
PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Wave-number selection and parity-breaking bifurcation in directional viscous fingering

Ludovic Bellon,* Laurent Fourtune, Vahe´ Ter Minassian, and Marc Rabaud†

Laboratoire de Physique Statistique de l’Ecole Normale Supe´rieure, associe´ au CNRS et aux Universite´s Paris VI et VII,
24 rue Lhomond, 75231 Paris Cedex 05, France

~Received 30 December 1997!

We present a mechanism of limitation for the possible wave numbers above an instability threshold. This
mechanism is experimentally investigated in the interfacial instability of directional viscous fingering in a finite
system. It is shown experimentally to be controlled by the divergence of a phase-diffusion constant. Theoreti-
cally, this limitation on the low value of the accessible wave numbers is a consequence of the interaction
between the fundamental and the first harmonic modes. The analysis of coupled amplitude equations demon-
strates theoretically the existence of a divergence of a phase-diffusion constant when approaching the threshold
of a parity-breaking instability.@S1063-651X~98!13307-X#

PACS number~s!: 47.20.Hw, 47.54.1r, 47.20.Ky, 47.20.Ma
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I. INTRODUCTION

The nonlinear mechanism that limits the range of the
stable modes above threshold in a spatially extended diss
tive system has been a puzzling subject for many years@1#.
This problem had been investigated experimentally, num
cally, and theoretically in particular in model systems su
as Taylor-Couette flow@2#, Rayleigh-Be´nard convection@3#,
and in interfacial instabilities such as directional solidific
tion @4#, Taylor-Dean flow@5#, directional viscous fingering
@6#, and Rayleigh-Taylor instability@7#. Usually the selection
is well understood close to onset, but not in the nonlin
regime. A first general selection mechanism for a o
dimensional system is the Eckhaus instability@8#. Other
mechanisms specific to the convection case were inve
gated by Busse@9# and the effect of the boundaries we
investigated more recently@2,10#.

We present here a study of a mechanism encountere
the directional viscous fingering instability. It is found to b
closely related to the parity-breaking bifurcation of an int
face, a secondary instability that was described by Cou
Goldstein, and Gunaratne@11#, Fauve, Douady, and Thua
@12#, and Caroli, Caroli, and Fauve@13#. Some preliminary
results of this study were presented in Ref.@14#.

This paper is organized as follows. In Sec. II we pres
the experimental results: the setup~II A!, the stable states
~II B!, the processes of nucleation or death of a cell~II C!.
Then we present the phase-dynamic behavior and the ev
tion of the phase-diffusion coefficient~II D! and we conclude
this experimental part with a description of a long-lived se
oscillating transient~II E!. In Sec. III we interpret the result
within the framework of the ‘‘k-2k ’’ model ~III A! and of an
‘‘antisymmetry’’ model ~III B!.

*Present address: Laboratoire de Physique de l’Ecole Norm
Supérieure de Lyon, 46 Alle´e d’Italie, 69364 Lyon Cedex 07
France.

†Present address: Laboratoire FAST, associe´ au CNRS et aux Uni-
versités Paris VI et XI~UMR 7608!, Bâtiment 502, Campus Uni-
versitaire, 91405 Orsay Cedex, France. Electronic addr
rabaud@fast.u-psud.fr
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II. EXPERIMENTAL RESULTS

A. Experimental setup

Our experimental setup is an enlarged version of the
presented in Refs.@14# and@15#. A floated glass plate~plane
at 610mm over 50 cm!is lying horizontally over a stee
rectified cylinder of radiusR55060.01 mm and length 420
mm ~Fig. 1!. The cylinder is partially immersed in an oil tan
thermostatically controlled at 3260.1 °C. Rotation extrudes
from the tank a film of oil. This film fills the small gap
between the cylinder and the plate, and the excess oil fl
back down along the cylinder. The amount of oil passi
through the nip is controlled by the minimum distanceb0
between the plate and the cylinder. At low velocity th
downstream meniscus is located at a constant distant f
the nip. When observed from above through the glass pl
it appears as a line parallel to the cylinder axis. When
cylinder speed is increased, this meniscus becomes uns
@6#. Our setup is similar to those found in the coating indu
try, where the instability is known as the ribbing instabili
@16#. At threshold, the downstream meniscus undergoe
supercritical bifurcation to a stationary sinusoidal state

le

s:

FIG. 1. Scheme of the experimental setup. The rotating cylin
extrudes the oil from a thermostated bath. This oil fills the upper
between the cylinder and the horizontal glass plate. The do
stream meniscus is unstable if the rotation is fast enough. T
plastic strips are located in the nip and serve as boundaries fo
interface. The displacement of one of the strips is controlled b
computer and a stepper motor.
565 © 1998 The American Physical Society
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uniform finite wavelength. This transition is characterized
a critical value Ca* of the capillary number Ca5mV/T @17#.
This critical value depends on the thicknessb0 . In the
present study the thickness is kept constant (b050.4 mm)
and we used a silicon oil~Rhodorsyl V20!of surface tension
T520.931023 N/m and viscositym50.020 kg/m s. The
critical tangential velocity is thus 220 mm/s, which corr
sponds to Ca* '0.20. The rotation of the cylinder is con
trolled by a DC motor with a velocity resolution o
61 mm/s. The interface is observed from above by a cha
coupled-device~CCD! camera. The video signal is digitize
on a computer and can be analyzed with the freeware N
Image.

In this particular setup, as in Ref.@14# and in contrast with
previous experiments@18,19#, we can impose the lengthL of
the interface by positioning two plastic strips that fill almo
completely the gap between the glass and the cylinder~Fig.
1!. The maximum value ofL that we can use is 20 cm due
the limited flatness of the float glass on larger scales.
plastic strips are mounted on carriages that can run along
cylinder axis. One of the two carriages is controlled by
stepper motor and an endless screw, allowing one to se
position of the strip with a relative precision of 10mm. Each
strip acts as a boundary for the interface, and fixes the ne
boring cell at a constant distance from the strip~Fig. 2!. Thus
we can introduce an effective length of the boxL* defined as
the real sizeL minus the width of the two trapped cells. I
contrast with the case of low thickness gradient@19#, here the
interface does not present very deep air fingers, but sm
cells above threshold.

B. Permanent stable states

1. Stable wave numbers

Increasing or decreasing the velocityV, we observe
changes of wave number. However, after some transients
interface always evolves to a static periodic shape of c
stant wave numberk in the domainL* . These stable state
are only observed in a domain of the (Ca,k) plane: for any
velocity, depending on the history, any value ofk in this
domain can be obtained~Fig. 3!. In order to observe th
limits of the wavelength range of the pattern, a first set
experiments at fixed sizeL were realized. Increasing the ve
locity V ~and therefore Ca! by small steps of 1%, we mea
sure the wave number of the last observed stable pat
preceding the nucleation of a new cell. These data give
limit of the wave-number range. The other limit can be d
termined the same way by decreasing the velocity
watching for disappearance of cells. Figure 3 illustrates
stable states we have observed for an average size o

FIG. 2. Image of the downstream meniscus above thresh
The dark line separates the air~below! from the oil ~above!. In the
central portion, the plastic strip is visible as it deforms the patte
which is otherwise regular and static. On each side of the strip,
first oil rib is fixed in position. Thus the strip acts as a rigid boun
ary condition for the phase of the pattern.
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interfaceL520 cm. No meaningful change in this diagra
was noticed for the different values ofL we have explored
(L>6 cm). This shows that finite-size effects are not imp
tant when the number of cells is larger than a few units~5 or
10!. At low wave numbers, we completed the diagram
varying L around its average value~variations of about
10%!: ‘‘Horizontal’’ runs ~for a given Ca/Ca* ! were more
suited to this region. IncreasingL by small steps,k decreases
and we can measure the wave number before nucleation
this gives the left boundary of the wave-number ran
whereas decreasingL leads to the disappearance of one ce
limiting the wave-number range on the right-hand side~Fig.
3!. After any step inL or Ca, we waited at least 5 min t
check the pattern stability. A similar technique of varyingL
was used by Ahlerset al. @2# for their study of the stability of
the wave number in Taylor vortex flow.

