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In a previous article we introduced a dissipative circular geometry in which 
stationary states of the shear flow instability were obtained. We show here that the 
dynamical behaviour of this flow depends strongly on the aspect ratio of the cell. In 
large cells, where the number of vortices is large, transitions from a mode with m 
vortices to a mode with (m-1)  vortices occur through localized processes. In 
contrast to that situation, in small cells, transition takes place after a series of 
bifurcations which correspond to the successive breaking of all the symmetries of the 
flow. 

We show that, provided an adequate forcing term is introduced, a two-dimensional 
numerical simulation of this flow is sufficient to recover all the dynamical processes 
which characterize the experimental flow. 

1. Introduction 
A fluid submitted to a velocity shear is unstable, and tends to form a line of 

vortices which is itself unstable and evolves through vortex-pairing processes. The 
experimental description of this destabilization is difficult to compare with numerical 
simulations or theoretical models. This difficulty must be analysed briefly as it forms 
the framework for our results. 

Unstable flows have been classified (Huerre & Monkevitz 1985) into two categories: 
absolutely unstable flows and convectively unstable flows. Absolutely unstable flows 
(e.g. Rayleigh-BBnard convection) are described by temporal stability calculations. 
In these cases, a local disturbance leads to the growth of the instability everywhere 
in the cell. I n  contrast, in convectively unstable flows (e.g. spatial shear layer) the 
disturbances, as they grow, are transported away by the mean flow at a velocity 
larger than the group velocity of any of the perturbations so that they cannot affect 
the flow upstream. A spatial theory of the instability is then necessary. This is one 
of the sources of difficulty in comparing the results of shear-flow experiments with 
either numerical simulations or theoretical modelling of rows of vortices. They often 
do not study the same kind of instability. 

Most experiments on shear flows are performed in the mixing layer configuration 
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where two fluids come into contact a t  the end of a splitter plate with velocities such 
that the instability is of a convective type. A review of the results of such 
experiments can be found in Aref (1983) and Ho & Huerre (1984). After the 
appearance of small vortices, the shear-layer width grows downstream by pairing of 
vortices (Winant & Browand 1974). In general these pairings occur without 
correlation. These convective flows are sensitive to any external disturbances and act 
as selective noise amplifiers. It is only by applying a subharmonic excitation to the 
flow that Ho & Huang (1982) have been able to force systematic pairing of the 
vortices downstream. The convective property of the instability depends on the 
mean velocity of the two fluids. In  a configuration where two fluids of different 
densities flow in opposite directions under the influence of gravity, Thorpe (1971) 
observes temporal instability and nearly simultaneous pairing of adjacent vortices. 

Most of the numerical simulations studied the temporal growth of the instability 
in an initially spatially periodic, rectilinear, shear zone. In his critical review of the 
numerical simulations, Aref (1983) pointed out that most authors work in conditions 
where strong discretization allows only modes with very few vortices. These authors 
observe an ordered structure and tend to overestimate the genericity of this result. 
In other simulations where higher number of vortices could appear, the primary 
patterns are not perfectly periodic and pairings are uncorrelated. 

From a theoretical point of view, the temporal linear analysis performed in the 
absolutely unstable case, gives a good prediction of the fastest growing wave in an 
unstable shear flow. As does the spatial theory for convective unstable mixing layers. 
However, the analysis fails to describe the increased concentration of vorticity in 
localized structures. For this reason many authors have chosen to study theoretically 
the properties of regular infinite rows of artificial vortices. In  all the models, with 
point vortices (Lamb 1932), or with vorticity spread on a few finite areas (Stuart 
1967 ; Pierrehumbert & Widnall 1982), the destabilization of the pattern occurs 
through the growth of the subharmonic wave which tends to lead to correlated 
pairings. 

The results we present are obtained under conditions that are specific in the 
following three characteristics : 

we work in a closed geometry with rotational invariance ; 
a dissipative process opposes the development of the instability, so that steady 
states of the vortex patterns are obtained under the control of an external 
parameter ; 
the circular geometry imposes a discretization of the possible modes. 
For these three reasons, we will show that we obtain a situation where the 

experiment may be directly comparable with a numerical simulation. 
In  a previous article, two .of us (Rabaud & Couder, 1983 ; hereinafter referred to as 

RC) presented the type of cell we use and reported the first results obtained in this 
geometry. Let us recall that the fluid is enclosed in a vertical cylinder of radius R, 
and very small height e (figure 1) .  A disk of radius R, a t  the centre of each end, 
rotates at angular velocity d,, while the rest of the cell rotates at 0,. Viscous friction 
on the containing walls forces the fluid into two solid rotations a t  Q, in the central 
part and d, in the external annulus respectively, separated by a shear zone. At low 
velocities an axisymmetric flow is observed. Above a well-defined threshold a pattern 
of vertical vortices shows up. The onset of the instability is characterized by a critical 
value Re, of the Reynoldsnumber 

I Q,-Q, I R I e ,  Re = 
v 
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R, 

FIGURE 1. Sketch of the experimental cell. 

where v is the kinematic viscosity of the fluid. The pattern formed of m, regular 
vortices can be characterized by its wave vector k, = m,/R,. 

