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We investigate experimentally the influence of the liquid viscosity on the problem of the
generation of waves by a turbulent wind at the surface of a liquid, extending the results
of Paquier et al. [A. Paquier et al., Phys. Fluids 27, 122103 (2015)] over nearly three
decades of viscosity. The surface deformations are measured with micrometer accuracy
using the free-surface synthetic schlieren method. We recover the two regimes of surface
deformations previously identified: the wrinkle regime at small wind velocity, resulting
from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary
layer, and the regular wave regime at large wind velocity. Below the wave threshold,
we find that the characteristic amplitude of the wrinkles scales as ν−1/2u∗3/2 over nearly
the whole range of viscosities, whereas their size is essentially unchanged. We propose
a simple model for this scaling, which compares well with the data. We show that the
critical friction velocity u∗ for the onset of regular waves slowly increases with viscosity
as ν0.2. Whereas the transition between wrinkles and waves is smooth at low viscosity,
including for water, it becomes rather abrupt at high viscosity. A third wave regime is
found at ν > (100–200) × 10−6 m2 s−1, characterized by a slow, nearly periodic emission
of large-amplitude isolated fluid bumps.

DOI: 10.1103/PhysRevFluids.1.083901

I. INTRODUCTION

When wind blows over a liquid surface, waves can be generated and propagate downstream.
Despite the fact that this simple phenomenon has inspired over a century of research, understanding
the physics of wind wave generation is still a challenge [1]. A key issue is the determination of the
critical velocity Uc above which waves are generated and the influence of the liquid viscosity on
this critical velocity. It is well known that the inviscid prediction by the simple Kelvin-Helmholtz
model [2,3], Uc � 6.6 m s−1 for the air-water interface, largely overestimates the actual threshold
observed at sea or in laboratories, typically in the range 1–3 m s−1. However, including viscous
corrections to this model does not solve the discrepancy: It only leads to marginal modification
of the critical velocity [4–6], in clear contradiction with experimental observations of higher wind
velocity thresholds for more viscous fluids [7–10]. A clear understanding of the influence of the
fluid viscosity on the critical velocity is still lacking.

Another open question is the nature of the surface deformations below the wave generation
threshold. It would be erroneous to assume that the surface remains entirely flat at low wind
velocity: Slight surface deformations are often observed in experiments [7,9–17], breaking the
perfect mirror reflection over a water surface even below the wave onset. Indeed, even for moderate
wind velocity, the flow in the air is generally turbulent and these small surface deformations, which
we call wrinkles, are the imprints of the pressure and shear stress fluctuations at the surface. Such
wrinkles are also found at short times, before the onset of waves, in direct numerical simulations of
temporally growing waves [18,19]. This noisy state below the wave onset may explain the substantial
scatter in the velocity threshold reported in the literature.

In spite of their ubiquity in experiments, the properties of these wrinkles below the wave onset
have not been quantified because of their very small amplitude (typically 1–10 μm) well below
the resolution of classical one-point measurement devices and their high sensitivity to mechanical
vibrations of the experimental setup [10,16]. A quantitative analysis of these wrinkles below the
wave onset was provided by Paquier et al. [20], in the case of a liquid 30 times more viscous than
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FIG. 1. Sketch of the system. The velocity profiles in the air and in the liquid are not drawn to scale: The
air velocity is typically 100 times larger than the liquid velocity. The wave amplitude is exaggerated.

water. Taking advantage of the excellent vertical resolution of the free-surface synthetic schlieren
(FSSS) method [21], a spatiotemporal analysis of these wrinkles was performed and the transition
between these wrinkles and the well-defined waves with crest perpendicular to the wind direction
was characterized in detail. The amplitude of the wrinkles was found to be essentially independent
of the fetch (the distance upon which the air blows on the liquid) and to increase approximately
linearly with wind velocity. Although we naturally expect a weaker imprint of the applied stress
fluctuations on the surface of a more viscous liquid, the scaling of the wrinkles’ amplitude with
viscosity is not known to date.

In this paper we explore systematically the influence of the liquid viscosity on the main properties
of the surface deformations generated by a turbulent boundary layer in the air, both below and above
the wave generation threshold. The aim is to extend over a wide range of viscosities [ν = (0.9–560) ×
10−6 m2 s−1] the results of Paquier et al. [20] obtained for a single viscosity (ν = 30 × 10−6 m2 s−1),
in order to gain insight into the physical mechanisms governing the dynamics of the wrinkles and the
transition to the regular wave regime. We observe that the characteristic amplitude of the wrinkles
scales as ν−1/2u∗3/2, where u∗ is the friction velocity, and that the critical velocity for wave generation
slowly increases as ν0.2 over almost all of the range of viscosities, from ν = 10−6 m2 s−1 (water) to
approximately 200 × 10−6 m2 s−1. At higher viscosity, the nature of the wave transition is found to
evolve towards a new regime, characterized by a slow, nearly periodic emission of large-amplitude
isolated fluid bumps.

