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Effect of gravity on stable Saffman-Taylor fingers
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A theoretical and experimental study of transverse gravity effects is presented for stable Saffman-
Taylor fingers propagating in a linear tilted cell. In the high-velocity limit, the experimental results
are compared to the theoretical work of Brener, Levine, and Tu [Phys. Fluids A 3, 529 (1991)].As
predicted, when the tilt angle is increased, the finger becomes narrower and more asymmetrical as
it becomes located nearer to the upper lateral boundary. In the limit of low velocities, a theory for
the gravity effect is presented and its predictions are experimentally checked.

PACS number(s): 47.20.Hw, 47.15.Hg, 47.60.+i, 68.10.—m

I. INTRODUCTION

In the last decade, a large amount of work has been de-
voted to the understanding of the SaKman-Taylor insta-
bility as a simple example of pattern-forming systems [1].
In their pioneering work, Saff'man and Taylor [2] demon-
strated that curved interfaces can propagate steadily in
a long and narrow Hele-Shaw cell when a viscous Quid
is displaced by a less viscous one. For very small veloci-
ties such a Saffman-Taylor (ST) finger fills the whole cell.
For increasing velocities, it becomes narrower and finally
occupies half of the width of the channel. Neglecting
surface tension, these authors found by conformal trans-
formation an analytic solution for any relative width A.
The question of the selection of the width by surface ten-
sion was solved only recently [3] and precise measures
of the selected A can be found in Tabeling, Zocchi, and
Libchaber [4]. Since then, it has been shown that the
asymptotic value A = 0.5 can be broken by introducing
localized anisotropy in the cell [5] or singular perturba-
tion of the fingers tip [6].

These analytical zero surface tension solutions for the
shape of the meniscus have been extended to various
other conditions. Ben Amar and simultaneously Yuhai
Tu [7] found solutions for divergent Hele-Shaw cells, fol-
lowing the experimental and analytical work of Thome
et al. [8], who demonstrated the existence of self-similar
growth in divergent channels. Rabaud and Hakim [9]
showed the possibility to obtain analytical shapes for fin-
gers propagating in a direction making an angle with the
Qow axes, a case related to traveling interface in direc-
tional viscous fingering [10]or in directional-solidification
experiments [11]. Taylor and Saffman [12] have shown
that noncentered fingers are also solutions of the ba-
sic equations without surface tension. Until now these
asymmetrical fingers had been only observed using lo-
calized perturbations (for example, stretching along the
cell a thin off centered wire) [13,14]. The stability of
such perturbed fingers was analyzed by Hong [15],and it
was demonstrated [16,17] that asymmetrical fingers are
not naturally selected. However, it is only recently that
Brener, Levine, and Tu [18] showed that this would be

the case if the gravity field acts on a Hele-Shaw cell tilted
around the Qow axis. These authors found the fingers
shape at zero surface tension, investigated the selection
theory and gave power-law predictions in the limit of
small-capillary and gravity efFects. In the present paper,
as suggested in Ref. 15, the eKect of gravity is experi-
mentally investigated for stable ST fingers propagating in
these linear cells [19]. We also extend the theory as well
as the experiment into the limit of low velocity, where
the fingers fill a large portion of the channel.

The outline of the present paper is as follows. In the
next section the theory of nonsymmetric ST fingers in the
low-velocity limit is presented. Afterwards we present
the experimental setup and the experimental results for
large as well as for low propagating velocity. Finally, a
discussion forms the last section.

II. THEORETICAL SELECTION OF LARGE
FINGERS

In the present section we consider theoretically the
problem of a nonsymmetric ST finger in the limit where
the finger moves at low velocity and fills the channel al-
most completely. In this limit, where surface-tension ef-
fects play a dominant role and cannot be treated as a
perturbation, the theory of the symmetric ST finger has
been developed by Dombre and Hakim [20]. Their treat-
ment is analogous to the analysis of coating films done
by Landau and Levich [21]. The idea is that the tip re-
gion (outer region) and the trailing part (inner region) of
the finger can be treated separately and can be matched
afterwards. In the presence of a nonsymmetric gravita-
tional force, the inner equation and the matching condi-
tions remain unchanged because of the small scale, and
the outer equation containing asymmetry can be solved
exactly. We find that for a given tilt angle the finger
sticks at the top sidewall for some critical minimal veloc-
ity (as for a symmetric finger) but does not fill the whole
channel. This critical velocity decreases and the finger
width decreases if the rotational angle increases.