Neither the centrifugal nor the Coriolis forces have an influence on this instability 
provided the cell thickness is smaller, or of the order of magnitude, of the Ekman 
layer thickness 

corresponding to the differential rotation. 
RC also showed that a similar instability would be observed in a rectilinear 

geometry where the fluid would be enclosed in a rectangular tube of height e formed 
by two U-shaped parts moving in opposite directions. An analytic solution for the 
viscous flow can be found in this geometry. The typical width for the shear is 
maximum (and of the order of e )  in the median plane of the cell where the damping 
due to friction on the walls is minimum, so that this is the most unstable region. A 
semi-quantitative model of the instability gives the right value of the unstable 
wavenumber k, as well as an estimate of the value of the Reynolds number Re, a t  the 
threshold. The vortex pattern a t  Re, is stable if the velocities are kept constant. By 
increasing I SZ, -a, 1, the size of the vortices will grow and a series of transitions 
towards patterns with ever smaller numbers of vortices will take place. A sequence 
of modes with m,, m, - 1, m, - 2 is then obtained. 

The first aim of the present article is to report new results on the destabilization 
of the vortex patterns. In $ 2  we present the new experimental set-up, and in $3  
we show that the destabilization of a pattern depends strongly upon the number 
m of vortices involved, and therefore for a given constraint upon the aspect ratio 
r= RJe of the cell. In $3.4 we will briefly describe the limitation of this analysis. 

Our second aim ($4) is to show how a two-dimensional numerical model, where a 
forcing term has been introduced, reproduces all the dynamical characteristics of the 
flow. Comparison between experimental and numerical results will extend to the 
onset of the instability, the selection of the wavenumber, the stability of the modes, 
and the transitory states. A short conclusion follows. 
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2. The experimental set-up 
We used both the original cell of RC and an improved version. As the size of the 

vortices is related to the thickness of the cell, their number at the threshold depends 
upon the aspect ratio r= RJe, the ratio of the radius of the shear zone to the 
thickness of the cell. 

In  the original cell of RC we used mainly 

R 1 = 4 c m  e = 0 . 5 c m  r=8, 

R, = 3 cm 

R, = 4 em 

e = 0.3 em 

e = 0.3 em 

and R, = 5.1 em. 

With the new cell, the radius R, was either 6 em or 9 cm (with R, = 14 em) and the 
thickness could be chosen between e = 0.3 em and e = 1.5 em, so that values of r 
from 4 to 30 could be reached. 

The fluid in the first cell was air and a mixture of water and glycerol in the second. 
In the latter case, the viscosity of the fluid could be tuned so that the accessible 
Reynolds number ranged from 5 to 3000. 

In  the previous work, we relied on visual observations. The cell was filled with air 
and a soap film was stretched in the central plane to give a precise visualization of 
the motion. The photographs in the present paper were taken using this technique. 
However, as noted in RC, this soap film shifts down slightly all the onset Reynolds 
values, and this shift also evolves in time as the soap film thins down. In the case of 
the glycerol solution, we could obtain a good visualization by introducing a few per 
cent of organic flakes commercially available under the name of ‘Kalliroscope A& 
1000’. These flakes (6 x 30 pm2 by 0.07 pm thick) become oriented along the flow, the 
reflected light then gives a visualization of the structure of the flow (Savas 1985; 
Matisse & Gorman 1984). 

More precise data complementing the visualization were obtained by laser- 
Doppler anemometry. The fluid then had to contain dispersed particles. We used 
tobacco smoke in the air, and very dilute Kalliroscope in the water-glycerol 
solutions. The anemometry only measures one component of the velocity a t  one 
point of the laboratory frame. As simultaneous visualization was not always possible, 
we had to be able to deduce from the temporal laser measurement the spatial 
structure of the flow. As shown previously in RC in the stationary regime, the 

r = 10, 

r = 13.3, 

pattern of m vortices moves relative to the laboratory frame a t  an angular velocity 
51, given by 

51, = a, 52, +p, 5 2 2 ,  

52, and 51, being the angular velocities of the inner and outer part of the cell 
respectively. 

The values of a, and /3, have been tabulated in RC for m = 3 to 8. Good empirical 
laws fitting all the observed values (2 < m < 25) are 

0.7 
‘ m  m 

, p, = ;+-. a, = L-- 0.7 

Note that the travelling velocity 51, differs from the mean velocity i(52, +a,) because 
of the geometrical deformation of the vortices along the circular shear (see RC). 

When laser anemometry was used to study the velocity in a point near the 
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unstable region, the passing vortices modulated the local velocity so that their 
spatial periodicity was observed as a temporal periodicity of the anemometry signal. 
In  the laboratory frame, the radial velocity is a periodic function of the polar 
angle 13 

u,(r,e) = u,,(r) cos[m(O-S2,t)]. 

The apparent frequency is then 

where 52, defines the positive direction. I n  stationary states, simultaneous 
measurements of Q,, 52, and f ,  indicated which mode m was present in the cell even 
in the absence of visualization. The velocity signal was transformed by a spectrum 
analyser without any difficulty as our frequencies are not too low. 

3. Experimental results 
The present results complement the previous ones (RC). Particular attention will 

be given to the sequence of symmetry breaking, which creates successive stable 
states before a transition to a new regular mode. 

3.1. Primary instability 
The experimental procedure consists in increasing quasi-statically A52 = (52, -a,), 
the differential angular velocity between the inner and outer parts of the cell. The 
first destabilization changes the axisymmetrical flow into a pattern of vortices. Its 
onset is defined by a critical Reynolds number 

Re, = 'dS1'R1e x 80+2. 
V 

The mode that appears is characterized by m,, the number of vortices, or by the 
dimensionless wave vector 

k, e = m,/r x 0.77 k0.03. 

The measurements of k, e have been done in cells of large aspect ratio. For small r, 
the strong discretization conditions limits the possible modes, so the uncertainty 
+_ l/r becomes large. 

This first transition has the characteristics of a supercritical bifurcation. Within 
the precision of our experiments, of the order of 1 YO, there is no hysteresis, and the 
oscillatory part of the velocity signal corresponding to the vortices is proportional to 
(Re - Re,)i. 