II. EXPERIMENT

The experimental setup, sketched in Fig. 1, is the same as in Refs. [20,22] and is only briefly
described here. It is composed of a fully transparent Plexiglas rectangular tank, fitted to the bottom of a
horizontal channel of rectangular cross section. The tank is of length L = 1.5 m, width W = 296 mm,
and depth h = 35 mm and the channel height is H = 105 mm, with its width identical to that of
the tank. The tank is filled with liquid mixtures of different viscosities, such that the surface of the
liquid precisely coincides with the bottom of the wind tunnel. Air is injected upstream at a mean
velocity Ua that can be adjusted in the range 1–10 m s−1. We define the coordinate axes (x,y,z) in the
streamwise, spanwise, and upward vertical directions, respectively. The origin (0,0,0) is located at
the free surface at x = 0 at mid-distance between the lateral walls of the channel. In accord with the
literature, the term fetch refers to the distance over which the wind blows (in our case, the distance
x from the beginning of the tank).

The surface deformation of the liquid is measured using the FSSS method [21]. A random dot
pattern is located under the tank and is imaged through the interface by a fast camera. Comparing
the refracted image of the pattern to a reference image taken when the interface is flat (in the absence
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of wind), the FSSS allows one to obtain the height field ζ (x,y,t). The acquisitions are performed
over a field of view elongated in the x direction, of dimensions 390 × 280 mm2, with a horizontal
resolution of 3 mm. The resolution in z, controlled by the surface-pattern distance (chosen between
6 and 29 cm), is of the order of 1 μm for the smaller wave amplitudes, in the wrinkle regime.

In order to investigate the influence of viscosity on wind wave generation, the kinematic viscosity
ν of the liquid is changed from 0.9 to 560 × 10−6 m2 s−1, using differently concentrated mixtures of
glycerol and water or Glucor 60/80HM (a glucose syrup referred to hereafter simply as glucor) and
water. Glycerol-water mixtures are used for viscosity up to about 120 × 10−6 m2 s−1 and glucor-water
mixtures for higher viscosity. Indeed, due to the hygroscopic nature of glycerol [23] and the rapid
evolution of the viscosity of a glycerol-water solution with concentration and temperature [24], we
had to switch to glucor, which is much more stable in time at high concentration in water.

Contrary to their kinematic viscosity, the density of the different mixtures does not change much,
from 1.0 to 1.36 × 103 kg m−3. The kinematic viscosities of the glycerol-water mixtures are taken
from the tables for the actual values of ρ and T , while the kinematic viscosity of the glucor-water
mixtures is measured by a rheometer Anton Paar Physica MCR 501. The temperature is controlled
over the duration of an experiment to ±0.5 ◦C. More details on the parameters of each experiment
are given in Ref. [22].

In the wide range of liquid viscosities covered here, the wave behavior ranges from essentially
inviscid to strongly damped. According to LeBlond and Mainardi [25], the attenuation length of
a typical wavelength λ � 30 mm is about 2 m for water (i.e., the waves are essentially undamped
over the size of the tank) and decreases to 8 mm for the most viscous liquid used here. On the
other hand, the influence of viscosity on the frequency (and hence on the phase velocity) is less
pronounced: For this typical wavelength the frequency is essentially given by the inviscid prediction
up to ν � 10−4 m2 s−1 and decreases by 40% for the most viscous liquid used here. The cutoff
wavelength, below which waves are overdamped and cannot propagate, is significantly smaller than
the typical wavelengths observed over much of the viscosity range and is not expected to influence
the results; this cutoff, however, becomes significant (∼12 mm) for the most viscous liquid, so its
influence on the wave propagation may be visible.

An important aspect of this setup is the presence of a steady recirculation flow in the liquid
induced by the mean wind shear stress at the surface. At sufficiently high liquid viscosity, this flow
is essentially laminar and is well described by the Couette-Poiseuille solution far from the side and
end walls of the tank: The mean velocity profile, measured for ν = 30 × 10−6 m2 s−1 in Ref. [20],
follows the expected parabolic law u(x,z) = Us(x)(1 + z/h)(1 + 3z/h) for −h � z � 0, where
Us(x) = u(x,z = 0) is the surface drift velocity resulting from the wind shear stress. This velocity
profile is nearly homogeneous in x and y except at very small fetch (for a distance of the order of the
liquid height) and over the last 30 cm of the tank (where surface contamination cannot be avoided).
The surface drift Us remains small in our experiments: For Ua � 3 m s−1, in the wrinkle regime,
Us is smaller than 5 cm s−1 for ν > 3 × 10−6 m2 s−1, resulting in a Reynolds number Res = Ush/ν

smaller than 1000, for which the Couette-Poiseuille flow is expected to remain stable [26]. This
stability is not guaranteed, however, at lower viscosity, in particular in the case of water, for which
Res reaches 5000.