Let us recall the basic formulation of the ST problem
in the presence of a nonsymmetric gravitational force.
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A viscous fluid obeying Darcy's law v = —(q/p)V'p is
displaced by a second fluid of negligible viscosity. Here
v is the two-dimensional velocity, p is the pressure Geld,
p the viscosity, q = 6 /12 is the medium permeability,
and b is the plate spacing. Assuming incompressibility,
the velocity potential C' = —(q/p)p satisfies Laplace's
equation

6'
0 = pg Sill ld

(12@V)

Using the following parametrization of the shape:

x(0) = — dgsing/K, (9)

For a steady-state finger advancing at a constant ve-
locity V along the x direction the boundary conditions
are

BC = Vcos0,
t97l

y(0) = dg cos 0/K,

and difFerentiating Eq. (6) with respect to the angle 0,
we find

(dK&BK
I I

= —sing + cr cos 0,
&dg

C' = (q/p) (TK —pgy sin w), (3) and finally

t' 84'l
y ) y=+vi'/2

Here 0 is the angle between the local normal vector n
on the interface and the x direction, T is the surface
tension, K the local curvature, p the fluid density, g the
gravitational acceleration, cu the tilt angle, and W is the
width of the channel (Fig. 1). We are interested in the
limit of low velocity, where the finger fills the channel
almost completely. In the tip region the fluid is weakly
perturbed by the existence of the thin layers near the
sidewalls, the flow is uniform [20]:

C =Vx,

K = [(2/B) (cos 0 + o. sin 0 + C)]

This expression for K contains a nonsymmetric term pro-
portional to 0 and corresponds to Eq. (9) of Ref. [20]
for o. = 0. The integration constant C can be found by
matching solution (12) to the solution in the inner region.
Note that C as well as o should be small since a small
curvature and a small contact angle are required for the
matching to the inner region. In the narrow gaps between
the finger and the sidewalls the potential C can be taken
as a constant across the thickness of the layer and equal
to its value (3) on the interface. This approximation al-
lows us to derive an ordinary differential equation for the
shape of the gap. Following directly the derivation of
Ref. [20], we get

and the interface profile obeys Eq. (3)

B~ = &inst+ yin~, (6)
h()IB,'+ * —1I= —8, .

d'h; dh;
dxs dx ) (13)

and

T (6)'
12@V (W)

where all lengths are divided by the width of the channel
W; B and 0. are two dimensionless control parameters
de6ned by

Here i = t, 6 and the indexes t and 6 denote the top and
bottom gaps, respectively; h, (x) is the local thickness of
the layer: hq(x) =

2
—yi(x) and hs(x) = —

2 + yi, (x);
b, (& 1 is the asymptotic value of the thickness, which
is now different for the top and bottom gaps. Using the
rescaling x = (b;B) ~ x and h; = b;h, we arrive at the
parameterless equation

h =h —1,
- d36

dx (14)

Illllmlilli[ il1m 1IIIsss ie
Il!IN!II"" Nl" ~Nm

which is identical to the equation given in Ref. [20].
In this rescaled equation we have neglected the term
Ob; B ~ dh/dx since h; (( 1.

