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Abstract. - We present a statistical description of the transition to chaos in a directional viscous 
fingering experiment. In this extended one-dimensional system the order-disorder transition 
follows a scenario of spatio-temporal intermittency and appears as a second-order transition. The 
critical exponents of the transition are determined and compared with other systems exhibiting a 
similar behaviour. The values of these exponents are discussed. 

During the last few years, important experimental and theoretical studies have been 
focused on extended one-dimensional (1D) dynamical systems [ l ]  in order to analyse complex 
behaviours such as the transition to chaos. Numerical simulations of coupled map lattices [2] 
or of damped Kuramoto-Sivashinski equations [3] have revealed that in such 1D systems the 
transition between an ordered state and a fully disordered one can occur via Spatio-Temporal 
Intermittency (STI). The STI is characterised by the coexistence in time and space of chaotic 
areas with regular ones. This has also been observed in experiments of confined convection 
and in the forcing of a linear array of vortices [4] and directional viscous fingering [5,61. 
Statistical studies performed in ref. [2-41 suggested that the STI transition to chaos behaves 
as a second-order transition but the question remained whether or not the STI transitions 
belong to the same universality class. We present in this letter a statistical study of the STI 
transition to chaos observed in directional viscous fingering, the local dynamics and 
contamination processes of which have been described in ref. [6]. 

Directional viscous fingering is an instability which affects the meniscus of a viscous fluid 
placed in the widening gap between two moving solid surfaces[7]. It occurs often in the 
coating processes, a context where it is called the ribbing instability and in which it has been 
widely investigated [8]. Revisiting this instability in a new configuration which allowed to 
visualise the interface, we found[5] that the velocity of the two walls formed two 
independent control parameters governing the non-linear dynamics of the instability and in 
particular the transition to chaos hereafter presented. 

The experimental set-up is composed of two horizontal glass cylinders, one inside the 
other (of diameter, respectively, 66 and 100" and length 380 and 420"). These cylh- 
ders are off-centred and the minimum spacing bo between them has been adjusted to  
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(0.370 ? 0.015) mm. A small amount of silicone oil is introduced in the system and fills the gap 
at the bottom. As the oil wets the glass, two oil films coat the rotating cylinders. We study 
the shape of the meniscus parallel to the cylinders’ axis. Two capillary numbers of the type 
Cu = pV/T can be defined, where ,U is the oil dynamical viscosity and T the interfacial 
tension. In these numbers Cui and Cue, V is or V,, the velocities of the inner or outer 
cylinders, respectively. Cui and Cue are the two control parameters of the experiment. 

One of the menisci between air and oil, originally linear and parallel to the axes, becomes 
unstable when the cylinders rotate fast enough. The threshold depends on the geometry of 
the cell ( i .e .  bo and the radii of the cylinders) an on the two capillary numbers. The value of 
this threshold has been described elsewhere [5,7] together with the various dynamical 
regimes. We will just summarise the possible dynamics: 

With one cylinder at  rest, the unstable interface is formed by a periodic pattern of 
steady cells. These cells are sinusoidal near threshold, deep and similar to Saffman-Taylor 
fingers far from it [91. 

When the two cylinders are rotating, after a first threshold giving rise to the static 
pattern above described, the interface becomes time dependent. In the case of counter- 
rotating cylinders, this state is propagative with parity symmetry breaking [lo]. In the case 
of corotating cylinders, the system evolves to chaotic dynamics which is characterised by a 
loss of spatial and temporal coherence of the cellular pattern. 

In this letter we focus on the statistical analysis of the transition between the regular state 
and the chaotic one. To study this transition we fxed the inner capillary number Cui at a 
constant value above threshold, the interface thus being a static array of deep cells. Then we 
set the outer cylinder into corotation. Our control parameter for the transition to chaos is 
therefore the capillary number Cue. Most of the results presented here have been obtained 
for constant Cui = 3 (in a geometry for which the first instability appears for a single rotating 
cylinder at a critical value Cu = 0.371). The front is formed of approximately 60 deep cells. 
The phase defects occurring during transients [ll] or in the weakly chaotic regime [6] are 
either dilatation waves propagating along the front as in the classical directional growth [12] 
or defects formed of a pair of two non-propagating larger cells. We first present the results 
for Cui = 3 and we will compare them with the results of a similar transition obtained at a 
lower Cui value. 

When the control parameter Cue is zero (fxed outer cylinder), the interface is formed by 
the regular and static cellular pattern. The wavelength A of the pattern is strongly selected 
and any perturbation at the extremities of the front is rapidly damped. At low Cue ( < 0.02), 
some areas of the cellular pattern become unsteady, with propagating or oscillating cells and 
sometimes the disappearance and creation of cells (fig. la)). The size and the position of these 
disordered areas change with time, but this does not affect the amplitude of the cells. As we 
increase Cue, the average number of disordered cells in the pattern increases. At Cue larger 
than 0.03, the interface has everywhere lost its coherence, spatially and temporally. 
Although a mean wavelength still exists, we have reached the fully disordered state and the 
dynamic looks unchanged up to very large Cue values (Cue > 5) .  