If the crossing of the threshold is not very slow, there is simultaneous nucleation 
of vortices in several zones along the shear, creating several groups of vortices of 
mean wave vector k,. The initial pattern is then irregular and it takes a time T, for 
the vortices to be phase correlated along the shear and for the pattern to be stable. 
This time T, corresponds to a convective time, it increases with m, and may be of the 
order of ten differential rotation times for r = 30. 

For increasing values of the control parameter Re, successive transitions to modes 
with decreasing number of vortices, m, are observed. For decreasing values of Re, the 
reverse transitions occur with a large hysteresis. Figure 2 shows possible value of m 
in geometries where r= 8 or 13.3. 
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Re 20, 

l o t  

- r=8 
- r= 13.3 

FIGURE 2. Domains of stability of the successive modes m in geometries of aspect ratio r = 8 and 
r = 13.3. The transition values, observed for increasing or decreasing Reynolds number, are 
shown. For example the mode m = 5 in r = 8 is stable from Re = 80 to Re = 183. Hatched lines 
represent the range where subharmonic modulation of the modes exist. (8, indicates the threshold 
of the first subharmonic mode, S,  the threshold of the second subharmonic mode and T the 
threshold of the temporal mode. 

3.2. Lower marginal stability boundary 
The lower limit of stability of the modes, as the Reynolds number is decreased, is 
independent of the aspect ratio r of the cell. This can be seen in figure 2 or in 
figure 3 where the results obtained in three cells with r = 6.5, Ir = 10 and r = 18 
are shown. 

The marginal stability curve obtained by RC from a semi-quantitative model 
predicted correctly k, e but gave a value for the critical Reynolds number Re, which 
was too small. The same model, but with a different estimate of the friction on the 
forcing walls, would give a similar curve (with the same value of k, e )  but a different 
Re,. In this family of possible curves, we choose the one which fits the observed value 
Re, = 80. It is drawn as a dashed line in the (Re, ke)-plane of figure 3. The 
experimental lower limits of stability of the modes are located extremely close to this 
curve. This also corresponds to the results of soap-film visualization (see figure 17 of 
RC). Before the transition m to m+ 1,  the vortices become thin until one of them 
splits by a pinching of its elongated core. At this point their amplitude is very small 
and we reach the limits of our visualization and measurement techniques, so that it 
is not possible to get a more precise analysis in the experiment. We will see ($4.3) that 
in the numerical simulation the transition even occurs through an exchange of 
stability. The amplitude of the mode m vanishes so that a transitory axisymmetric 
mode can be seen briefly, which in turn give rise to a mode m+ 1 with a finite 
amplitude. Thus the lower limit of stability of the modes appears to be the marginal 
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FIQURE 3. Upper and lower curve of stability for different value of r. The lower curves are all the 
same but the upper ones are all different. N, results of a numerical simulation with r= 6.5; 
0, experiment with r= 10; v, experiment with r= 18; X ,  and -----, theoretical marginal 
stability curve. 
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stability curve itself. As transitions from m to m+ 1 vortices occur in a small range 
of Reynolds number where the vortices are very thin, we were not able to study more 
precisely the dynamics of the splitting of vortices. 

Finally, in a few geometries (r x 8) an impulsive increase of AQ near the threshold 
sometimes creates an unlikely mode m = m,+ 1 with one more vortex than the 
critical mode obtained in the quasi-static case. This mode is then stable in a range 
of Reynolds number (figure 2 ) .  Either increasing or decreasing Re out of this range 
induces a transition to m, and the lower limit of stability is again located on the 
marginal stability curve. 

3.3. Upper limit of stability of the modes 
For some of these measurements the Reynolds number may be large and then the 
results are not exactly the same rotating the inner part or the outer part faster. This 
must result from the amplification of three-dimensional recirculations. However all 
the experimental data given here for the upper limit of stability are obtained with 
no rotation of the outer part (Q, = 0). 

The higher limit of stability of the modes depends strongly on r (in that respect, 
figure 10 of RC was erroneous as it was based on imprecise measurements by the 
soap-film technique in cells whose aspect ratios were too close to each other). Figure 
3 shows that for large values of r the range of stability of each mode (distance 
between the upper curve and the lower curve) is narrow. In contrast, for small r, the 
stability range of a mode is large and the transition has different dynamics. 

In  large cells (r> 10) the number of vortices is larger near the threshold. With 
increasing Reynolds number, the transition from m to m- 1 is abrupt and local. A 
fluctuation brings two vortices nearer to each other and they become unstable 
through pairing. The transition has no precursor and does not affect a t  first the other 
vortices of the pattern (figure 4). There is only an equilibration of the m - 1 vortices 
along the shear after pairing. 
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FIGURE 4, A transition by local pairing in a long chain of vortices. (Visualization by the 
soap-film technique). 

In  small cells (r< 10) discretization becomes a more dominant feature of the 
evolution. A mode can be forced and become unstable without the occurrence of 
pairing. Several successive precursor states exist near a transition, characterized by 
successive breaking of the spatial and temporal symmetries. We will describe them 
completely in two typical cases: m = 4 and m = 5. All the other possible situations 
for different values of m can be deduced by analogy. 

3.3.1. Evolution of an (m = 4) mode 
This case is particularly simple because of its fourfold symmetry. Figure 5 and 6 

show the successive states of the flow as they are observed with the soap-film 
visualization (figure 5 )  and measured by Fourier transform of the local velocity 
signal (figure 6). 