Finally, we assume that the velocity profile in the air, characterized in detail for ν = 30 ×
10−6 m2 s−1 in Ref. [20], is not significantly affected by the change of liquid viscosity. The
boundary layer, which is tripped using sandpaper located at x = −260 mm, is already turbulent
when it reaches the liquid at x = 0. It remains similar to that of a classical turbulent boundary layer
developing over a no-slip flat wall, at least in the wrinkle regime, because the surface drift velocity
Us is comfortably smaller than Ua and also because the amplitude of the wrinkles remains much
smaller than the thickness of the viscous sublayer (δv = νa/u

∗ � 0.05–0.3 mm, with νa the kinematic
viscosity of the air and u∗ the friction velocity, discussed in Sec. III B). We can therefore assume
that the dependence on the viscosity of the shape and amplitude of the surface deformations, at least
in the wrinkle regime, is essentially governed by the liquid response to an otherwise (statistically)
identical turbulent air flow.
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III. EXPERIMENTAL RESULTS

A. The three wave regimes

Figure 2 shows snapshots of the surface deformation for increasing liquid viscosities, from
ν = 10−6 up to 85 × 10−6 m2 s−1, below and just above the (viscosity-dependent) wave onset
velocity. In this range of viscosities, the surface deformation fields are qualitatively similar to
that reported in Ref. [20] for ν = 30 × 10−6 m2 s−1: At low wind velocity, below the wave onset
[Figs. 2(a)–2(e)], the surface field is composed of disorganized wrinkles, elongated in the streamwise
direction, of amplitude essentially independent of x. As expected, the wrinkles’ amplitude decreases
as the liquid viscosity is increased, typically from 20 to 2 μm. At higher wind velocity, above the
wave onset [Figs. 2(f)–2(j)], the surface field shows spatially growing waves with crests nearly
perpendicular to the wind direction. At low viscosity, in particular for water, these regular waves
coexist with the wrinkles, as illustrated in Fig. 2(f) at small fetch, resulting in a mixed wave pattern
near the onset. As the viscosity is increased, the amplitude of the wrinkles decreases and the transition
to the regular wave regime becomes more visible.

This general picture holds for fluid viscosity up to ν � (100–200) × 10−6 m2 s−1. At higher
viscosity, the wrinkle regime is qualitatively similar, but the transition to the regular wave regime
as the wind velocity increases is hindered by the emergence of a third wave regime, which we call
solitary waves, characterized by the slow, nearly periodic formation of large-amplitude isolated fluid
bumps pushed by the wind. Figure 3 shows a picture of such solitary wave; the associated slopes are
far above the limit for FSSS surface reconstruction and the FSSS technique is no longer applicable.

Solitary waves are typically 5 mm high, 2–3 cm wide in the x direction, with a steep rear and a
weaker slope at the front. Similar rear-front asymmetry is also found in waves in viscous liquids with
strong lateral confinement [27]. This third regime, which overlaps with the regular wave regime,
apparently corresponds to a distinct physical process: For identical viscosity and wind velocity, the
typical distance between solitary waves is at least 4 times larger than the wavelength of regular
waves and their propagation velocity half as fast. Their finite amplitude even very close to the onset
suggests a subcritical mechanism for their formation. This solitary-wave regime is not characterized
in detail in the following; instead we focus on the wrinkle and regular wave regimes.

B. Wrinkle regime

We first focus on the shape and amplitude of the surface deformations in the wrinkle regime. In
order to characterize the typical dimensions of the wrinkles, we compute the two-point correlation
of the the surface height C(r) = 〈ζ (x,t)ζ (x + r,t)〉/〈ζ (x,t)2〉, where 〈·〉 is a temporal and spatial
average. We define the correlation length �i in the direction ei (i = x,y) as 6 times the first value of
ri satisfying C(ri) = 1/2. This definition is chosen such that �i coincides with the wavelength for a
monochromatic wave propagating in the direction ei . Although wrinkles do not have a well-defined
wavelength, �x and �y provide estimates for their characteristic dimensions in the streamwise and
spanwise directions.