In order to visualise the spatio-temporal behaviour of the front, we record the shape of the 
interface with a CCD camera on a Macintosh IIx computer. To avoid transient effects, we 
systematically waited 10 minutes in a given regime before any recording. Selecting one 
horizontal video line perpendicular to the cells and plotting this line at constant time 
intervals, we generate a spatio-temporal image of the type of fig. lb). On such an image (764 
pixels in space and 511 lines in time), the dark lines are the tracks of the oil walls between air 
cells. 

As shown by fig. la) and lb) ,  ordered domains coexist in this transition with chaotic ones 
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Fig. 1. - U) Photograph of a part of the interface for Cui = 3 and Cue = 0.015. Oil is above the air fingers. 
b)  Temporal evolution of one horizontal line cutting the interface; 32 s elapse from top to bottom. 
c )  Same picture as b)  after the binarisation process described in the text (black represents chaotic 
domains, white the ordered ones). 

in a dynamical equilibrium, the proportion of chaos depending only on Ca,. We never 
observed any hysteretic behaviour of the dynamics. Another characteristic feature is that 
any unsteady area results from a contamination of an ordered domain by a nearby chaotic 
area (i.e. chaos never appears spontaneously isolated in the middle of an ordered domain but 
the reverse process, the spontaneous transition of a chaotic region to order, is often seen). 
Both characteristics are the attributes of a transition by STI. 

In order to push further the comparison of our system with both model systems and other 
experimental systems exhibiting STI, we investigated the statistical properties of the 
distribution of the laminar domains. These clearly correspond in our system to the regions 
where the cells are steady. The best criterion for the discrimination of the laminar domains is 
therefore easy to implement: in the recorded spatio-temporal image, we subtract each line 
from the following one, erasing any steady track. This defines as chaotic any oil wall which 
moves by more than a tenth of a wavelength in a given time interval (about a tenth of a 
second). The exact value of this velocity criterion is not critical as the velocity of a moving 
wall is always large. Then we binarise the image in black and white, and filter the information 
below the wavelength size(l). Figure le) corresponds to fig. l b )  after this treatment. 

Two things are worth noticing: firstly, the complement to the laminar regions is formed of 
strongly chaotic regions together with regions excited by the propagation of waves which 
form the contamination process for chaos. Secondly, our criterion is different from that used 
by other investigators of STI who used the setting of an amplitude threshold [3,4] or of a 
wavelength threshold 141. The former is not usable here as ordered and disordered cells have 

(') This is done on the binarised picture by counting the number of black pixels in a square of 20 by 
20 pixels. If this number is larger than a chosen value (typically 20 black pixels), the central square (4 by 
4 pixels) is set to black, if not it is set to white. These numerical values of the filtering have been 
adjusted in order to give good results for the eyes. We checked that the statistics are not too sensible to 
the choice of the numerical values. 



20 EUROPHYSICS LETTERS 

c J 
a )  I 10' I I l l  

0 5 10 15 20 25 

0.02 O*03j  /' , b )  1 
0.01 
0 

0.010 0.020 0.030 

Fig. 2. Fig. 3. 

Fig. 2. - Mean chaotic fraction Fe (0) vs. external capillary number Cue for Cui = 3. Bars are not error 
bars on F e ,  but standard deviation at one o of the instantaneous chaotic fraction f,. 
Fig. 3. - U) Lin-log plot of the number N(Z/1\) of laminar domains of dimensionless width l / A .  This curve 
shows up the exponential behaviour (with L = 6.381%) for Cue = 0.0183 (and Cui = 3). b )  Evolution of the 
(h/L)* vs. the external capillary number Cue. By a linear regression we found for the threshold of the 
STI regime Ca, = 0.011 L 0.001. 

the same amplitude. The latter does not distinguish between chaos and propagation and 
therefore gives results similar to ours. 

As  in ref. [2] and [3] we measured three macroscopic quantities for each given Cue and 
study their evolution along the transition. These quantities are 

i) The instantaneous chaotic fraction,f, , which corresponds to the ratio of the length of 
the pattern in the chaotic state to the total length of the pattern, and the mean chaotic 
fraction, F,,  which is the average of fe on long time. 

ii) The distribution of the width I of the ordered domains. Each histogram N(1) results 
from the acquisition of approximately 2000 sample lines out of 20min of recording. 

iii) The distribution of the duration 5 of ordered behaviour in a point. The histogram 
N(;) results from the acquisition of 191 regularly spaced points during about 1000 s. 

Figure 2 shows the increase of the mean chaotic fraction F, with the control parameter 
Cue. The standard deviation on the instantaneous fraction f, remains high all along the 
transition. This results from the strong intermittent behaviour of the front. In spite of this 
dispersion of f, , the transition looks like an imperfect second-order phase transition. 