The initial state shown in figure 5 (a )  is a regular (m = 4) mode. The corresponding 
spectrum figure 6 ( a )  only shows the frequency fo of passing vortices and its 
harmonics. Increasing the Reynolds number, when Re = Rel, a first bifurcation 
occurs which changes the fourfold symmetry into a twofold symmetry. Two vortices 
become bigger and two smaller (figure 5 b ) .  This subharmonic modulation is steady 
in the vortices reference frame. The radial velocity in a point of the laboratory frame 
can be written as 

u, ( r ,  8) = uo(r)  cos [m(O-Q, t ) ]  [l + e cos [$(8-Q, t ) ] ] .  

The observed frequencies (figure 6 b )  are ifo, f o ,  zfo etc. The amplitude e of the 
modulation grows as (Re - Re,); showing the supercritical character of this 
bifurcation. Figure 2 shows the range of stability of this modulated mode. A t  a 
second threshold Re, the remaining spatial twofold symmetry is in turn broken. All 
the vortices now have different sizes (figure 5 c )  and the spectrum (figure 6c) shows 
the frequency Qo and its combinations with the other frequencies. All the spatial 
symmetries are now broken, and the next transition breaks the temporal invariance. 
The size of each vortex fluctuates (this cannot be seen on the still photographs of 
figure 5 d  but is observed on videotape recordings). The spectrum (figure 6 d )  shows 
a new peak f ,  which is the first temporal frequency of the flow. Then a transient 
chaotic regime is observed, and transition to three regular vortices takes place 
(figure 5 4 .  
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FIGURE 5 .  Five successive aspects of the vortex pattern before a transition rn = 4 to m = 3 in a 
geometry R, = 4 cm, e = 0.5 cm and r = 8. (a )  regular (m = 4) mode; ( b )  stationary mode with the 
first subharmonic modulation ; ( c )  stationary mode with two subharmonic modulations ; ( d )  
temporal mode; ( e )  pattern just after the transition to rr~ = 3. 

, F L M  1% 
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FIGURE 6. Four successive time spectra showing the spatial and then temporal frequencies in 
the states (a )  to (d )  shown in figure 5 .  

In summary, the initial spatial periodicity is broken by a series of supercritical 
transitions where successive subharmonics show up. This behaviour looks like a 
spatial analogue of the temporal subharmonic cascade (Maurer & Libchaber 1980 ; 
Feigenbaum 1978; Tresser & Coullet 1978). In  this classical case the forcing of a 
nonlinear oscillator of fundamental period T leads to chaotic behaviour through a 
series of bifurcations where the periods 2T, 4T etc. show up successively. If each 
bifurcation is characterized by the onset value of the control parameter pi  there is 
a universal law 

= S FZ 4.669. lim Pi -Pi-1 
Pi+r --Pi 

In order for the analogy to be complete our threshold values Re,, Re, . . . etc. should 
show this behaviour. Unfortunately in the case m = 4 the number of possible 
subharmonics is not large enough to allow comparison, and in the case m = 8 the 
range in which subharmonics exist is extremely narrow and the measurements were 
not possible, so the issue remains undecided. 

3.3.2. Evolution of a n  (m = 5 )  mode 
The geometrical characteristics of the destabilization of the modes with a small 

odd number of vortices have already been discussed in RC. A more complete 
description can now be obtained with the help of both visualization of the pattern 
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f o  -f, 

f o  

L 

0 Hz 10 Hz 
FIGURE 7 .  Three successive spectra in regular and modulated (m = 5) modes. 

and measurement of the frequency spectrum. We will again choose here the notations 
introduced by Rand (1982) in his analysis of modulated waves in rotating systems 
and by Gorman, Swinney & Rand (1981) discussing results in Couette flow. 

As the first subharmonic of an odd mode is not discretized along the circle, the first 
destabilization appears as a travelling wave which modulates the amplitude and the 
position of the vortices. On the spectrum several new peaks show up which we can 
label fl, fo - fl, 2f1 etc. (figure 7 b ) .  As previously shown by RC, the pattern observed 
in the vortices reference frame a t  a time t = 0 is again observed a t  a time 7, but 
shifted by an angle 2m/m (where n = 2) in the direction of the inner rotation SZ,. At 
a time mr, the observed pattern is then identical to the initial state, so that mr is the 

5-2 
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temporal periodicity of the modulation in the vortex frame of reference. This period 
can be directly measured on videotape recordings. 

The modulated velocity can be written 

u,(r, 0) = uo(r) cos [m(0-Q, t)]f(0,  t ) .  

We can change the angle 0 for a = 8-Q, t ,  so the new function f(a, t )  is written in the 
vortices reference frame. The observed time r corresponds to a periodicity conditions 
on .f, 

f(a,t+i-) = f a-2 - , t  . ( (3 ) 
The function f is also periodic in a and in t 

so we can write its Fourier expansion 

f(a, t )  = 1 f c c .(I, 1’) cos k 1 ( a  - Q,! t ) ] .  
1 I’ 

The three previous conditions on f give the equations 

p ,  = i (mk+k’) ,  

P, E 2, 

Then the first terms of the Fourier expansion are 

f (a, t )  = l + e ’  cos(p’(a-Q’t))+e’’ cos(p”(a-Q”t))+harmonics ... 

with p’ = i ( m +  i ) ,  p“ = a(m- i) ,  

and 
47c 

Q“ =- 47c Q’ = 
m ( m + l ) T ’  m(m - 1) 7’ 

As a = 0 - 52, t and f o  = m52,/2n, the fundamental frequencies of the modulation in 
the laboratory frame are 

f ’  = P’(Q’ + Q,) = ifo+-+-, f o  

p ”(Q” + 52,) -I f  ----, .f” 

1 
27c 2m mi- 

1 
f ”  = 

27c - ’  2m m7 

These two different travelling waves can account for the observed patterns. They 
correspond to the two nearest modes of the subharmonic off,. The first wave, 
associated to a quantification number +(m- 1)  propagates in the negative direction 
(opposite to Q,), the other, associated to t ( m + l ) ,  propagates in the positive 
direction. RC attributed the observed modulation to the latter wave only. In  fact the 
effects of these two waves are indistinguishable. Because they modulate localized 
vortices in m discrete points of a circle, their effect is identical. The nonlinearity of 
the phenomenon will generate any frequency combination of the basic f o  frequency 
and the modulations frequencies. As f ‘  and f “  verify, f ‘ +  f ”  = fo ,  it is readily seen 
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that the combinations off and fo are undistinguishable from the combinations off” 
and fo. I n  figure 7 ( b )  one can find the frequencies f,, fo-f,, 2f1, f,,; where f, can be 
taken equal to  f ’  = f o  - f ”  or to f”. 