The correlation lengths, plotted in Fig. 4, are remarkably constant over the whole range of liquid
viscosity, with average values �x � 200 mm and �y � 75 mm. These values are obtained for a
wind velocity Ua � 3.2 m s−1, but other velocities in the wrinkle regime yield similar results. This
suggests that the characteristic size of the wrinkles is not a property of the flow in the liquid, but
rather is geometrically constrained by the thickness of the turbulent boundary layer in the air. This
thickness, as measured by δ0.99 [the distance at which the mean velocity is 0.99Ua (see Fig. 1)], is
of order of 15–20 mm at small fetch [20]. Such an aspect ratio �x/δ0.99 � 10 is indeed typical of
large-scale streamwise vortices in turbulent boundary layers [28], confirming that the wrinkles can
be viewed as traces of the stress fluctuations traveling in the air flow.

We now turn to the influence of viscosity and wind velocity on the amplitude of the wrinkles. In
the following, we make use of the friction velocity u∗, which is a more relevant parameter close to
the interface than the mean wind velocity Ua . The friction velocity is defined as u∗ = √

σ/ρa , with
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FIG. 2. Instantaneous surface height ζ (x,y) measured by the FSSS method, for increasing fluid viscosities
(a) and (f) ν = 1.0 × 10−6, (b) and (g) 3.9 × 10−6, (c) and (h) 12 × 10−6, (d) and (i) 30 × 10−6, and (e)
and (j) 85 × 10−6 m2 s−1, (a)–(e) below the threshold, at a wind velocity chosen to be about 3.2 m s−1(u∗ �
0.16 m s−1), showing disorganized wrinkles elongated in the streamwise direction, and (f)–(j) slightly above
the (viscosity-dependent) threshold velocity, showing spatially growing regular waves. The wind velocities are
(a)–(d) Ua = 3.2, (e) Ua = 3.4, (f) Ua = 5.1, (g) Ua = 5.7, (h) Ua = 6.0, (i) Ua = 7.0, and (j) Ua = 8.4 m/s.
Note that the color map is the same within a column, but varies between the left and right columns.
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FIG. 3. Picture of a solitary wave in the highly viscous regime for ν = 400 × 10−6 m2 s−1 and Ua =
10.6 m s−1.

σ the shear stress at the surface, which can be inferred from the surface drift velocity. Considering
the air flow as a canonical turbulent boundary layer over a no-slip flat wall, at least up to the wave
generation threshold, the wind profile can be locally described with a classical logarithmic law,
leading to the relationship (see, e.g., Ref. [29])

Ua =
[

1

κ
ln Reτ + C+

]
u∗, (1)

10−6 10−5 10−4 10−3
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m
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FIG. 4. Streamwise and spanwise correlation lengths �x (blue squares) and �y (red triangles) in the wrinkle
regime as a function of the liquid viscosity. For all but the highest viscosity, the correlation lengths are taken
at a wind velocity Ua = 3.2 ± 0.2 m s−1(closed symbols). For the highest viscosity, ζrms is dominated by the
background noise ζnoise at this wind velocity, so the data at the smallest available velocity in the wrinkles regime
(Ua = 4.5 m s−1) are used instead (open symbols). The dotted lines correspond to the average values �x � 200
mm and �y � 75 mm.
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FIG. 5. Amplitude of the surface deformation ζrms as a function the friction velocity u∗ for different liquid
viscosity (from top to bottom, ν = 1.0, 3.9, 12, 30, 85, 195 and 560 ×10−6 m2 s−1). Below the threshold
(wrinkles regime), the continuous lines are power laws ζrms ∝ u∗3/2. Above the threshold, data correspond to
the regular wave regime (RW) at low viscosity and the solitary wave regime (SW) at high viscosity; the solid
lines are only guides for the eye. The horizontal dotted line gives the background noise ζnoise = 0.65 μm.

with Reτ = Hu∗/2νa the half-height channel turbulent Reynolds number (νa is the kinematic
viscosity of air), κ = 0.4 the von Kármán constant, and C+ = 5. For the range Reτ = 250–1500
explored here, this law yields approximately u∗ � 0.05Ua to within 20%, in agreement with the
hot-wire and particle image velocimetry measurements reported in Ref. [20].

The surface deformation amplitude ζrms is plotted as a function of the friction velocity u∗ in Fig. 5
for the full range of fluid viscosities. This amplitude is defined here in a statistical sense, as the root
mean square of the surface height ζrms = 〈ζ 2(x,y,t)〉1/2, where the angular brackets represent both
a temporal and a spatial average. The data show a clear transition between the wrinkle regime at
low velocity and the sharply increasing wave regime at higher velocity (this wave regime includes
here both the regular waves up to ν � (100–200) × 10−6 m2 s−1 and the solitary waves at larger ν).
This plot confirms that, at a given wind velocity, a higher fluid viscosity leads to weaker surface
deformations. At very high viscosity, the wrinkles’ amplitude becomes very weak and saturates to
the measurement noise level, which we can estimate as ζnoise � 0.65 μm. This noise originates from
slight residual vibrations in the wind tunnel or in the acquisition setup and from reconstruction errors
in the FSSS data processing. At low viscosity, the surface deformations are always greater than this
background noise, even at the lowest wind velocity.

