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Bluff bodies moving in a fluid experience a drag force which usually increases with velocity. However in
a particular velocity range a drag crisis is observed, i.e., a sharp and strong decrease of the drag force. This
counterintuitive result is well characterized for a sphere or a cylinder. Here we show that, for an object
breaking the up-down symmetry, a lift crisis is observed simultaneously to the drag crisis. The term lift
crisis refers to the fact that at constant incidence the time-averaged transverse force, which remains small or
even negative at low velocity, transitions abruptly to large positive values above a critical flow velocity.
This transition is characterized from direct force measurements as well as from change in the velocity field
around the obstacle.
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Drag crisis is a puzzling phenomenon of fluid mechanics
that contradicts common intuition: in a range of traveling
speed the drag force exerted on a bluff body sharply falls
with velocity. This phenomenon, first observed by Eiffel
more than a century ago [1,2], is well described in text-
books [3]. See also Ref. [4] for a review of flows past a
circular cylinder and Ref. [5] for spectacular visualizations
around a sphere. Such visualizations demonstrate that the
drag crisis corresponds to a narrowing of the wake of the
obstacle: the transition of the boundary layer from laminar
to turbulent moves the separation lines downstream on the
rear surface of the object. The critical velocity Uc for this
transition corresponds to a critical Reynolds number Rec ¼
Ucd=ν (where d is a typical size of the obstacle and ν the
kinematic viscosity of the fluid) that depends on the exact
shape of the body. Rec is of the order of 4 × 105 for a sphere
or a cylinder. The critical Reynolds number depends also
on the free stream turbulence [6] or on the roughness of the
obstacle. A classical example is the presence of dimples at
the surface of a golf ball that decrease the critical Reynolds
number by a factor of ten, what explains their surprisingly
long trajectories [7,8]. Drag crisis is usually described for
a symmetrical object, for which no permanent lift force is
measured, although strong fluctuating transverse forces
have been observed [9]. Permanent lift can however be
generated on such a symmetrical object if it is spinning, a
possibility largely used in ball sports [7,8], or if it moves
close to a wall or inside a nonclassical fluid as granular
media [10]. On the other hand, strong lift and low drag are
usually achieved with slender bodies, e.g. an aircraft wing,
tilted to a small incidence angle. For such wings, if the
incidence angle becomes too large, the lift abruptly
decreases and the drag increases, a phenomenon called
stall. This phenomenon can be tragic for airplanes and
corresponds to the separation of the boundary layer all over
the upper surface of the wing.

In the present paper we show that, for a relatively
streamlined but thick body, such as a highly curved plate,
a sharp transition in the lift can be observed at a constant low
incident angle when the flow rate is increased. High-camber
aerofoil sections are commonly used at high incidence when
the lift as well as the drag must be large, e.g. for a landing
aircraft or for downwind yacht sails [11,12]. The lift jump
that we observe here when varying the flow velocity and
henceforth called a lift crisis, is associatedwith a transition in
the upper surface boundary layer which allows the flow to
remain attached on the convex wall further downstream,
similarly towhat is observed in a bluff bodydrag crisis.At the
same critical Reynolds number the drag is found to drop.
A sharp increase of the lift with the Reynolds number for
thick profiles at zero incidence has already been reported in
the past [13], but its origin and similarity to the drag crisis
seems to have been largely unnoticed. Note that the term lift
crisis was previously used for a symmetrical obstacle in
anothermeaning: to refer to themodification in the amplitude
of the instantaneous lift fluctuations [9,14–16]. Here the
expression lift crisis is used to refer to the abrupt jump of
the time-averaged lift.
Experiments were carried out in the IRENav hydrody-

namic tunnel to measure the forces and the velocity fields
on a two-dimensional high-camber plate. The plate is a
3-mm-thick, 50-mm-radius stainless steel circular arc section
with a chord length c ¼ 74 mm and a camber t ¼ 16.6 mm,
resulting in a relative camber t=c ¼ 22.3% located at mid-
chord (Fig. 1). The test section is 192 × 192 mm2 and 1 m
long, located downstream of honeycombs and a 1=9
contraction convergent. The measured turbulence intensity
is 1.8%. The incidence angle is set to zero for all the results
presented here. The obstacle fills almost all the channel
width, except for a small gap on each end to avoid contacts
with the walls that would alter force measurements.
The upstream water flow velocity U∞ in the tunnel can be
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adjusted between 1.4 and 8.13 m=s, resulting in a Reynolds
number range Re ¼ U∞c=ν ∈ ½105; 6 105#. As usual in
aeronautics, the Reynolds number is built on the chord
length c and not on the thickness t. The plate is connected to a
force balance based on strain gauges allowing us to measure
the drag and lift forces with a resolution better than 0.5 and
1.7 N respectively, thus of the order of 20% at low Reynolds
numbers and 1% at high Reynolds numbers. Forces are
recorded at 1 kHz and time averaged during 30 sec. More
details on the hydrodynamic tunnel and hydrodynamic
balance can be found in Ref. [17]. Transverse L and
longitudinal D components of the hydrodynamic force are
made dimensionless by the relations