In  the range of existence of this vacillation state, the time T is evolving and 
also depends on the value of m. It is also strongly dependent on the mean rotation 
+(52,+52,) and we do not have a simple result on its evolution. 

Still increasing the constraint, in a very narrow range of Reynolds number values, 
a second temporal frequency f, shows up in the spectrum (figure 7c), then a transition 
to a mode m - 1 occurs. 

3.3.3. Evolution of the other modes 

As we have already stated, no subharmonic symmetry breaking has been seen for 
m > 10. The reason may be that the range of existence of this modulated state is less 
than the experimental resolution in the Reynolds number. For m < 10, before 
transition towards m- 1 vortices, successive halving of the spatial symmetry occurs 
until an odd order symmetry is attained. Then a first and second temporal 
symmetry-breaking follows, before the transition to m - 1 vortices. However the 
complete sequence is experimentally visible only for small value of m where the range 
of the cascade of bifurcation is large enough. 

3.4. Limi t  of stability for high value of Re 

Our interpretation of the experimental r imlts relies on a certain number of 
assumptions. The limits of validity of these assumptions were only partially explored 
by RC and must be stated again. 

I n  analysing the preceding results, we have always assumed that the centrifugal 
and Coriolis forces due to rotation could be neglected. This is only true when 52, and 
52, are small so that the corresponding Ekman layer thickness (vld52)f is larger than 
the thickness of the cell. This condition can be written R e / T  < 1. Experimentally it 
is only when Re/T > 20 that disturbing effects appear. The growth of three- 
dimensional recirculation zones was noted earlier (RC figure 19). They are due to the 
action of inertial forces whenever the aspect ratio is small (strong curvature of the 
shear and large thickness of the cell). When 1 52,-52, 1 is large, the thickness of the 
Ekman layers becomes smaller than e and toroidal recirculation regions show up and 
are superimposed on the original vortices and produce complicated three-dimensional 
structures. 

Another limitation is linked to the mean rotation +(a, +52,), which becomes strong 
when both rotation 52, and 52, are in the same direction. In  this case the width of 
the horizontal shear tends to become limited by the Stewartson layer thickness 
(Stewartson 1957 ; Greenspan 1969) and no longer by the cell thickness. The resulting 
reduction of the width of the shear becomes apparent a t  the onset of the vortex 
formation. The critical Reynolds number Re, is not affected but the number of 
vortices m, increases steadily with the mean rotation. For instance m, drifts from 10 
to 15 in a cell where r = 14, when +(GI +Q2) changes from 0 to 10 times the threshold 
value I 52, - 52, I ,. 

The third effect appears in all geometries when the Reynolds number is such that 
the number of vortices has been reduced to approximately half the initial value m,. 
At this point the horizontal width of the vortices is much larger than the thickness 
of the cell. This triggers an instability of the vortex pattern, where little vortices 
constantly show up a t  the saddle points between the existing vortices, before pairing 
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with them. The number of vortices oscillates periodically. This effect is also observed 
in the numerical simulation where it appears also to be linked with the scale difference 
between the vortex size and the width of the forcing shear. 

4. Numerical simulation 
We are going to show that the main characteristics of the instability appearing in 

the laboratory experiment can be observed in a two-dimensional numerical 
simulation. We must however first discuss why, in our case, the experimental three- 
dimensional flow can realistically be simulated with a two-dimensional model. 

In the following we take the origin 0 a t  the centre of the cell, Ox along the rotation 
axis, and Oxy in the middle plane of the cell. RC gave an analytical solution for the 
viscous flow problem in an infinite rectilinear analogue. They showed that in that 
case the velocity component along the vertical axis Ox vanishes although its 
horizontal components vary with z. The motion is horizontal with a three- 
dimensional variation in the vertical direction. In  the circular geometry this is not 
strictly true, recirculation must exist but its velocity remains very small for large 
aspect ratio. RC also showed that the most unstable plane in the cell was the middle 
one where the width e' of the shear is maximum (of the order of e )  and the wall 
dissipation minimum. Finally, the flow before and after its destabilization retains its 
symmetry with respect to the middle plane of the cell. 

We are going to use these characteristics to simulate the dynamical properties of 
the flow in the middle plane and show their similarity with the experimentally 
observed instability. 

4.1. The equations of the motion 
The fluid velocity is V ( u , v , w )  and P the pressure. They satisfy the momentum 
equation and the continuity equation 

\ av 1 
-+(V .V)  v =  --VP+vV2V, 
at P 

v .  v = o ,  J 
with no-slip conditions on the horizontal and vertical boundaries of the cell 

V(xZ+y2 = R;) = (-yS2,,xB2,0), 

where Vb is the velocity on the top and bottom walls (figure 1) .  From the symmetry 
with respect to the dy-plane we deduce 

w(z = 0) = 0, 

where Vh is the horizontal projection of V 
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In the median plane, the equations ( 1 )  reduce to 

8W 
V h .  vh+- = 0, aZ 

w = 0, (2c) 

where V ,  and V t  are respectively the horizontal gradient and horizontal Laplacian 
operators. These equations differ from the two-dimensional Navier-Stokes equations 
only by the last term on the right-hand side of (2a )  and the last term on the left-hand 
side of (2 b) .  

