and the concomitant increase of
the apparent wind speed (AWS) have important consequences
on the speed diagram of these fast boats. The objective of

this paper is to present the transformations induced by these
high speeds, using simple physical and analytical arguments.
We will discuss successively the take-off speed, the possible
existence of a hysteresis in the speed diagram, and some con-
sequences of the modifications of the speed diagram induced
by these flight conditions.

2 TRANSITION WITH HYSTERESIS TO FULL-
FOILING SAILING

Hydrofoils are submerged surfaces used to generate lift and
in particular vertical lift to partially or totally replace the hy-
drostatic lift. Above a critical boat speed Vc, the hull can be
entirely lifted above sea level when only the appendages re-
main in contact with the water.
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Figure 1: Sketch of the boat speed hysteresis curve occurring
for increasing and decreasing aerodynamic forces Fa. The
boat is foiling when Vb > Vc. The foiling transition occurs
for increasing wind speed when the aerodynamic propulsive
force reaches Fa↑ while for decreasing wind speed the loss
of this flight condition occurs for a lower aerodynamic force
Fa↓.

When sailing in a constant direction, if the wind velocity in-
creases, the aerodynamic propulsive force Fa will also in-



crease and eventually become larger than a critical value Fa↑
for which the boat velocity becomes larger than the foiling
velocity Vc (figure 1). As the boat starts to fly, the hydrody-
namic drag strongly decreases and thus its velocity increases
significantly. It is thus possible to reduce the incidence angle
of the foils, the so called ”rake angle”, while keeping constant
the lift force. If the foil incidence is reduced, the hydrody-
namic drag decreases further more and the boat will continue
to accelerate. Now if the wind decreases, starting from a high
value, as the hydrodynamic drag is smaller in foiling condi-
tion than in non-foiling one, the boat will remain above the
sea surface until a smaller value of the aerodynamic force Fa↓.
Thus in the range Fa↓ < Fa < Fa↑ the boat speed will have
two different values depending of the past conditions. In this
range, the existence of a hysteresis cycle will have enormous
consequence in the strategy to win a race. All maneuvers as
pumping, surfing or transitory changes of direction that could
trigger such foiling transition must be sought.

2.1 CRITICAL FOILING VELOCITY

In order to be fully foiling, the boat speed Vb must exceed a
take-off velocity Vc corresponding to the fact that the vertical
lift generated by the foils becomes larger than the boat weight.
This condition writes 1

2ρwV
2
c SfCL = Mg, where ρw is the

water density, Sf the total horizontal surface of the foils, CL
the lift coefficient of the foils and M the total mass of the
boat. Thus the critical take-off velocity is:

Vc =

√
2Mg

ρwSfCL
, (1)

For example for the sailing trimaran Gitana 17, the take-off
velocity is Vc ≈ 22 knots for a total horizontal foil surface
Sf = 4m2 and a total massM = 15 500 kg. Using these data
and Eq. 1 we obtain that the mean lift coefficient of the foils
should be CL ≈ 0.6. This value seems reasonable as it cor-
responds for example to a rake angle (incidence angle of the
foils) of 5◦ if one assume a classical NACA0012 profile [1],
or no more than a few degrees for a more sophisticated cam-
bered foil section. Furthermore, assuming this NACA profile
and this rake angle, the corresponding 2D drag coefficient is
CD ≈ 0.015. We must also add the induced drag due to the
finite aspect ratio of the foils [12, 4, 13]. The induced drag co-
efficient can be estimated as CDi =

bf
πLf

C2
L where Lf is the

individual foil span and bf its chord. This induced drag cor-
responds to the force needed to generate the vorticity present
at the tip or the elbow of the foil. For example with Lf = 1.5
m, bf = 0.5 m one finds CDi ≈ 0.038. Thus the induced drag
is larger than twice the 2D drag, and the lift-to-drag ratio is of
the order of 10. Finally, adding also the drag on the vertical
part of the foils and on the immersed part of the rudders one
could estimate the total hydrodynamic drag at take-off veloc-
ity to be of the order of 15 000 N, a tenth of the weight of the

boat.