For friction velocities between the noise-limited lower bound and the wave threshold, the
amplitude of the wrinkles grows approximately as a power law ζrms ∝ u∗m, with m = 1.5 ± 0.15 for
all viscosities. Note that plotting the same data versus wind velocity Ua leads to a slightly shallower
power law ζrms ∝ Um′

a , with m′ = 1.1 ± 0.15, consistent with the approximately linear evolution
found by Paquier et al. [20]; this discrepancy between the exponents m and m′ can be ascribed to
the limited range of velocity and to the logarithmic correction in the relation (1) between u∗ and Ua .
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FIG. 6. Ratio ζrms/u
∗3/2 in the wrinkle regime as a function of the kinematic viscosity. The line shows the

fit αν−1/2 with α = 1.9 × 10−7 m1/2 s.

In order to evaluate the dependence with respect to ν of the wrinkles’ amplitude, we finally plot
in Fig. 6 the ratio ζrms/u

∗1.5 averaged over the range of u∗ for which the power law is observed.
This ratio is found to decrease approximately as ν−0.5±0.05, suggesting the general scaling law for
the wrinkles amplitude

ζrms ∝ ν−1/2u∗3/2. (2)

This scaling holds over nearly the whole viscosity range, except for the lowest viscosity (water),
which shows wrinkles of slightly smaller amplitude. A phenomenological model for this scaling is
proposed in Sec. IV.

C. Regular wave regime

For friction velocity larger than a viscosity-dependent threshold u∗
c , the system enters the wave

regime and transverse waves start to emerge [Figs. 2(f)–2(j)]. Figure 5 shows a much sharper increase
of ζrms with u∗ in the wave regime than in the wrinkle regime and this sharp increase is even more
pronounced as viscosity is increased. Interestingly, the smooth transition observed at low viscosity
may explain some of the discrepancies found in the thresholds reported for experiments performed
in water, which we discuss in Sec. III D.

In order to accurately define the threshold velocity, we compute the spatial growth rate β from
the exponential growth of the squared wave amplitude ζ 2

rms(x) ∝ exp(βx) at short fetch [20]. The
growth rate is plotted in Fig. 7 as a function of Ua for different viscosities. We obtain β � 0 below
the wave onset (in the wrinkle regime) and an approximately linear increase of β with Ua above
the threshold. As for the wave amplitude itself, the transition to positive growth rates becomes more
abrupt as the viscosity is increased: The rate of increase of β with Ua is four times larger at the
highest viscosity than in water. The threshold velocity Uc can be finally defined as the crossing of
the linear fit with β = 0. Note that for the two highest viscosities (ν > 200 × 10−6 m2 s−1), this
method cannot be used due to the presence of solitary waves of large amplitude, which prevents
FSSS measurements. In these cases, the velocity threshold is simply estimated by the intersection
of the power-law fits of ζrms in the wrinkle and wave regimes. To check the determination of Uc

from FSSS data, we also measured the threshold velocity using the reflection of a tilted laser beam
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FIG. 7. Spatial growth rate β of the regular waves as a function of the wind velocity Ua for different
viscosities (same symbols as in Fig. 5). The crossing of the linear fits with β = 0 defines the critical wind
velocity Uc.

on the surface. Indeed, the vertical displacement of the laser dot on a screen can be related to the
local slope S = ∂ζ/∂x of the surface and the rapid change of slope offers a good evaluation of the
threshold velocity. Measurements of the thresholds by both methods yield similar results.

The evolution of the critical friction velocity u∗
c [deduced from Uc using Eq. (1)] with liquid

viscosity is shown in Fig. 8, confirming that a more viscous fluid requires a stronger wind to trigger
wave generation. A well-defined power law is found,

u∗
c ∝ ν0.20±0.01, (3)

at least before the solitary wave transition [i.e., for ν < (100–200) × 10−6 m2 s−1]. The critical
velocity for the highest viscosity (which is not included in the fit) suggests a slightly shallower
increase with ν for solitary waves. The validity of the power law (3) down to ν = 10−6 m2 s−1

(water) is remarkable. Indeed, for such low viscosity, we may expect different physical mechanisms
for the onset of wave growth: The surface drift is larger, the flow in the liquid can be unstable, and
waves propagate over a longer distance before being damped, allowing for reflections at the end of
the tank.

