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Wavelength selection and transients

in the one-dimensional array of cells of the printer’s instability
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Abstract. The printer's instability can provide a large array of identical cefls. In the present article we show that for a given value
of the control parameter, the wavelength is strictly selected, We investigate various processes (parily-breaking waves, Eckhaus-like
instability, spatiotemporal dislocation) by which the pattern changes wavelength after a jump of this control parameter.

1. Introduction
Unbound front instabilities lead to pattern formation as dendritic growth or viscous fingering (Mullins and

Sekerka [1964] and Saffman and Taylor [1958]). When bound by a gradient, however, a mean linear front can
be stabilized. It destabilizes to form a series of cells. These fronts form an excellent tool for the investigation of
the dynamical regimes of one dimensional extended systems. Such is the case in directionnal sofidification
{recents works can be found in de Cheveigné et al. [1986] and Bechhoefer et al. [1989]) and in the printer’s
instability ([Hakim et al., 1988}, [Couder et al., 1989}, [Rabaud and Hakim, 1989], [Rabaud et al., 1990}).
This latter instability affects the meniscus of a viscous fluid placed between two moving non parallel solid
sarfaces. It occurs in several industrial film coating processes where it is often called the ribbing or the coating
instability. For this reason it is mainly the instability threshold which was investigated initially (e.g. Taylor
{1963], Savage [1977], Ruschak [1985]} and Coyle et al. {1990]). Revisiting this type of instability we showed
that the two surface velocities form two independant control parameters and that many different dynamical
regimes could be observed in this system,

We first rapidly present the experimental apparatus in part 2. We study the permanent states and the
wavelength selection in part 3. Transients associated with the increase or the decrease of the control parameter
will be presented in part 4.

2. Experimental Set-Up

The cell is formed by two horizontal glass cylinders (L; = 380 mm and L., = 420 mm long) of different radii
(R; =33 £ 0.01 mm and R, = 50 £ 0.05 mm) one inside the other, They are off-centered (Fig. 1) so that there is
a small gap on one generatrix, at the bottom of the apparatus (0.1 < b, < 1 mm). The two cylinders can rotate
independently and a small amount of silicon oil (Rhodorsyl 47V100) introduced between them, fills the gap.

For low velocities of the cylinders we observe from below two linear and parallel dark lines. These dark
lines represent menisci limiting the domain where the gap is completely filled by oil {as the oil wets completely
the glass cylinders, there are two coating films of oil on the moving surfaces). For larger velocities, one of the
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two interfaces becomes wavy. Essentially, the instability is unaffected by the exact quantity of oil, provided there
is enough oil to fill in the gap. The two air-oil interfaces are observed from below, through the cuter cylinder, by
a CCD video camera. Video pictures ¢an be digitized and analyzed on 2 Macintosh IIx computer. In particular we
can choose one single video-line that intercepts all the cells of the pattern, and digitize and memorize this line
with a given time step. By collecting all these lines we reconstruct spatiotemporal images of the interface
evolution that are powerful tools for understanding the temporal dynamics of the pattern.

Figure 1 : Sketch of the experimental apparatus showing the two rotating cylinders coated by oil and the two
menisci limiting the gap region.

3. Permanent States and their Wavelength Selections

In the case where the two cylinders rotate, the experiment reveals various dynamical regimes of the
interface. States of travelling cells or of intermittent chaos can be studied [R. & al., 1990]. But, in the present
work we restrict ourself to the wavelength selection problem when only one cylinder rotates and to the ransient
behaviours. In this situation, for a given value of the parameters, there is only one final state which is stationary
in the laboratory frame of reference. As the rotation of the inner or outer cylinder have identical effects on the
interface, we choose to rotate the inner one as its mechanical properties are better defined (£ 0.01 mm on the
radius and all along the cylinder).

Starting from no rotation and increasing the velocity of this cylinder, at a given onset, the front becomes a
sinusoid of wavelength A .. This instability is clearly supercritical ; there is no hysteresis, zero amplitude at onset
and close to V,_ the amplitude increases as (V - V)3, We wrote a linear analysis when only one cylinder is
rotating [H. & al., 1988] and emphasized a strong analogy with the equations of directional growth of a crystal
[R. & H., 1989]. This linear analysis gives correct predictions for the values of A and for the critical velocity at
onset, it is also in qualitative agreement with the analysis of Savage [1977] and with the computation of Coyle
et al. [1990]. This analysis shows that the relevant parameters are the capillary number Ca = uV/T (where p and
T are dynamical viscosity and surface tension of the oil and V the tangential velocity of the moving cylinder} and
the ratio by/R of the gap thickness to its radius of curvature in the gap region (R =R;R, /(R - R;}).