2.2 SPEED DIAGRAMS IN FOILING OR NON FOILING
CONDITIONS

The speed diagram is a polar plot that represents, for a given
TWS and a given sea state, the speed of the boat Vb in all
sailing directions γ [8]. These velocities are target velocities
and assume the best possible tuning of sails and foils.

In the range of wind speeds where the boat may or may not be
foiling depending on past conditions, it is interesting to plot
the two corresponding speed diagrams in order to look for a
trajectory in the plane (Vb, γ) that crosses the circle Vb = Vc
and allows to pass from the low velocity curve (non-foiling)
to the high velocity curve (foiling). Indeed, assuming that for
a given heading γ1 the boat navigates at velocity V1(γ1) < Vc
it may be possible to bear-away or to come up to another angle
γ2 in order to overtake Vc and start foiling and then return to
the initial course angle γ1 but now on the hight velocity curve
V2(γ1) > Vc. A similar behavior was recently found by a
6DOF simulation of an ocean-racing trimaran [10], showing
that a substantial speed difference could be obtained after a
bear-away as a function of the transient trimming of the sails.

3 SPEED DIAGRAM OF FAST FOILING BOAT

The term fast ship here means fast in relation to wind speed.
It is then useful to introduce a speed ratio X = Vb/Vt, ratio
between the speed of the boat and TWS. Values ofX between
2 and 3 are now common for some fully-foiling sailboats. We
will now describe some consequences of sailing at X > 1.

3.1 DECREASE IN APPARENT WIND ANGLE

The apparent wind is the wind measured on board. It corre-
sponds to the vectorial composition of the true wind Vt and
the boat speed Vb, represented on the figure 2. Note that tra-
ditionally, in the sailing world, γ and β are the angles between
Vb and −Vt or −Va.

This vectorial equation Va = Vt − Vb corresponds to two
scalar relations:

Va cosβ = Vt cos γ + Vb (2)
Va sinβ = Vt sin γ (3)

or introducing the speed ratio:

tanβ =
sin γ

cos γ +X
(4)

Va = Vt
√

1 + 2X cos γ +X2. (5)
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Figure 2: Velocities composition between the true wind speed
Vt and the boat speed Vb which gives the apparent wind
speed Va: (a) upwind (γ < 90◦) on port tack for X = 2.2,
(b) downwind (γ > 90◦) on port tack for X = 2.2.

It is clear from these equations that for small X , the distinc-
tion in strength and direction between true and apparent wind
is weak, but for large X the effect becomes significant, and
β decreases with X for all γ angles. As a result, fast sailing
boats navigate always at small AWA and with sheet-in sails.
This is why it is not easy from photos to say whether these
boats are sailing upwind or downwind.

Figure 3 shows the evolution of AWA for all possible sailing
directions relative to the wind, assuming a constant speed ra-
tio. AWA is maximum when TWA is γ = π/2 + β and its
value is then βmax = arcsin(1/X). For example, sailing at
X = 3 means a maximum AWA of 20◦. The large values of
X are therefore limited by the fact that sailboats, even when
using rigid sails with large aspect ratio (and thus large lift-to-
drag ratios), can not progress rapidly when AWA becomes too
small.

3.2 SPEED DIAGRAM OF A BOAT SAILING AT A CON-
STANT APPARENT WIND ANGLE

As hydrofoil yachts sail fast and therefore with a high speed
ratio, there velocities are limited by their ability to sail effi-
ciently with a small AWA. If we assume that this condition is
indeed the dominant limitation, they will sail in all possible
directions with that small constant value of β = β0. We may
wonder what the shape of the speed diagram would be for
such a boat? This question first arose for ice-boats because,
since the ice friction is very low, they can navigate at a value
of X greater than 4 [11].