As shown in Ref. [20] Eq. (14) has the following asymp-
totic behavior: for x ~ —oo

h = 1+ o. exp(x)

5bW and for x —+ oo

h = x'/6+ Px'/2+ gx+ r —31n(x), (16)

FIG. 1. Sketch of the Hele-Shaw cell with an asymmetrical
air Anger propagating from left to right at constant velocity.

where o., P, g, and r depend on the origin of x, but the
quantity
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~*—:q —P'/2 = 3.1S (17)

0 b = —ri/2+ B '~ hb~ il, (1s)

is translationally invariant [20]. The matching procedure
is very similar to that in Ref. [20], the only difFerence be-
ing that we have two matching conditions for the bottom
and top gaps:

Note that all constants in Eqs. (27) and (2S) come from
the theory of the symmetrical finger. The dependence
on the nonsymmetric parameter o. is remarkably simple.
The main effect of gravity is just a rotation of the outer
meniscus by a small angle cr [see Eq. (12): cos 0+cr sin 0 =
cos(0 —o) for small cr] I.n Sec. III C. we will compare
our experimental results to these predictions.

0 g
——vr/2 —B '~ b, ~ rI,

III. EXPERIMENTS

A. Experimental setup

K =B ib P (20)

The index m denotes the matching point. Combining
Eqs. (12) and (17)—(20), we get

~b' = B'~'(ICI + ~)jr*, (21)

~~"' = B"(ICI —~)/n* (22)

Finally, the condition which allows us to find the inte-
gration constant C is that the meniscus fills the channel
almost completely. Prom Eqs. (10) and (12) we get

mt d0 cos 0 —1
(cos 0 + cr sin 0+ C) &

(23)

C = A(B* —B), — (24)

= 0.348,
2[f0 (cos 0) &2d0]

(25)

fo (cos 0) ~ do
1+31+B' f (cos 0) ii2d0

(26)

Combining Eqs. (21), (22), and (24), we get the final
result for the thickness of the gaps as a function of the
control parameters B and o

~.' = (B*)"[A(B*-B)+]/~* (27)

h, i = (B*) i [A(B* —B) —o]/g*. (2s)

These predictions generalize Eq. (25) of Dombre and
Hakim [20]. The numerical value of g* [Eq. (17)] has
been corrected in agreement with Ref. [11] of Ref. [22].

We can expect that C and o will be of the order of b, ~2/3

[see Eqs. (21) and (22)]. It means that in Eq. (23) we
can replace the limits of integration by —7r/2 and z /2 and
neglect the nonsymmetric term o sin0 at the denomina-
tor (by symmetry the integration gives only a quadratic
dependence on cr). By this simplification we get the ex-
pression for t, which is identical to the expression given
in Ref. [20]:

Our Hele-Shaw cell is made of two parallel glass plates
15 mm thick, clamped together with Mylar sheet spacers
delimiting a cell of length 1300 mm, width TVq ——100
mm, or W2 ——17.5 mm and thickness 6 = 0.35 mm. The
narrow channel allows one to obtain large B values with
not too small velocity. The inflow and outflow of the
fluids occur through two holes drilled in the upper plate.
The entire cell can be tilted around the flow axis Ox by
an angle w. This angle is measured with a high-resolution
level and wedges assuring a 0.04 resolution. The viscous
fluid is a silicon oil, Rhodorsil 47V100, with density p =
965 kg jm, cinematic viscosity v = p/p = 10 m /s,
and surface tension T = 20.9 10 N/m at 25'C. The
less viscous fluid is air at atmospheric pressure and the
interface velocity is adjusted by lowering an oil vessel
siphoning the oil out of the cell. The pressure inside the
cell is then below atmospheric pressure but flexion of the
glass plates can be neglected as we do not use depressions
larger than 30 cm of oil. We checked that the finger
velocity is almost constant in the central part of the cell.
The air-oil meniscus is observed from above, through the
upper plate at middle length of the channel by a charge-
coupled device (CCD) video camera and digitized with
a frame grabber on a Macintosh IIfx computer. All the
measures have been done on digitized pictures with one-
pixel resolution using the computer program IMAGE.