In  the continuity equation (2 b )  the term aw/az shows the possibility of horizontal 
divergence due to three-dimensional recirculations. Dimensional analysis and 
observation show that this term is small and we will neglect it. 

In  the momentum equation, the last term represents the drag in the central plane 
due to the friction on horizontal walls. This forcing term, that we will denote as F, 
has to be modelled in order to obtain a closed set of equations. The more natural 
assumption, as soon as the fluid motion differs from solid-body rotation, is to assume, 
for the velocity, a parabolic vertical dependence characteristic of Poiseuille flow 
between two planes ; then (from now on we will write V instead of Vh) 

where V, is the boundary velocity on top or bottom walls. However, V, cannot be 
used in the simulation because it is a discontinuous function of the radial distance to 
the rotation axis. RC had shown that the typical width of the shear (in the middle 
plane of the cell) is equal to the cell height e .  In order to get around the difficulty due 
to the discontinuity of V,, we make a rather crude approximation by replacing V,, 
by a continuous velocity V* with a piecewise linear profile of width e .  This 
approximation certainly affects the instability threshold observed in the simulation. 
However, after the vortices have formed the experiment shows that the shear width 
becomes much larger than e .  As a result the approximation should become much 
better over the threshold; then the difference between the forcing by V,  or by the 
model V* probably vanishes. The forcing term is now 

with 

8v 
e2 

F = - ( V * - V ) ,  

V* = Q,r e, for0 < r < R,-+e, 

forR,- ie  < r < R,++e, 

V* = Q2,re,  forR,+ie  < r < R , ,  

where e, is the azimuthal unit vector. 
Introducing the stream function @ and the vorticity w ,  equations (2) become 

aw 8v 
at e2 
-+J(@,w) = vV2w-- ($-$*) ,  (3) 

V%@ = w ,  
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where J($, w )  is the Jacobian operator 

J .  M .  Chomaz, M .  Rabaud, C. Basdevant and Y .  Couder 

and $* the stream function of P 

4.2. The numerical code 
The numerical code was adapted to the present geometry from a pseudo-spectral 
Fourier code previously used for homogeneous two-dimensional turbulence studies 
(Basdevant et al. 1981). 

In  the pseudo-spectral Fourier method, the flow is supposed to be 2n-periodic in 
x- and y-directions ; the velocity is then evaluated a t  the nodes of a 128 x 128 regular 
grid covering the basic square [0,2n[ x [0,2x[. The Jacobian is Calculated on this 
square. Evaluation of any partial derivative a t  the same points is performed through 
spectral decomposition of the function. The solution of the Laplace problem is 
obtained in the same way. The program then involves back and forth transforms 
between physical space and spectral (Fourier) space ; these transforms are conducted 
very efficiently by means of fast Fourier transforms (PFT). Several problems arise 
and these are detailed in 554.2.1-4.2.5. 

4.2.1. Xub-grid motion modelling 
As we are working on a discrete grid, scales smaller than the mesh size cannot be 

calculated. Because of the nonlinear terms, however, all the scales are linked, so that 
we need to dissipate the subgrid scales in such a way that the larger scales are not 
affected. It was shown by Basdevant & Sadourny (1983) that this can be done by 
replacing the dissipative term vV2w in (3) by a superdissipative one: 

where T is the turnover time of the small-scale motion and k,,, the largest wave 
vector in the Fourier space. For p = 8 and with a 128 x 128 model, this operator 
dissipates the enstrophy (spatial integral of the square of the vorticity) a t  the mesh 
scale without otherwise disturbing the flow in other scales. Coherence in the spatial 
and temporal resolution is obtained by choosing the calculation’s timestep At of the 
order of T .  I n  any case the linear dissipation of equation (3) 

dominates, and it would only be a t  very large Reynolds number that these cautions 
would be important. 

4.2.2. Geometry 
Both the shear and the external walls of the cell are circular, while in the 

simulation the physical space is represented by a square with periodic boundaries. 
We apply a no-slip condition on a circle of radius R, with a mask method (Basdevant 
& Sadourny 1983). At each timestep, the velocity field in the real space is set to be 
zero outside a circle of radius €2,. This does not disturb the flow if R, is not too near 
R,. In  practice, we chose R, = 60 grid meshes and R, was always smaller than 40. 
This method is simple but requires that the external part of the shear has no rotation 
(Q, = 0), otherwise the stability condition would impose too small a timestep. 
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4.2.3. Xymmetry 
The first numerical simulations only showed modes with m = 8 or 4 vortices. The 

reason was that a point of the grid had been taken as the centre of the cell. 
The resulting fourfold symmetry imposed itself on the vortex pattern. A small shift 
of the centre so that it no longer coincided with a point of the grid was enough to 
suppress this spurious effect. 

4.2.4. Computation time 
The computation was done on an array processor (AP 120) with a peak power of 

12 M.Flops. One timestep required 1.5 s of calculation so that one period of rotation 
of the central part of the cell requires about 10 min of calculation. For this reason, 
the search for stationary states was long and we will describe later by which indirect 
method the instability threshold could be determined. 

4.2.5. Outputs 
We will draw the vorticity field because of its visual similarity with the patterns 

observed with the soap-film technique. We can also draw the time evolution of one 
component of the velocity a t  one point and compute its power spectrum, as in the 
experiment. 