We finally show in Fig. 9 the influence of the liquid viscosity on the wavelength and frequency of
the first waves generated at the critical wind velocity. The wavelength is computed from two-point
correlation (see Sec. III B) and a similar procedure (two-time correlation at a fixed point) is applied to
compute the frequency. The critical wavelength is almost independent of the viscosity, λc � 35 mm,
over the whole range for which regular waves are observed, up to ν � 10−4 m2 s−1. The strong
increase of the wavelength at higher viscosity corresponds to the onset of solitary waves. On the
other hand, the critical frequency is found to continuously decrease, with no evidence of a transition
between the regular and solitary wave regimes.

D. Comparison with the literature

We now compare the critical velocities for wave onset obtained in the present study to the ones
reported in the literature, which we summarize in Table I . Since the friction velocity is often not
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FIG. 8. Critical friction velocity u∗
c at wave onset as a function of the kinematic viscosity of the liquid. The

solid line shows the fit u∗
c ∝ ν0.20, in the regular wave regime (RW); SW denotes the solitary wave regime.

The inset shows the same data as in the main figure (red squares), expressed in terms of the critical mean air
velocity Uc, compared with data taken from the literature (see Table I): Ref. [7], black diamonds; Ref. [10],
blue circles); Ref. [9], magenta triangles; and Ref. [8], green triangles (an arbitrary error bar of ±50% of
the viscosity has been added because of the large uncertainty due the hygroscopic nature of the most viscous
liquid in Ref. [8]). The vertical gray bar represents the range of thresholds from the literature obtained in water
laboratory experiments. The solid line is a power fit Uc ∝ ν0.22. Note that error bars are often smaller than the
markers.

reported by the authors, we also plot in the inset of Fig. 8 our data in terms of the critical mean wind
velocity Uc.
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FIG. 9. Critical (a) wavelength λ and (b) frequency f measured at wave onset as a function of the kinematic
viscosity of the liquid.
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TABLE I. Threshold air velocities for wave generation from the literature. Concerning experiments carried
out in water, when the viscosity of the water is available in the referenced paper, the value is given as in the
table. If only the water temperature is mentioned, its viscosity is taken as the tabulated value of pure water at this
temperature. Otherwise, when neither the viscosity nor the temperature of the water during their wind waves
experiments is indicated by the authors, the kinematic viscosity of the water is taken to be 1.0 × 10−6 m2 s−1.

Kinematic viscosity Threshold velocity
Reference Liquid ν (×10−6 m2 s−1) Uc (m s−1)

Ref. [38] water (outdoors) ∼1 0.4
Ref. [30] water (outdoors) ∼1 0.85
Ref. [31] water (outdoors) ∼1 1.0–1.2
Ref. [39] water (outdoors) ∼1 2
Ref. [10] water (laboratory) 0.72–1.58 2.9–3.4
Ref. [32] water (laboratory) 0.81 ∼1.5
Ref. [7] water (laboratory) 0.92 2.9
Ref. [32] water (laboratory) 1.00 ∼1.7
Ref. [14] water (laboratory) ∼1 1.6
Ref. [12] water (laboratory) ∼1 3
Ref. [33] water (laboratory) ∼1 3.1–3.2
Ref. [9] water (laboratory) ∼1 3.5a

Ref. [17] water (laboratory) ∼1 4-6
Ref. [7] sugar solution 1.54 4.9b

Ref. [7] sugar solution 2.17 5.2b

Ref. [7] sugar solution 3.51 5.6b

Ref. [7] sugar solution 6.00 6.9b

Ref. [7] sugar solution 11.1 6.50b

Ref. [9] glycerol-water solution 10.0 ∼6a

Ref. [8] oil 250 9.84
Ref. [8] oil 2900 10.30
Ref. [8] syrup 58 000c 12.20

aUc based on visual wave growth.
bUc is the average of values taken at different fetches.
cuncertainty on ν.

Despite the variations between the results of the different authors, Fig. 8 shows good overall
agreement with the data from the literature. In Ref. [10] (blue circles), the viscosity was varied using
water at temperature ranging from 4 ◦C to 35 ◦C. The highest viscosities are reported by Francis [8]
(green triangles), using viscous oils and a syrup 58 000 more viscous than water. Interestingly, his
data points increase with a shallower slope than our ν0.2 law, which is compatible with our last data
point at ν = 560 × 10−6 m2 s−1. This suggests that the waves in the experiment of Francis are in the
solitary wave regime [34]. Keulegan [7] (black diamonds) also offers some results for intermediate
viscosities. Unlike what we observe experimentally, he witnesses a critical velocity decreasing with
fetch along his 20-m-long tank. He thus takes Uc as the average of the critical velocity at three
different fetches, which may explain the fact that his results are about 40% above ours. Despite
being focused on the growth of mechanically generated waves amplified by wind, Gottifredi and
Jameson’s study [9] over water or aqueous glycerol solutions also mentions the critical wind velocity
in the absence of artificial waves (magenta triangle). This wind velocity, however, is based on the
visual observation of the wave growth, which may explain onset velocities above ours, as weak wave
growths may not have been visible.