At onset, in our range of geometrical parameters (0.1 < by < 2 mm, 10 < R < 100 mm), typical critical
Ca =~ 402 gnd A~ 4 /bR,
values are R ¢

As in directional growth experiments, a dimensionless parameter, the Péclet number, ratio of the wavelength
of the pattern to the characteristic length scale of the pressure ficld. At onset we find Pé_ = 10.

When the speed of the cylinder increases the amplitude of the deformation grows, the front departs from its
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sinusoidal shape and the wavelength A of the pattern decreases (e.g. starting with 20 cells at onset we can have
100 at larger velocity). As the nonlinearity increases, the front becomes a series of parallel fingers separated by
thin oil walls and the inward/outward symmetry is broken (Fig. 2). Above threshold, as the Péclet number
decreases and becomes less than one, fingers shape becomes identical to the shape of wide Saffman-Taylor

fingers [R. & H., 1989].

Figure 2 : Photograph of a stable pattern of stationary cells (Ca =10 Ca_, Pé = 1).

For all velocity values, after fong transients described in the next paragraphs, the pattern adapts to take an
optimum wavelength without any defect. Provided the structure has sufficient time to evolve, there is no
measurable hysteresis in the wavenumber versus velocity curve (Fig. 3).
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Figure 3 ; Evolution of the selected wavenumber Figure 4 : Logarithm of the spatial power spectrim

depending on the capillary number (by = 0.46 mm).  of a video-line intersecting a pattern of 50 cells.

The dispersion of the pattern can be determined by spatial Fourier transform (Fig. 4). For an interface of
more than 50 cells, the width of the fundamental gives a wavenumber dispersion Ak/k of about 4% which is of
the order of the numerical dispersion induced by the apodisation technic of the Fast Fourier Transform
algorithm. (As the selected wavenumber evolves rapidly with the distance to threshold, the fluctuations in the
gap thickness (Aby = 0.05 mm) along the axis of the outer cylinder would also be sufficient to explain this
dispersion of 4%.). Anyway, this dispersion is quite small and one order lower than in directional growth
experiments [B. & al., 1989], {de C. & al., 1986].

There is no apparent discretization effects on the selected wavenumber, and indeed, at the extremities of the
interface our boundary conditions are not tigid, there is no phase pinning. Near the ends of the cylinders two
recirculations of oil usually affect the instability over one or two wavelengths, giving a rather free boundary
condition. These end Ttecirculations can be avoided when only a very small amount of oil is present in the

]
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apparatus, so that the oil fills in the gap only in a central area. The instability then still occurs in the oil patch and
with an homogeneous amplitude. This proves that the onset is not determined by end effects and that the
bifurcation is not imperfect as suggested by Coyle er al. [1990] or as it is the case in Taylor-Couette experiments.

4. Transients

Transients to reach a new wavelength are different in duraton and in behavicar for positive velocity jumps
{where the pattern goes to shorter wavelengths) and negative velocity jumps (where it goes to larger
wavelengths). Permanent states are reached in a shorter time for increasing velocity than for decreasing one.

Transients duration can be as long as thousands of rotation time of the moving cylinder, Qualitatively, this
time increases with the length of the cylinders, the numbers of cells and with the decrease of the gap by, This
evolution time {e.g. 20 mn) is of the order of the viscous diffusion time along the interface length L2/ although
wavelength adaptation is not simply a diffusive process. Such long transients also exist in directional
solidification and, as the pulling lengths are limited, the limited duration of these experiments can possibly

explain the apparently weak wavelength selection.

4.1 Transients for Positive Velocity Jumps

In case of positive velocity jumps two main processes are observed depending on the shape of the fingers.
This shape can be characterized by the ratio I' of the depth over the width of each cells. In experimental
conditions where the thickness gradient of the apparatus is small, I"is small near onset and increases away from
it. If the thickness gradient is large (e.g. experiments with one cylinder rotating over a stationary glass plate), I
remains always small. The first process, in which parity-breaking waves propagate along the front, is only
observed for small I'. The second one, in which metastable large cells are created, can exist for all I” but becomes

the dominant process for cells of large I'.