4.3. Numerical results 
Before describing the results of the numerical simulation, we must discuss the 
possibility of comparison with experiments. The numerical circular shear zone can 
be characterized by the numerical aspect ratio r,,,, the ratio of its radius to its 
width 

which is equivalent to the experimental aspect ratio r. 
The definition of a numerical Reynolds number is more difficult. In the plane of the 

shear, the viscosity has been replaced by a superdissipativity which could seem to 
make the Reynolds number irrelevant. However, the forcing of the flow by 

8 V  
I;= - ( V * -  e2 V ) ,  

introduces a parameter N = 8v/e2  which depends upon both the viscosity of the fluid 
and the thickness of the cell. N is a parameter we can tune in the numerical 
simulation. A numerical Reynolds number can be written 

However, it must be kept in mind that the numerical factor 8 comes from a rough 
estimate so that exact quantitative agreement between the numerical and 
experimental values should not be expected. 

4.3.1. The instability threshold 
For low angular velocity a,, the vorticity lines remain at  first circular (figure 8). 

Then, with increasing a,, a mode with m, vortices appears. Changing the aspect ratio 
rnu, from 5 to 20, we found m, to be related to rnum by 

m, = (0.95 f 0.15) mum, 
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(4 (4 
FIGUBE 8. Crossing the instability threshold in the numerical simulation (r,,, = 6.5). Figures 
(a)-(d), represent successive pictures of the time evolution of the flow after an  impulsive increase 
of the forcing. 

while in the experiment, we had 

m, = (0.77 f0.03) r. 
The discrepancy is due to the uncertainty in the width definition of the shear which 
is only a few mesh points thick in the numerical model. 

The technique by which the threshold is determined in the laboratory experiment 
(quasi-static increase of the stress) is impossible to use here because the computing 
time it would require would be too large. We use a different method. Experimentally, 
the bifurcation was supercritical ; assuming here the same characteristic, we use the 
corresponding amplitude equation 

where A is the amplitude of the velocity, for instance the radial velocity created by 
the vortices, cr(p) the growth rate, p = Re-Re, is the distance to the threshold. Near 
the threshold, A = A ,  exp [g(p)t] and ( ~ ( p )  is proportional to p.  The time 7 needed for 
the signal to reach a given amplitude A ,  (e.g. 10 times the noise amplitude A,,) is 
inverseiy proportional to p, 

1 1  
7 N - N -  

P'  
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FIGURE 9. The extrapolation method giving the onset of the instability. Re, % 60 in a geometry 
where r = 6.5. 

Figure 9 shows a plot of 7-1 as a function of Re,,,. Its extrapolation to 7-1 = 0 
gives, with a good precision, the critical value (Renum)c a t  the threshold. The 
corresponding value of the numerical Reynolds number is 

Renum z 55+_ 10. 

For the reasons previously discussed, the discrepancy with the experiment 
(Re, z 80) is not surprising. 

As in the experiment, a further increase of a, leads in the simulation to successive 
transitions to modes with decreasing values of m. For each mode, the travelling 
velocity of the vortices is the same as in the experiment and given by 

a,= (; Y )  a, ( Q , = O ) .  

4.3.2. Lower limit of stability of the modes 
A decrease of a, produces the reverse transitions with a very strong hysteresis. 

Figure 10 shows a series of drawings in which a mode m = 3 undergoes transition 
to rn = 5. The vortices become very elongated, then the mode m = 3 disappears, a 
transitory axisymmetric flow appears which is itself unstable and gives rise to the 
mode m = 5.  In  this case, the return transitions seem to occur also on the marginal 
stability curve. This situation apparently differs from the experiment where 
transition occurs through the splitting of elongated vortices. The chosen piecewise 
model of the velocity profile might be responsible for this behaviour of the numerical 
simulation. 

4.3.3. Upper limit of stability of the modes 
As in the experiment, the transitions under increasing stress have characteristics 

which depend upon the aspect ratio r,,,. For larger values, localized pairings occur. 
For small values, r,,, < 8, a series of bifurcations corresponding to successive 
breakings of symmetries of the vortex pattern occur before transition to a mode 
of smaller m. Figure 11 shows the range of stability of the modes in a case where 
r',, = 6.5. Although less precise, this figure can be compared to figure 2.  
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FIGURE 10. Transition between m = 3 and m = 5 for a decreasing constraint. r = 6.5 and 
Re = 1.5 Re,. 

m 
FIGURE 11. Stability domains of the successive modes in the two-dimensional simulation in a 
geometry corresponding to r = 6.5 (to compare with figure 2). , stable regular states obtained in 
that geometry ; 0, stable modulated states. 
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FIGURE 12. Four successive states of an (m = 4) mode obtained by numerical simulation. (a )  
regular ; ( b )  first stationary modulation ; ( c )  second stationary modulation ; (d )  first temporal 
modulation. 

1 
Velocity 

8611 Q 0 

FIGURE 13. The direct velocity signal showing the growth of the subharmonic amplitude and its 
saturation in time. 

Case m = 4 
The sequence of symmetry breaking in the case of m = 4 is shown in figure 12. The 
evolution is identical to the experimental one shown in figure 5. Figure 13 shows the 
radial velocity measured at  one point as a function of time when a slow increase of 
52, produces the bifurcation to  a state modulated by a first spatial subharmonic. 
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FIGURE 14. Comparison of observed patterns of a mode m = 5 in the experiment and 
in the simulation. 

Case m = 5 
In the case m = 5, a travelling wave shows up which modulates the amplitudes of 
these vortices. Figure 14 shows a comparison of the pattern observed experimentally 
and numerically. The power spectrum of the modulated state is shown in figure 15. 
It can be compared to the experimental one shown on figure 7(c). The resolution in 
the numerical spectrum is poor due to the very small acquisition time compared to 
the evolution time available in the experiment. For this reason the second temporal 
frequency fi, which appears in the experiment, is not observed numerically. 