Finally, natural wind waves (waves generated by wind in outdoors conditions, for example, on a
lake or at sea) present a critical velocity that is usually lower than for wind waves in the laboratory
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(including our experiments). This may be interpreted by the fact that natural conditions can be
quite different from the ones in laboratory: unbounded nonstationary airflow, turbulent flow in the
liquid, the presence of unsteady currents under the surface, etc. Thresholds over water in outdoors
conditions are listed in Table I and are represented by a vertical gray bar in Fig. 8.

IV. MODEL FOR THE SCALING OF THE WRINKLE AMPLITUDE

We finally propose here a model for the observed scaling of the wrinkles’ amplitude with friction
velocity and liquid viscosity ζrms ∝ ν−1/2u∗3/2 [Eq. (2)]. Since the wrinkles are the response of
the liquid to the stress fluctuations at the surface, we expect a relation between the wrinkles’
amplitude rms and the stress rms. Both normal (pressure) and shear stress fluctuations are related
to the downward flux of momentum from the air to the surface and are expected to scale as
ρau

∗2, with ρa the air density. This scaling is confirmed by direct numerical simulation of turbulent
channel flow with no-slip flat walls [28,35]: For the typical turbulent Reynolds numbers considered
here Reτ � 160–1600, the pressure rms at the surface is prms � 2ρau

∗2, with a weak logarithmic
correction in Reτ , which can be neglected here.

We begin by noting that the wrinkles cannot correspond to a simple hydrostatic response to the
pressure fluctuations: Such a response would yield ζrms � prms/ρg (with ρ the fluid density), with no
dependence on the liquid viscosity, which contradicts our observations. Inversely, wrinkles cannot
correspond to a purely creeping flow forced by the stress fluctuations: If only u∗, ν, and the size of
the pressure fluctuations were relevant parameters, dimensional analysis would require ζrms to be
a function of ν/u∗, which again contradicts our observations. A minimum model for the wrinkles’
amplitude should therefore contain both gravity and viscosity effects.

In a statistically steady state, we can assume a balance between the energy loss in the wrinkles by
viscous diffusion and the vertical energy flux from the turbulent fluctuations. Since the size of the
wrinkles is significantly larger than the capillary length λc � 14 mm [one has �x � 3�y � 15λc

(see Fig. 4)], we can neglect the surface tension and simply write the energy (potential and kinetic)
per unit surface of the wrinkles as ew � ρgζ 2

rms. Its rate of change by viscous diffusion can be
estimated as νew/�2

y , assuming that the viscous time scale is governed by the smallest extent of
the wrinkle, in the spanwise direction [the thickness of the boundary layer δ0.99, which governs
the size of the wrinkles, could be used instead (see Sec. III B)]. The vertical energy flux from the
turbulent boundary layer to the liquid surface can be estimated as the work per unit time of the
stress fluctuations, of order ρau

∗2, with characteristic vertical velocity fluctuations above the viscous
sublayer of order u∗. Balancing this energy flux ρau

∗3 with the energy loss νew/�2
y yields

ζrms � K

(
ρa

ρ

)1/2
u∗3/2�y√

gν
, (4)

where K is a nondimensional constant, which is consistent with the observed scaling (2).
Figure 10, where the numerical factor K is plotted for the range of velocities for which the

power law u∗3/2 holds, shows a fairly good collapse of the data around the average value K �
(3 ± 1) × 10−4. The main deviation from this law corresponds to the experiments performed with
water, which again show significantly smaller wrinkle amplitude. The reason for this discrepancy
might be that, at low viscosity, a significant amount of the turbulent energy flux is transferred to
the surface drift current, resulting in weaker surface deformations [36]. Flow instabilities induced
by the turbulent stress fluctuations may also yield extra dissipation in the liquid and hence weaker
surface deformations.