For each given angle and given level of the oil ves-
sel we measure the velocity V of the propagating Anger
(resolution +1%) and the relative widths 8q and bb (res-
olution +0.2%) of the remaining oil domains after the
finger went by (Fig. 1). From the experimental measures
of bz and bb we calculate the width of the finger by the
relation A = 1 —bq —bb and the off-centered parameter
Vo = (4 —~~)/2

In order to compare our results with other works and in
particular Ref. [1S], we use the dimensionless parameters
B and cr defined by Eqs. (7) and (S). The parameter B
measures the importance of capillary effects in all linear
geometries, by comparing the natural wavelength of the
linear stability analysis to the width of the channel [1].
This parameter differs from the parameter p introduced
in Ref. 15, by a factor 4 (p = 4B) as we use W instead of
W/2 to make the parameter dimensionless. For the same
reason, our yo parameter is smaller by a factor 2 than the
asymmetry parameter of Ref. 15. The second parameter,
o, was first introduced in Ref. 15 and it compares the
pressure gradient at the interface to the gravity force.
Their ratio a/B = pg sinu& W2/T is the Bond number.
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B. Experimental results at small H 2. Experiments at constant B

Experiments at constant angle
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The first sets of experiments are done at constant tilt
angle w, for increasing velocities until the finger finally
becomes unstable. In Fig. 2 we present the evolution of
A and yo vs B for various tilt angles.

For horizontal cells (w = 0), symmetric SaKman-Taylor
fingers have a width that increases slowly with B. Due
to three-dimensional effects neglected in the usual theory,
the existence of a coating film on the glass plates makes
the value of A for small B slightly smaller than 0.5 [4,23].
But, even for small tilt angles (cg ) 2.2 ) we observe
fingers with widths decreasing with B. At the same time
the asymmetry measured by yo becomes large. As shown
in Fig. 2, the stability of the fingers at small B increases
with the tilt angle. For horizontal cells, stable fingers are
not observed for B ( 3 x 10, while for vertical cells,
stable fingers were observed until B & 5 x 10 . A similar
enhancement of the stability has already been observed
for narrow fingers [8]. At constant B the decrease of the
tip radius by the gravity increases the stability.

In this set of experiments, working at constant angle
and changing the velocity, B and o evolve simultaneously,
their ratio being constant.

In order to compare our results to the predictions of
Brener, Levine, and Tu [18],where B and o are supposed
to be small and independent parameters, we manage to
vary o (changing w) at constant B (almost constant ve-
locity). The evolution of A and yo vs o is presented in
Fig. 3 for B = (0.32 + 0.02) x 10 s. For large o, the
finger is extremely thin and touches the upper boundary
(A -+ 0 and yq ~ 1/2). It is worth noting that when
the tilt angle is large, after the finger has passed by, the
upper side of the interface becomes progressively wavy
following a Rayleigh- Taylor instability. This deformation
evolves to form falling oil drops and filaments [24] that
may temporally close to the finger.

8. Comparison with theory

Brener, Levine, and Tu [18] developed a selection the-
ory in the limit of small o. and small B, introducing the
parameter e. This parameter is related to o by

(29)

for small o. These authors derived analytical predic-
tions in three cases depending on the respective values of
p(= 4B) and e.

(i) First case, e / « p « 1, the scaling for A is the
same as for symmetrical fingers (A —1/2) p /, and for
yo they found yo

(ii) Second case, e / « p « es/z. They found the
scaling (1/2 —A) ye~ e5/ /p.

(iii) Third case, p « e / . They predict the scaling
i/s —s/s

In our experiment, the parameters are B and o. and
we work either at constant tilt angle (B/o = const),
or at constant B changing the o. value. What are the
predictions in such cases?

(i) In the first case, i.e. , for very small angles and large
velocities, the selection of the finger width is unchanged
with respect to horizontal cells (A —1/2) B / But a.
small shift yo exists, and increases linearly with o..

(ii) In the second case, the scaling becomes (1/2—
&) yo o / /B. This means that working at constant
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FIG. 2. Evolution of the width A (a) and yp (b) vs B for
different tilt angles: cu = 0' (~), w = 2.2' (o), w = 5.06 (~),
cu = 10' ( ) and w = 90' (k).