Figure 4 shows that, to navigate at a constant apparent wind
angle β0, the point M, at the origin of the vector Vb, must see
the segment AB (vector Vt) at a constant angle. Point M thus
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Figure 3: Evolution of the apparent wind angle β with respect
to the true wind angle γ for constant speed ratio X = 2, 3
and 4 (Eq. 4). The dashed line corresponds to the place of
βmax, maximum of the curve β(γ), for all X: γ(βmax) =
π
2 + arcsin(1/X).

describes the arc of a circle ACB. Point A would correspond
to a sailboat going in the wind direction at the wind speed
(X = 1), point B to a sailboat stopping facing the wind (X =
0). Point C corresponds to the maximum speed for the boat
Xmax = 1/ sinβ0. The boat speed (and X) increases from
A to C, then decreases to zero from C to B. The arc of circle
ACB will be larger for a constant wind (AB fixed) the smaller
the angle β0 is, indeed the circle radius is R = Vt/(2 sinβ0),
which confirms that, to go fast with a given true wind, one
must be able to sail with a low AWA.
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Figure 4: Diagram showing the geometrical condition for sail-
ing on a starboard tack at β0 = 30◦. Point M can take any po-
sition between A and B on the arc of circle (ACB). Adapted
from Ref. [3].

The speed diagram Vb0(γ) corresponding to the condition of
sailing at constant β0 is drawn on the figure 5. It is deduced
from the figure 4 by symmetry of point M with respect to B. It



is thus also a circular arc of the same radiusR, or more exactly
2 circular arcs due to the left/right symmetry with respect to
BA’ for the port tack.
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Figure 5: Speed diagram Vb0(γ) under both tacks for a boat
sailing at constant AWA β0 = 30◦. Points A’ and M’ are
symmetrical of A and M (see figure 4) with respect to point
B.

The speed diagram equation can be obtained from Eq. 4:

Vb0(γ) = Vt

(
sin γ

tanβ0
− cos γ

)
(6)

for γ in the [γ1, γ2] range. The angle γ1 corresponds to point
B and is the smallest solution of Eq. 4 for X = 0 and β = β0
while the angle γ2 corresponds to point A’ and is the largest
solution of Eq. 4 for X = 1 and β = β0. The second arc of
circle on the right of figure 5 corresponds to the port tack and
is obtained by left/right symmetry of the starboard arc BM’A’.
Note that for an hypothetic boat sailing at constant speed ratio
X0 the speed diagram would also be a circle but centered on
point B in figure 5.

3.3 NECESSARY CONDITION FOR HAVING TO TRIM
THE SAILS DURING A BEAR-AWAY

On classical sailboats, during a bear-away (increase of γ) the
apparent wind angle β also increases and the crew eases the
sheets to optimize the angle of incidence of the sails. On a
faster boat, the increase in boat speed during the maneuver
induces a smaller increase of AWA. The limiting case, where
it is no more necessary to ease the sheets during the maneuver
corresponds to a constant β angle, as described in § 3.2. The
polar plot is then, at least in the range of angle corresponding
to the maneuver, an off-center circle as in figure 5.

A question now arises: is it possible to have to trim-in the
sails when bearing away? That will be the case if β decreases
as γ increases, so if dβ/dγ < 0. Assume that we know the
speed diagram of the boat Vb(γ) for a given wind force Vt, the

derivation of Eq. 4 with respect to γ gives the condition:

dX

dγ
>

1 + cos γX

sin γ
. (7)

As X = Vb/Vt this equation also writes:

dVb
dγ

>
Vt + Vb cos γ

sin γ
. (8)

This condition will be fulfilled if the local slope of the polar
curve is greater than the slope for the same γ of the 2-circles
polar curve of figure 5, i.e. if the real speed curve Vb(γ) of the
boat crosses at this angle γ, from inside to outside, the curve
Vb0(γ) given by the equation 6.

Table 1 gives the minimum value of the relative increase in
boat speed required after a 10◦ bearing to have to trim the
sheets in.

X = 1 X = 2 X = 3
γ = 50◦ 37% 26% 22%
γ = 90◦ 17% 9% 6%
γ = 120◦ 10% – –

Table 1: Relative increase in boat speed ∆Vb/Vb after a 10◦

bearing required to have a decrease and not an increase of β
for three initial TWA γ and three different speed ratios X .

4 TWIST OF THE SAILS OF A FAST SAILBOAT

Until now a constant true wind force was considered. How-
ever, due of the existence of the atmospheric boundary layer,
the wind intensity increases with altitude z [7]. This evolution
of VT with z has an effect on the value of the AWA β which
also becomes a function of z and thus on the optimal twist-
ing of the sails [5, 6]. I will analyse now the consequence of
sailing at high X on the optimal twist of the sails.