4.3.4. Limitation at high values of Re 
Increasing the rotation of the inner part we observe modes with fewer and fewer 

vortices. For example in the geometry where r= 6.5 we observe a minimum of 
m = 3 vortices. Further increase of the Reynolds number (Re > 20 Re,) could not 
be done because the stability of the simulation demands very small values of the 
timestep. 

In  the simulation as in the real experiment, when m is less than or equal to +mc the 
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FIGURE 15. The logarithmic velocity spectrum in a point of the simulation grid, 
for a modulated m = 5 mode. 

evolution laws are changed and no more stable or well-defined patterns exist. The 
two scales, vortex diameter and thickness of the original shear zone, seem now to be 
too different to give stationary solutions. 

5. Conclusion 
In  the conclusion we can now return to the various growth types of instabilities. 

The distinction between convective and absolute instability is very clear in the case 
of mixing layers (or jets), because the splitter plate (or the nozzle) a t  the end of which 
the fluids meet, singles out the laboratory frame of reference. Galilean invariance is 
broken and it is in the laboratory frame that the group velocities of the perturbation 
have to be compared to the mean advection velocity. However this comparison is 
meaningless in flow where a translational invariance would exist. 

In  our experiment we do not have translational invariance but, along the shear, we 
do have rotational invariance. We have shown that, in the range of velocities in 
which we work, the specific forces due to rotation can be neglected. As a result the 
various rotating frames of reference are practically as undistinguishable as Galilean 
frames. (There would be Galilean invariance in the linear analogue introduced by 
RC). For this reason the distinction between convective and absolute instability loses 
its meaning here. As noted previously the same patterns will be observed whether the 
two rotations 51, and 51, are of the same direction or not. Because of the invariance 
the distinction between convective and absolute instability has no meaning here. We 
could better describe our case as a spatially periodic flow. This type of instability, 
even though it does not have the same symmetries, has most of the characteristics 
of the absolute unstable flows because we can conveniently choose the frame of 
reference in which the vortices are motionless and describe their growth as a 
temporal process. 

The difference with the convective case can be illustrated by a side experiment 
where we broke the rotational invariance of our cell. As shown in figure 16 we placed 
a metallic grid across the shear zone. This grid was maintained motionless in the 
laboratory frame. It was easily crossed by the fluid but broke the vortices when the 
flow traversed it. In the case shown on the photograph there is no external rotation 
(52, = 0). The flow then becomes somewhat similar to that of a mixing-layer 
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FIGURE 16. Photograph of the flow in a cell with broken symmetry (for 8, = 0) 

experiment. The vortices show up downstream from the grid, they grow in size then 
disappear when they hit the grid again. There was no stationary mode in this case 
nor regularity in the flow as the instability had been brought back to a convective one. 
Had it been possible to have 52, $: 0 without the grid rotating, we could have 
obtained absolute instability in this cell with broken symmetry. 

Coming back to the geometry we used in the present article we notice that it is very 
close to the numerical simulations of an homogeneous linear shear with periodic 
conditions. I n  large cells the flow reorganizes in a regular mode in a time which grows 
with the aspect ratio. One may wonder what the behaviour of the instability would 
be if the periodicity (length of the perimeter) tended to infinity so as to relax the 
periodicity conditions. Presumably, a t  the threshold, there would be initial 
germination of vortices in independent regions along the shear. These would spread 
and form independent wave packets with phase jumps between them. In very large 
cells the constraint due to the periodicity would be slow in destroying these defects. 
For similar reasons the evolution of the flow a t  higher Reynolds number depended 
also upon the aspect ratio of the cell. In all cases, with the increase of the constraint, 
the vortices tend to grow and the basic local process is their pairing. For a large 
number m of vortices (which corresponds to large aspect ratio r)  the transition to 
(m - 1)  occurs abruptly and is local in space. In  contrast, transitions of patterns with 
few vortices (m < 10) are strongly limited by geometrical constraints. They occur 
after a series of bifurcations which correspond to the breaking of the spatial and 
temporal symmetries of the flow. 

The general features of such a series of symmetry breaking was studied by Rand 
(1982) from a mathematical point of view. As RC pointed out, the states of the 
system that we observe all enter his classification of possible rotating flow. Other 
cases of sequences of spatial and temporal symmetry-breaking are observed in other 
systems which have rotational invariance. The two nearest are the Taylor Couette 
flows (Gorman et a1 1981) and the convection flow in rotating cylinders (Hide & 
Mason 1975; Hignett 1985). However these two systems are more complex than ours 
because the instabilities are fully three-dimensional, the forces characteristic of 
rotation are present and the number of control parameters is larger. In the present 
experiment the basic flow is three-dimensional, but we showed that all the observed 
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dynamical characteristics of our laboratory experiments are also observed in a two- 
dimensional numerical model. We must emphasize that the numerical simulation 
does not claim to be completely realistic. It is all the more interesting that both the 
experimental and the numerical simulation show the same dynamical behaviour, 
because they pertain to a more general class ; they illustrate the possible sequence of 
bifurcations where a continuous group of rotational symmetry is broken by a two- 
dimensional instability. 

High mechanical precision in our experimental cells could only be obtained by 
ingenious design due to H. Thome'. We are also grateful to J. Brochard and 
J. Meunier for their care in the manufacturing of these cells, and to Mrs Philippe 
who constantly helped us with the numerical simulation. Effects of a strong mean 
rotation on the observed patterns was studied by P.Valentin during a training 
period. We thank P. Huerre for stimulating discussions. 
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