Figure 3 shows that a wave number is stable in a fin
range of capillary number. These results are in clear cont
with the observed evolution of the wave number in the sa
experiment when no plastic strips were present@19#. In that
case, where the lateral boundary conditions for the ph
were ‘‘free,’’ we observed a continuous evolution of th
wave number with the capillary number, without measura
hysteresis~see Fig. 3 of Ref.@19#!.

2. Shape of the interface

Just above the onset of the instability, the interface
sinusoidal and thus exhibits an up/down symmetry@Fig.
4~a!#. When Ca/Ca* .1.10, the pattern loses this air-oil sym
metry. Air cells become larger and oil domains narrow
@Fig. 4~b!#: the harmonics of the fundamental mode ha
nonzero amplitudes, which gives to the pattern its nonlin
shape.

d.

,
e

-

FIG. 3. Limits of observed stable wave numbersk versus the
normalized control parameter Ca/Ca* . Observed steady states lie i
the central tongue. The plotted data represent the last observed
manent state before a nucleation or a disappearance of a cell.
plot is a compilation of the results obtained by increasing or
creasing quasistatically either the velocity or the length of the
terface around a mean valueL520 cm.
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C. Transient states

We will now describe the transients that give rise to
adjustment of the wave number in the vicinity of the limits o
Fig. 3.

1. Large wave-number process

When studying the limits of stability in the right-han
limit of Fig. 3, we observe transients that are different fro
those observed with open boundary conditions@19#. Here,
with the rigid boundary conditions, the transient linked to t
disappearance of a cell basically follows the same proc
for all explored Ca. As illustrated in Fig. 5, one air ce
slowly starts shrinking and loses amplitude, then disappe
suddenly. The two neighbors form for a while a pair

FIG. 4. Images of all the unstable interface (L'12 cm) between
oil ~top! and air ~bottom!. ~a! Symmetric case near onse
(Ca/Ca* 51.04). ~b! Nonlinear shape for Ca/Ca* 51.63 when the
air-oil symmetry is broken.

FIG. 5. Evolution of the entire interface during the disappea
ance of a cell for Ca/Ca* 51.11. ~a! Ten successive snapshot
showing the death of the second air cell from the left. Tim
progresses 30 s from top to bottom but there is no constant d
between each image.~b! Temporal evolution of one horizonta
video line crossing the interface during the same event and for
same duration. Oil domains appear darker than air domains. Ag
and as in all the figures, time progresses from top to bottom.
ss

rs

asymmetric air cells. These larger cells shrink while t
phase defect diffuses through the whole pattern, leavin
stable pattern with a new wave numberk85k22p/L* . The
whole process is slow, of the order of 30 s in Fig. 5.

2. Low wave-number process

Contrary to the preceding case, the nucleation process
served in the left-hand limit of Fig. 3 depends on the value
Ca. The transients are different for small or large Ca.

For small values of the capillary numbe
(Ca/Ca* ,1.32), one air cell slowly starts increasing i
length and losing amplitude~Fig. 6!. The process that con
centrates this phase defect is fairly long. Then, an oil ind
tation quickly grows at the tip of this air cell and the two ne
cells grow while the phase defect diffuses through the wh
pattern. Conversely, as can be seen in Fig. 7 for lar
Ca (Ca/Ca* .1.32), the transient begins suddenly when o
oil domain changes shape; the two neighboring air cells l
their left-right symmetry, creating a pair of abnormal ce
@19#, the amplitudes of which are smaller whereas th
lengths are larger. These abnormal cells have quite a l
life ~a few seconds!. The separating oil domain then st
oscillating from left to right, and finally splits into two dif-
ferent oil domains separated by a new air cell. The nuc
ation processes are thus quite different according to the v
of Ca: for weak Ca, one oil domain grows in an air ce
whereas for strong Ca, one air cell grows in an oil doma

-

ay

e
in

FIG. 6. Evolution of the entire interface during a nucleation f
Ca/Ca* 51.26. ~a! Eight successive snapshots. Time progres
40 s from top to bottom with nonconstant delay between each
age.~b! Temporal evolution of one horizontal video line during th
same event and for the same duration.
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We will see in the next paragraph that these two differ
processes for nucleation can be linked to the response o
pattern to small perturbations.