In the atmospheric boundary layer, the wind is stronger at
higher altitudes and decreases, in theory to zero, at the sea
surface. Since the airflow is turbulent, the velocity profile
is generally described as logarithmic on a typical thickness
that is highly dependent on the weather conditions (e.g. ther-
mal stratification, humidity, convection, etc) and typical thick-
nesses of 200 to 500 m are often observed [9].

One can write this logarithmic profile as:

VT (z) = VT (z0)
ln(z/zR)

ln(z0/zR)
(9)

where z0 = 10 m is the classical reference height and zR a
roughness length that depends of the sea state. However at the



scale of a sailboat mast, a linearization of this function in the
vicinity of z0 is usually sufficient and simplifies the analytic
discussion. We will thus write:

VT (z) = V10[1 +G(z − z0)] (10)

with V10 = VT (z0). The usual values of the wind gradient G
are of the order of 1%/m.

Note that Earth’s rotation (Coriolis force) also induces a verti-
cal evolution of the direction of the true wind, a phenomenon
known as the Ekman spiral [14]. However this effect is only
significant at a larger altitude of the order of 1000 m, and can
therefore be safely neglected at the scale of a sailboat’s mast.

Let’s write down the consequence for the AWA of a vertical
gradient of the true wind. The derivation of Eq. 4 with respect
to z gives:

dβ

dz
=

sin γ

sin2 γ + (cos γ +X10)2
X10G. (11)

The evolution of AWA is then written at the same linear order

β(z) = β10 +
dβ

dz
(z − z0). (12)

This equation shows that the AWA increases linearly with al-
titude. The twist of the apparent wind remains proportional
to the true wind gradient, but the proportionality factor is a
function of the speed ratio calculated at 10 meters X10 and of
the TWA γ. Equation 11 shows that, when the speed ratio is
small, the twist is proportional to this speed ratio (with a very
small effect on a slow sailboat) but that the twist decreases
again for the highest speed ratios. Figure 6 shows this twist
as a function of heading, and shows that the twist is maxi-
mum when running downwind. Figure 7 shows the twist of
the AWA as a function of heading for different speed ratios.
This figure shows that the twist of the AWA is maximum when
the boat sails at the true wind velocity (X = 1). Note that the
twist is not a unique function of the apparent wind angle β10
because, even at constant β10, its remains dependent of X or
γ.

Not that, even at high speed ratios, a residual twist of the sail
may be necessary, not because the wind angles change con-
siderably with altitude, but to limit the heeling or to decrease
the induced drag. Indeed, for an un-twisted wing or sail, the
optimal shape to minimize induced drag for a non twisted sur-
face is an ellipse [2, 4]. However, the current trend is rather
to install square-topped mainsails for which a twist of the sail
is desirable to achieve this ”elliptic load” and minimize the
induced drag. In conclusion the optimal twist of the sails may
be larger than the apparent wind twist (Equ. 12) for two main
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Figure 6: Twist of the apparent wind angle ∆β as a function
of γ for a 20 m height mast in a wind gradient G = 1 %/m
and for three values of X: 1.2, 2 and 3.
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Figure 7: Twist of the apparent wind angle ∆β as a function
of X for 20 m height mast in a wind gradient G = 1 %/m and
for 4 values of γ: 45◦, 90◦, 120◦ and 150◦.

reasons: (i) to adjust the distribution of lift along the height in
order to minimize the induced drag, and (ii) to unload the top
of the sails in order to lower the center of effort and reduce
the heeling moment.

5 CONCLUSIONS

Some consequences of high-speed navigation were presented.
For yachts using hydrofoils, we showed that a hysteresis cycle
could be observed for increasing and decreasing wind condi-
tions, depending on whether the hull is completely above wa-
ter or not. This transition, which can also be observed when
initiating full planing or surfing in waves after pumping on
small skiffs, suggests new strategies to ease the transition to
higher speeds. At high speeds, AWA is greatly reduced, af-
fecting sail efficiency and the shape of the speed diagram.
The possibility of sailing in different directions without hav-
ing to ease or trim the sails was presented, and finally the
effect of wind strengthening with altitude was discussed as it
influences the optimal twisting of the sails.
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