For Cue in the range 0.015 to 0.03, the distribution N(1) of the widths of the ordered 
domains can be fitted by a decreasing exponential (fig. 3u)). The e-folding distance L of the 
distribution of 1 is the characteristic width of the ordered areas. At high Cue, L is of the order 
of a few I $ ,  the mean wavelength of the pattern. By decreasing Cue, L increases and finally 
diverges (i.e. it reaches the size of the whole front). 

Figure 3b)  shows the linear behaviour of (A/L)2 with Cue. From this plot we found the 
value of Cue where L diverges, Cue = 0.011+0.001. By analogy with the behaviour of the 
correlation length in a second-order phase transition, we call this value the threshold of STI 
transition. 

Near this threshold, the distribution of the spatial width is no longer exponential and can 
be fitted by a decreasing power law (fig. 4). The exponent ,us = 0.64 f 0.02 can therefore be 
interpreted as a critical exponent of the STI transition. 

Distributions in temporal duration N(T)  have a similar behaviour: a t  large Cue, they are 
well fitted by decreasing exponential with an e-folding time T. A linear regression on T - 2  
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Fig. 4. - Log-log plot of the number N(1IA) of laminar domains of dimensionless width l / A  showing the 
power law behaviour (with exponent ps = 0.64 2 0.02) for Ca, = 0.0117 (and Cui = 3). 

shows the divergence of T at a threshold Cue = 0.010 k 0.001 compatible with the previous 
value obtained for L. Near this value, the distribution of temporal duration is again a power 
law decay with a critical exponent pt  = 0.61 kO.02. 

So the STI transition behaves as a second-order transition with well-determined critical 
exponents. However, this transition is imperfect. Figure 2 shows that the chaotic fraction is 
non-zero below the above-determined threshold. An explanation can be found in the role of 
the boundaries. As discussed in ref. [6], the first disordered areas are created by 
perturbations localised at the ends of the interface. Below the STI threshold these 
perturbations propagate but are rapidly damped. In the vicinity of the threshold, there is less 
damping and perturbations (i .e.  dilatation waves) travel all along the interface. Well above 
threshold, disturbances coming from the ends appear negligible in comparison to bulk 
disturbances generated by the deaths, births or collisions of cells. Nevertheless, neglecting 
this imperfect behaviour, we tried to  fit the chaotic fraction F, above threshold by a law in 
(Cue - O.OIO)p in order to estimate the critical exponent p. Doing that we found the 
approximate value p = 0.45 k 0.05 close to  the one-half exponent of a supercritical 
bifurcation. 

The same transition has also been investigated for Cui = 1.5, but with smaller statistics. 
We found the same general behaviour for the STI transition and about the same exponents 
(,us = 0.60 k 0.05, p t  = 0.7 * 0.1 and p = 0.5 ? 0.1). This is worth noting because the local 
contamination processes are partly different. At this lower value of Cui the pairs of enlarged 
cells which maintain phase defects in time are not observed [6]. 

These results can be compared with the measurements done in other one-dimensional 
systems. Statistical studies of transitions to chaos by STI were done in simulations of a 
damped Kuramoto-Sivashinski equation [3] and in confined-convection experiments [4]. As in 
all these other cases, the transition in our system has the general characteristics of a 
second-order phase transition with exponential distributions far from threshold and power 
law distributions at threshold. It thus appears that the.transition from order to chaos in 
extended one-dimensional systems exhibits common general properties defined as those of 
the spatio-temporal intermittency. However, the exponents of the power laws are different 
in the different systems. While we find ,us = 0.64, in convection experiments [4u, bl the 
exponents are ,us = 1.9 ? 0.1 or ,us = 1.6 ? 0.2, and in the Kuramoto-Sivashinski equation ,us = 
= 3.15. As described above, the same criterion for the definition of the laminar regions could 
not be used in different systems. However, we do not believe this to  be responsible for the 
difference in the value of the exponents. This difference should rather be ascribed to more 
fundamental differences between different systems. 

In the convection experiments each of the elements is an oscillator with a characteristic 
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temporal frequency, while in our system it is a static cell. Correlatively the order and chaos 
are different: in convection the chaos affects mostly the amplitude and phase of the temporal 
oscillation, while in our experiment it affects the position (or spatial phase) of the cells and 
their existence. We can note that the Kuramoto-Sivashinski equation had been introduced 
either as the phase equation of coupled oscillators or to describe the shape of an unstable 
front in the physical space [13]. Though demonstrated in neither cases, this equation is thus 
probably a model for the phase dynamics in the convection experiments and for the front 
shape in our system. 

The contamination process appears in our experiment [6] dominated by the propagation of 
dilatation waves also called parity-breaking waves which do not seem to be present in the 
other systems. This latter reason is in our opinion the most likely to be responsible for the 
non-universality of the exponents in the different systems. 

* * *  
We wish to acknowledge the help of H. THOME and 0. CARDOSO during the experiments. 
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