FIG. 3. Evolution of the width A (o) and yp (k) vs o for
almost constant B (0.32 + 0.02) x 10



1070 EFIM BRENER, MARC RABAUD, AND HENRY THOME 48

angle, A is a decreasing function of B' and yp an increasing
function of B: (1/2 —A) Bsr'2 and yp Bsr'4. At
constant B the scaling is (1/2 —A) yp2 rr ~ .

(iii) In the third case, as e o A, the scaling becomes
A (1/2 —yp) B ~ rr ~ T.hen A is small and yp
large. For constant B/o ratio, A is a decreasing function
of B and yp an increasing one as A (1/2 —yp) B
At constant B the scaling is A (1/2 —yp) o

The location of our experimental data in the plane of
the two parameters p and e can be compared with the two
limiting curves p = e / and p = e / . With the hypoth-
esis of all prefactors equal to one in the scalings, all these
points scatter around the line p = ~ / and the related
experiments are then in the crossover between cases (ii)
and (iii). The experimental decrease of A for increasing
B at constant B/rr [Fig. 2(a)] or increasing a at constant
B (Fig. 3) is in complete qualitative agreement with the
predictions of these two cases, as it is for the increase of
yp [Figs. 2(b) and 3]. However, the power-law behaviors
are only in rough quantitative agreement. This can be
ascribed to the fact that the exact asymptotic value is not
1/2 because of three dimensionality [20] and also because
experimental fingers are always unstable in the limit of
vanishing B. The same reasons explain that the scaling
(A —1/2) B2rs of the symmetrical ST fingers was never,
to our knowledge, precisely verified experimentally.

Shape of nonsymmetrical fingers

Brener, Levine, and Tu [18] solved the ST problem
with gravity for zero surface tension. They obtained the
analytical shapes of the interface as a triple continuum
family of solutions with parameters A, yp, and e. Their
shapes are given by

I 1 ~ ~ I ~ ~ I

++~w w+ + + g ~+~ + ~+ + + +

FIG. 4. Shape of an asymmetrical finger for e = 0.057,
b, = 0.07, and bb = 0.462. The points (+) come from the
experimental profile; the continuous line is the corresponding
analytical solution of Eqs. (30) and (31).

tion of the equations taking surface tension into account,
but simple existing computer codes do not include asym-
metry of the interface [25].

C. Experimental results at large B

In this section, the theory presented in Sec. II is exper-
imentally checked. For this purpose we work in the limit
of low propagating velocity in a narrow channel (W =
17.5 mm). For difFerent small positive and negative an-
gles (~ ur ~& 1 ) and large B values (0.06 & B & 0.1)
corresponding to a finger width A = 0.85, we measure
the remaining oil thicknesses b~ and bb . The first re-2/3 2/3

suit is that gravity is very efFicient for breaking the finger
symmetry. Indeed in this channel, gravity forces are of
the same order as surface tension forces for a tilt angle of
0.4 . Air fingers are then very accurate (but very slow)
levels. Taking into account numerical values in Eqs. (17),
(25), and (26) we can write Eqs. (27) and (28) as

and

x = (W/7r) [(1 —A) ln(sin 2n) + 2yp ln(tan n)] (30)

and

= 0.100 —0.290(B —0.763o.) (32)

y=W yp ——+
2

2A cos(nr/2)
(tan n')'dn', (3l) = 0.100 —0.290(B + 0.763cr). (33)

where n runs from 0 to vr/2. This family reduces to the
asymmetrical family of Taylor and Saffman [12] for e = 0.
For a given experimental finger, we determine the values
of the three parameters A, yp, and e. It is then easy
to compare the real shape to the predicted one. The
shapes difFer for large B, which is not surprising as the
surface tension corrections are then important. But at
zero angle and small B (classical narrow ST fingers) the
agreement between experimental shapes and analytical
ones is very good. Figure 4 compares for u = 5 and
B = 0.33 x 10 the experimental and analytical shapes
given by Eqs. (30) and (31). The two shapes are clearly
difFerent and this is always the case. It appears that ofI'-

centered fingers are theoretically quite asymmetrical at
the tip, an asymmetry even enforced by the gravity pa-
rameter e. In the experiments, this tip asymmetry seems
to be smoothed by surface tension, even if B is small. The
agreement would surely be better with numerical resolu-