4.1.1. Parity breaking Waves
In the case of small positive velocity changes, and small I, a very typical process occurs (Fig. 5).
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Figure 5 : (a) Photograph of an interface affected by a parity-breaking wave, (b) time evolution showing the
propagation of this wave and the associated changes of wavelength. (Time elapses from top to bottom in 14 5.).
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The one dimensional array of cells has to evolve from an initial wavelength A; to a shorter wavelength A
The seed of the transformation is usually provided by one end of the interface (to the left on figure 5b). From
this germ a wave propagates and spreads. Ahead of the wave the pattern is unchanged (wavelength A;), behind it
the cells have their final stable wavelength As. In-between, a few asymmetric cells drift in opposite direction
from their envelope (phase velocity and group velocity are of opposite sign). The left and right borders of this
wave have constant but different velocities. The wave packet width increases until an abrupt reduction by
nucleation of a new cell. The wave of reduced width keeps propagating and the process repeats itself until
reaching the extremity of the interface or colliding another parity-breaking wave. Similar propagative process
have been observed in one dimensional array of cells of directional growth of eutectic by Cline [1984] and
Faivre et al. [1989] and of liquid crystal by Bechhoefer er al. [1989]. A theoretical description has been
presented by Coullet ef af, [1989].

For larger velocity jumps, or starting from an imperfectly regular state, the situation is more complex as
various germs exist and different waves propagate and interact,

4.1.2. Anomalous Cells

A different process is also observed which is the characteristic transient for deep cells (of large I’ of the type
shown on Fig. 2). After the velocity jump at time t; (Fig. 6), various domains of original wavelength Aj start to
compress to their new smaller wavelength A¢. As at first there is conservation of the number of cells, these
domains are progressively separated by defects of increasing size. On figure 6, five such structures appear
progressively. The two cells forming the defect become wider and asymmetrical (Fig. 7a, first picture). We call
these locatized states formed of two adjacent cells, anomalous cells. These cells are stable when their width is
smaller than 3. For larger width, they are unstable. The flattened part of their tip presents a side branching
instability, an osciliation of the inner wall grows with increasing frequency and amplitude until one side
branching succeeds in creating a new cell (Fig. 7a and b). The two anomalous cells break then into three cells of
wavelength about Ay

vk

Figure 6 : Time evolution (from top to bottom in 75 5.) showing the birth of anomalous cells and the death
of one. (Initially CalCa,, = 4.5 and the jump correspond to a 7% change.in wavenumber).

In time, all the anomalous cells will die and the pattern will end very regular with wavelength Ag. As each
anomalous cells is stationary in time and will nucleate one new cell, the mean distance W between these defects
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is related to the wavelength change (Fig. 6). As n cells of size A; give (n+1) of size Ay,

Ak
W=nk,=@+)A=—n

i~ Z‘f

In this process, the initial wavelength becomes unstable after the velocity jump and a mode of long
wavelength grows. This transient is similar to visualizations of Lowe and Gollub [1985] of the Eckhaus
instability. Here we are far from onset and we must suppose that in the plane (Cak) of figure 3, one of the
Eckhaus lines lie near and above of the experimental selection line. This could be the case, as shown numerically

by Brattkus and Misbah [1990] for directional growth of a liquid crystal.
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Figure 7 : (a) Successive photographs of an anomalous cell { time delay berween pictures is 1.0 5.) showing
the growth of the side-branching instability, (b) time evolution showing the death of this unstable structure (time

elapses from top to bottom in 155.).

4.1.3. Halving of the Wavelength

Cases of fast adaptation to the new wavelength for particular values of the positive velocity jumps are also
possible. Starting from a regular pattern of wavelength A;, we jump directly to a velocity where the stable state is
A¢=Ay/2. In that case (Fig. 8) all the cells tip-split simultaneousty. The time evolution is presented on figure 9, it
shows that the system adapts in about 2 seconds to the new forcing. The same rapid transition have been
observed for Ag =X /3. '

Figure 8 : Series of five successive pictures of the interface during the halving process.
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'.

Figure 9 Time evolution (from top to bottom in 15 5.} of one video-line during halving process .

4.2. Transients for Negative Velocity Jumps

The dynamics of transients for negative velocity jumps is different. After a small jump, nothing can happen
for long times, suggesting that hysteresis does exist. But then, suddenly without visible precursor, one cell
shrinks, decreases in amplitude and disappears. The adjacent cells increase in size and the pattern regularizes
itself by a diffusion-like process. In the time evolution shown on figure 10, this looks like a spatiotemporal
dislocation. But, unlike in dislocation in two dimensional array of rolls, there is here an asymmetry as the
wavelength evolve in time.