CL ¼ L
1=2ρU2

∞A
; ð1aÞ

CD ¼ D
1=2ρU2

∞A
; ð1bÞ

where, according to the aeronautics convention, A is the
surface of the plate projected on the horizontal plane (chord
length multiplied by the span) and ρ is the water density.
Figure 2 presents the increase of the lift coefficientCLwith

Reynolds number, measured by the force balance. This curve
displays an abrupt transition for Rec ¼ ð2.00& 0.04Þ × 105,
from negative (downward) to positive (upward) lift, with no
visible hysteresis when increasing or decreasing the flow
rate. Figure 2 also shows that the drag coefficientCD drops at
the same critical Reynolds number. Thus the curved plate
simultaneously experiences a drag and a lift crisis, and the
lift-to-drag ratioCL=CD jumps from−3up toþ8.5. Note that
the value CD ≃ 0.2 measured below the critical Reynolds
number corresponds to a drag coefficientCx definedwith the
projected area normal to the flow (thickness multiplied by
span) close to 1, as is common for a bluff body with massive
flow separation and a wake almost as wide as the object.
The lift crisis transition does not look like a proper

bifurcation, or it would be a rather imperfect bifurcation, as
no cusp with a slope discontinuity is observed. Moreover,
we must remember that these data are time averaged and
significant temporal fluctuations exist on the lift and drag

forces. Contrary to what was sometimes reported for the
drag crisis or stall [18], here we do not observe measurable
hysteresis when increasing or decreasing the fluid velocity.
To characterize the sharp transition, the abruptness of the
lift jump around the inflexion point may be described by
the power-law scaling jCL − CL0j ∼ ðjRe − Recj=RecÞγ , as
shown on Fig. 3. The same exponent γ ≃ 0.2 fits the data
below and above the transition, and its value suggests that
the slope dCL=dRe becomes very large in Rec.
In order to better characterize the lift crisis we performed

velocity field measurements around the obstacle using 2D
particle image velocimetry (PIV). The flow is illuminated
from above with a laser sheet normal to the spanwise
direction and located at mid span (z ¼ 0). Two mirrors are
placed below the tunnel test section to illuminate the other
side of the plate, which allows the whole velocity field
around the obstacle to be measured. The water flow is
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FIG. 1. Curved plate section: chord length c ¼ 74.5 mm and
camber t ¼ 16.6 mm (top) and tunnel test setup (bottom). All
dimensions are in mm.
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FIG. 2. Lift coefficient CL (scale on the left axis) versus
Reynolds number, measured directly with the force balance
(circle) or from the PIV fields (square). The drag coefficient
CD (scale on the right axis) measured with the force balance
(plus) is plotted on the same graph.
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FIG. 3. Power law of the lift jump below (diamond) and above
(plus) Rec. The dashed line is a power law fit with Rec ¼ 200100,
CL0 ¼ 0.08 and exponent γ ¼ 0.2.
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seeded with μm sized polyamide particles and visualized
by a 4k-pixel CCD camera at a sampling frequency of
10 Hz in double frame. For each value of the flow velocity,
300 image pairs are recorded and processed in order to
determine the time-averaged velocity field Uðx; yÞ. More
details on the PIV measurement system and processing can
be found in Refs. [17,19].
Figures 4(a) and 4(b) present PIV time-averaged veloc-

ities in the vicinity of the obstacle. Figure 4(a) is typical of
the subcritical flow (Re < Rec) whereas Fig. 4(b) is typical
of the supercritical flow (Re > Rec). At moderate Reynolds
number the flow on the upper surface is massively
separated with a separation point located close to the top
of the camber, around x=c≃ 0.57 [Fig. 4(a)]. The resulting
wide low-velocity area behind the obstacle corresponds to a
periodic emission of alternate vortices, as confirmed by
visualizations of the instantaneous velocity fields. The
highest mean velocities are measured below the plate,
resulting, according to Bernoulli’s equation, in low pressure
and therefore in a downward lift force (CL < 0). This point

is confirmed by the fact that the wake is slightly oriented
upward. For larger Reynolds numbers [Fig. 4(b)] the flow
on the upper surface remains attached along the convex
surface much farther downstream. The separation point
moves almost to the trailing edge (x=c≃ 0.95) resulting
in a much smaller low-velocity area downstream of the
obstacle and to a very narrow wake slightly oriented
downward [Fig. 4(d)]. The largest velocities are now
located above the obstacle, where low pressures induce a
strong upward lift (CL > 0).
These pictures qualitatively confirm the existence of the