Thus, a linear dependence of (bb~ —8~
~

) with rr is pre-
dicted. This is well confirmed experimentally (Fig. 5)
except that the experimental slope is 1.15 when theory
predicts 0.44. We will come back to this numerical dis-
crepancy. In Fig. 6 the evolution of bb vs (B —0.763o)
and 8~ vs (B + 0.763o) is plotted. By this choice of2/3

abscissa, the two data sets now collapse on the same
linear curve. This is again in agreement with our the-
ory and confirms its main result: for slightly tilted cells
and large fingers, the selection law of the finger's width
is unchanged as soon as the parameter B is replaced
by B ~ o/A. However, there is again a numerical dis-
crepancy since experimentally the best linear fit gives

6, ~ = 0.22 —0.75(B ~ 0.763cr) (for i = t, b) while Dom-
bre and Hakim [20] as well as our theoretical predictions
give Eqs. (32) and (33) in the limit of A —b 1. This
discrepancy is ascribed to the fact that the experiments
correspond to A = 0.85 where the theory is no longer
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FIG. 5. Evolution of (bb —6, ) vs gravity parame-

ter cr. The best linear fit gives (bz
~ —b~ ) 1.15m

(0.066 & B ( 0.083).

quantitatively correct ~ However, as shown by Tabeling,
Zocchi, and Libchaber [4] three-dimensional effects of
the wetting on the sidewalls become dominant in the
limit of A ~ 1, and the selection law is replaced by
(1 —A) I/B. So we compared, in the same range of
B values (0.05 ( B ( 0.2), our experimental data with
the experiments of Tabeling, Zocchi, and Libchaber [4]

(best linear fit: h, —0.22 —0.69B) and with numerical
simulations by Ben Amarand simultaneously Yuhai Tu

[25] (best linear fit: 8, 0.27 —1.03B). Our experi-
mental data of Fig. 6 are in very good agreement with
these two results. We then confirm experimentally that
the gravity correction in the selection relation of Ref. [20]
is equivalent to replace the term AB by the term AB p 0.

in Eqs. (27) and (28). The disagreement with theoretical
numerical factors is the very same disagreement observed
for symmetrical ST fingers when A ( 1 between theory on
the one hand and numerical simulations or experiments
on the other hand.

IV. CONCLUSION

In this paper we presented theoretical and experimen-
tal results on the selection of stable Saffman-Taylor fin-
gers propagating in tilted Hele-Shaw cells. At large ve-
locity, even for very low tilt angle, we observed drastic
changes: fingers are very narrow and propagate near the
upper side of the cell. When their speed is increased
these fingers broaden, in contrast to the usual case, and
are less asymmetrical. We agree with the estimation of
Brener, Levine, and Tu [18], suggesting large gravity ef-

FIG. 6. Superposition of the two data sets: b& vs2/3

(B —0.763o.) (~)and b, vs (B + 0.763o) ( ). B evolves
between 0.066 and 0.083, 0 between —0.15 and +0.06. The
best linear fit gives b, 0.22 —0.75(B~0.763cr) with i = t, b

fects for angles of the order of few degrees. The general
evolution is in agreement with their theoretical predic-
tions although we were not able to check precisely the
scaling laws. At low velocity we revisited the selection
theory in order to take gravity-induced asymmetry into
account. We proved experimentally that the gravity ef-
fect was correctly predicted as it allows one to recover
experimental and numerical results of symmetrical ST
fingers.

Initially, Hele-Shaw cells have been introduced as a
model for simulating flows in porous media and the ma-
jor technological interest in viscous fingering is in under-
standing the instability of diphasic flows in real three-
dimensional porous reservoirs where gravity is always im-
portant. Here we pointed out in this simple case the im-
portant asymmetry that gravity can induce when fluids
are density contrasted. In all classical viscous fingering
experiments using gas as the low viscosity fluid, it is only
by careful adjustment of the levelness that, until now, ex-
perimentalists have removed the effect of gravity.
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