For larger velocity jumps, various dislocations appears simultaneousty aloag the interface. An equivalent of
the parity-breaking wave phenomena can exist for decreasing velocity (the wave does not spread but shrinks) but
it is only observed when starting from a non regular interface. The same process of rapid adaptation to the
constraint is possible when adjusting the final state to be A¢ = 2A;, but the shrinking of one cell out of two is
never perfectly synchronized all along the pattern.

The difference in the transient processes between an increase and a decrease of the forcing can be ascribed to
the difference between the process of nucleation of a cell (by tip-splitting or side branching instability) and the
annihilation process (by screening off of a cell in the pressure field) and so to the asymmetry between the tip and

the walls of the cells.

Figure 10 : Time evolution of one video-line (from top to bottom in 55 5.) during the lose of one cell,
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5. Conclusion

We have shown that there is a very sharp wavelength selection in the array of cells formed by the printer
instability. We have investigated the transient regimes by which a pattern adapts its wavelength to a change of the
control parameter. For a decrease of the wavelength, the rearrangement of cells of small depth is fast due to the
propagation of parity-breaking waves. This process is inhibited for cells of large depth, Their adaptation is
slower : intermediate metastable defects (anomalous cells) are formed. Tor an increase of the wavelength,
tocalized annihilation, followed by a slow diffusion of phase, is observed.

The interest of these observations is two-fald. Firstly it is relevant to the discussion of the processes at work
in other one-dimensional cellular patterns. Qur results are a strong hint that parity-breaking waves are observed
in liquid crystal directional phase transition [Bechhoefer e al. (1989)] and in eutectic directional growth [Faivre
et al. (1989)] because the cells are shallow (small I} while they are inhibited in crystal directional solidification
{de Cheveigné er al. (1986)] because the cells are deep (large ). Secondly the three processes that we observe
here as transients forced by a velocity jump, occur spontaneously as local events in the chaotic regime (when the

other cylinder is rotating).

Acknowledgment : We want to thank H. Thomé for continuous help during this experiment, and V.
Croquette and V. Hakim for stimulating discussions.

Bechhoefer J., Simon A., Libchaber A. and Oswald P. (1989) Phys. Rev. A 40, 2042.

Brattkus K. and Misbah C. (1990) Phys. Rev. Lett. 64, 1935,

de Cheveigné S., Guthmann C. and Lebrun M.M. (1986) J. Phys. (Paris) 47, 2095.

Cline H.E. (1984) Metallurgical Transactions 15, 1013.

Couder Y., Michalland S., Rabaud M. and Thomé H., to appear in the proceedings of Nato Advanced
Research Workshop, (Streitberg, September 1989) "Nonlinear Evolution of Spatio-Temporal Structures
in Dissipative Continuous Systems", editors F.H. Busse and L. Kramer.

Coullet P., Goldstein R.E. and Gunaratne G.H. (1989) Phys. Rev. Lett. 63, 1954

Coyle D.J., Macosko C.W. and Scriven L.E. (1990) J. of Fluid Mech. 216, 437,

Faivre G., de Cheveigné S., Guthmann C. and Kurowsky P. (1989) Europhys. Lett. 9,779

Hakim V., Rabaud M., Thomé H. and Couder Y., to appear in the proceedings of Nato Advanced Research
Workshop, (Cargése 1988) "New Trends In Nonlinear Dynamics and Pattera Forming Phenomena :
The Geometry of Nonequilibrium", editors P. Coullet and P. Huerre.

Lowe M. and Gollub I.P. (1985) Phys. Rev. Lett. 55, 2575.

Mullins W.W. and Sekerka R.F. (1964) 1. of Appl. Phys. 35, 444.

Rabaud M. and Hakim V., to appear in the proceedings of “¥d nternational Workshop on Instabilitics and
Nonequilibrium Structures”, (Valparaiso, Chili 1989), editors E. Tirapegui and W, Zeller, Kluwer
Academic Publishers.

Rabaud M., Michalland S. and Couder Y. {1990) Phys. Rev. Lett. 64, 184,

Ruschak K.J. (1985) Ann. Rev, Fluid Mech. 17, 65.

Saffman P.G. and Taylor G.L. (1958) Proc. Roy. Soc. London, A 245, 312.

Savage M.D. (1977) J. of Fluid Mech, 80, 743,

Taylor G.1. (1963) 1. of Fluid Mech. 16, 595.

EUROPEAN JOURNAL OF MECHANICS, B/FLUIDS, vOL. 10, N 2 - SUPPL., 1991