lift crisis. The flow changes from the one past a bluff body
with massive separation (high drag) in the subcritical regime
to the flow around a more streamlined lift-generating
obstacle (high lift and smaller drag) in the supercritical
regime. Indeed, as shown on Fig. 5, the separation point
location on the upper surface detected in the velocity fields
shows a sharp jump at the critical Reynolds number.
For a 2D potential flow the lift on an obstacle can be

computed from the shape of the streamlines. In particular
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FIG. 4. Mean PIV velocity field (a),(b) and streamwise velocity profileUxðyÞ in the wake (c),(d) below and above the critical Reynolds
number: (a),(c) Re ¼ 1.91 105 and negative lift, and (b),(d) Re ¼ 2.05 105 and positive lift. Color code in (a),(b) represents the
normalized velocity magnitude from U=U∞ ¼ 0 (blue) to U=U∞ ¼ 1.5 (red).
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one can replace the area inside any closed streamlines by an
equivalent Rankine solid [20]. Here the closed area can be
defined in Figs. 4(a) and 4(b) as the dark blue area where
U=U∞ ≤ 0.4. This zone drastically changes shape from a
large ellipse with a small negative incidence below the
critical Reynolds number, to a flat-bottom thick wing at
zero incidence above Rec. Furthermore, we can also infer
the lift experienced by the obstacle directly from the PIV
velocity field, computing the velocity circulation Γ along a
path C around the obstacle:

Γ ¼
I

C
U · dl: ð2Þ

Indeed the Kutta-Joukowski theorem states that for a 2D
potential flow, the lift coefficient is proportional to the
circulation [21]:

CL ¼ −
2Γ
U∞c

: ð3Þ

The lift coefficient deduced from the integration of
PIV fields along a large rectangle around the obstacle
(x=c ∈ ½−0.4; 1.56#; y=c ∈ ½−0.78; 1#) are plotted in Fig. 2.
The results agree within 10% with the lift measured with
the force balance and in particular exhibit the same abrupt
lift jump at Rec. The good agreement of the 2D lift derived
from the velocity in the mid-span plane with the global lift
measured by the balance confirms that the mean flow is
reasonably 2D. We also checked that, while enlarging the
integration contour C in the PIV plane, the circulation and
thus the 2D lift remains almost constant (variations are
smaller than 1%). Concerning the drag crisis, it can be
related to the reduction of the wake thickness, as can be
seen in the velocity profiles in the wake of the obstacle
plotted in Figs. 4(c) and 4(d). The velocity deficit is deeper
and larger at low Reynolds numbers. In principle the drag
can be derived from the momentum deficit in the wake and
from pressure losses [22,23]; however, here direct force
measurements were more accurate.

With this experiment we show that the well-known drag
crisis of bluff bodies can be associatedwith an abrupt jumpof
the lift for nonsymmetrical objects. The lift crisis highlighted
here for a curved plate is a general phenomenon for
nonsymmetrical objects. In particular, we tested asymmetric
bodies with different sections: a solid body with the same
upper surface than the curved plate presented above but with
a flat bottom (called circular-back section), and a solid half-
cylinder. The lift crisis is also observed on both bodies
simultaneously to the drag crisis, with a critical Reynolds
number Rec ¼ 2.5 × 105 and a transition exponent γ ≃ 0.5
on the circular-back section, while Rec ¼ 3.0 × 105 and
γ ≃ 0.2 on the half-cylinder section (see Supplemental
Material [24]). Evidently, the lift crisis cannot be separated
from the drag crisis: both are governed by the abrupt change
in theboundary layer separation. The lift crisis described here
can also be related to asymmetric transitions in the boundary
layers of spheres: e.g. for rotating balls, an inverse Magnus
effect corresponding to an inversion of the lift has been
observed close to the drag crisis [25–27]. Furthermore, for
nonrotating balls with a localized asymmetric roughness, the
change in the deflection force seems to be at the origin of
knuckleballs [28–30]. Similarly, the existence of the lift jump
at the drag crisis threshold seems to be an important
phenomenon to consider to analyze the galloping instability
of anisotropic cables [31].
In conclusion, as far as we know, such a sharp jump and

inversion of lift with the Reynolds number at constant angle
of incidence and the analogy to the drag crisis of bluff
bodies has not been described, probably because classical
bluff bodies are spheres or cylinders with no asymmetry,
while lifting wings are slender bodies with no clear drag
crisis at low incidence. This abrupt generation or inversion
of the transverse force above a critical flow velocity could
be used for practical applications such as a velocity
threshold detector, or the passive stability control of an
unmanned flying vehicle [32].
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