Interestingly, a scaling similar to Eq. (4) can be obtained by modifying the theory of Phillips
[37] to include the effects of the liquid viscosity. Assuming an inviscid liquid, Phillips derives the
amplitude of the surface deformations generated by a statistically steady turbulent airflow applied
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FIG. 10. Coefficient K in Eq. (4), representing the normalized wrinkle amplitude, as a function of the
friction velocity for different liquid viscosities (same symbols as in Fig. 5). The dashed line corresponds to the
average K = 2.8 × 10−4.

over the surface during a time t ,

ζ 2
rms � p2

rmst

2
√

2ρ2Vcg
, (5)

where Vc is the characteristic convection velocity of the pressure fluctuations. We can include
qualitatively the effect of the liquid viscosity in his analysis, by assuming that the temporal growth
in Eq. (5) saturates on a viscous time scale t � �2

y/ν. With this assumption and taking Vc ∝ u∗,
Eq. (5) yields a scaling also consistent with the observed behavior ζrms ∝ ν−1/2u∗3/2.

V. CONCLUSION

In this paper we studied experimentally the influence of liquid viscosity on the early stages of
wind wave generation. Most of the results of Paquier et al. [20] obtained for a single viscosity, in
particular the existence of two regimes of surface deformation, the wrinkle regime and the wave
regime, are extended here over a wide range of viscosities.

For all viscosities, the surface below the wave onset is populated by disorganized elongated
wrinkles whose characteristic amplitude scales as ν−1/2u∗3/2, which corresponds to the trace of the
turbulent stress fluctuations at the surface. A simple model based on an energy balance between the
turbulent energy flux and the viscous dissipation in the liquid is proposed to account for this scaling.

The critical velocity for wave onset is found to slowly increase as u∗
c ∼ ν0.2 over nearly two

decades of viscosity, in accord with data from the literature. Whereas the transition from wrinkles
to waves is abrupt at high viscosity, it is much smoother at low viscosity, in particular for water.
Interestingly, this smooth transition may explain, at least in part, the large scatter in the critical wave
onset velocity reported in the literature for water waves.

Finally, a third regime is found in highly viscous liquids [ν > (100–200) × 10−6 m2 s−1]: At
sufficiently high wind velocity, in addition to the regular wave regime, a solitary wave regime
appears, characterized by slow, nearly periodic formation of large-amplitude localized fluid bumps.
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This highly nonlinear regime could not be characterized with the present FSSS measurements, which
are limited to small wave slope and curvature, and warrants further investigation.

ACKNOWLEDGMENTS

We are grateful to H. Branger, C. Clanet, F. Charru, A. Hector, and P. Spelt for fruitful discussions.
We acknowledge J. Amarni, A. Aubertin, L. Auffray, and R. Pidoux for experimental help. This work
was supported by RTRA “Triangle de la Physique.” F.M. acknowledges the Institut Universitaire de
France.

[1] P. P. Sullivan and J. C. McWilliams, Dynamics of winds and currents coupled to surface waves, Annu.
Rev. Fluid Mech. 42, 19 (2010).

[2] H. L. von Helmholtz, On discontinuous movements of fluids, Philos. Mag. 36, 337 (1868).
[3] W. Thomson, XLVI. Hydrokinetic solutions and observations, Philos. Mag. Ser. 4 42, 362 (1871).
[4] K. A. Lindsay, The Kelvin-Helmholtz instability for a viscous interface, Acta Mech. 52, 51 (1984).
[5] T. Funada and D. D. Joseph, Viscous potential flow analysis of Kelvin-Helmholtz instability in a channel,

J. Fluid Mech. 445, 263 (2001).
[6] H. Kim, J. C. Padrino, and D. D. Joseph, Viscous effects on Kelvin-Helmholtz instability in a channel,

J. Fluid Mech. 680, 398 (2011).
[7] G. H. Keulegan, Wind tides in small closed channels, J. Res. Natl. Bur. Stand. 46, 358 (1951).
[8] J. R. D. Francis, LXIX. Correspondence. Wave motions on a free oil surface, Philos. Mag. 42, 685 (1956).
[9] J. Gottifredi and G. Jameson, The growth of short waves on liquid surfaces under the action of a wind,

Proc. R. Soc. London Ser. A 319, 373 (1970).
[10] K. Kahma and M. A. Donelan, A laboratory study of the minimum wind speed for wind wave generation,

J. Fluid Mech. 192, 339 (1988).
[11] H. Kunishi, An experimental study on the generation and growth of wind waves, Disaster Prevention Res.

Inst. Kyoto Univ. 61, 1 (1963).
[12] G. M. Hidy and E. J. Plate, Wind action on water standing in a laboratory channel, J. Fluid Mech. 42, 651

(1966).
[13] E. J. Plate, P. C. Chang, and G. M. Hidy, Experiments on the generation of small water waves by wind,

J. Fluid Mech. 42, 625 (1969).
[14] J. Wu, A note on minimum wind stress for wave inception, Tellus 30, 93 (1978).
[15] N. Ricci, Etude experimentale des processus physiques responsables de la generation des premieres vagues

de vent, Ph.D. thesis, Université Aix-Marseille II, 1992.
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