D. Measurement of the phase-diffusion coefficient

1. Demonstration of a diffusive process for the phase
of the pattern

Following the works of Wesfreid and Croquette@20# and
Wu and Andereck@21#and with the aim of characterizing th
Eckhaus limit, we tested the response of the pattern t
small perturbation. We introduced an oscillating bound
by imposing a sinusoidal motion to one of the plastic stri
After a transient, the whole pattern oscillates at the forc
frequency f , but the perturbation is attenuated and out
phase far away from the oscillating wall~Fig. 8!. The attenu-
ation from cell to cell of the amplitude of oscillation is we
fitted by an exponential curve with a decreasing factora,
whereas the phase of the oscillation appears to have a li
behavior of slopeb. The phase of the perturbation can the
fore be writtenw(x,t)5w0 exp@2(a1ib)x1ivt#, wherex is
the distance to the oscillating side@21#. The two coefficients
a andb can be determined from the spatiotemporal image
Fig. 8.

We have checked experimentally that for a wide range
frequenciesf , a'b and that the two coefficients scale
f 1/2 ~Fig. 9!. These results are typical of a diffusion equat
for the phase of the pattern:w t5Dwxx . The diffusion coef-
ficient D is then given byD5p f /ab @21#.

FIG. 7. Evolution of the entire interface during a nucleation
Ca/Ca* 51.34. ~a! Ten successive snapshots. Time progresses
top to bottom in with nonconstant delay between each image.~b!
Temporal evolution of one horizontal video line during the sa
duration.
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2. Experimental procedure

For various capillary numbers, we want to measure
diffusion constantD varying the wave numberk, which can
be tuned by changing the size of the box. We must th
choose the average lengthL of the interface, the amplitude
A, and the frequencyf of the oscillation. These three param
eters must satisfy contradictory needs. LengthL must be
large enough to have a large number of cells but not

s

e

FIG. 8. Forced oscillations of the pattern. This picture shows
evolution of one video line cutting the interface. Time progres
530 s from top to bottom. The plastic strip~left! oscillates with a
frequencyf 50.005 Hz. The amplitude oscillation is very large
order to obtain an easily observable deformation. The perturba
of the oil ribs~dark! is attenuated and the phase shift from rib to r
increases linearly with the distance from the plastic strip.

FIG. 9. Evolution ofa andb vs the frequencyf of the oscilla-
tion on log-log scales. Within the limits of the precision of th
measurements,a5b. The dashed line represents the best pow
law fit, whose slope is 0.48.
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PRE 58 569WAVE-NUMBER SELECTION AND PARITY-BREAKING . . .
large, because the diffusion time scales asL2 and transients
become too long. The amplitudeA of the perturbation has to
be large enough to be measured~a few pixels wide!but not
too large compared to the wavelength, especially wh
reaching the borders of the stable domain where the inter
becomes very fragile. Finally, the frequencyf must be low
enough to have a large penetration depth of the oscillat
but not so low as to avoid the reflection of the oscillation
the fixed boundary. We chose to work with an average s
L510 cm ~which leads to a typical diffusion time along th
interface of 500 s!, an amplitude of the perturbati
A50.6 mm ~less than 10% of the wavelength!, and a fre-
quencyf 50.02 Hz. These values allow for good precision
a reasonable amount of time. We explored the val
Ca/Ca* 51.16, 1.30, 1.50, 1.65, and 1.80.

3. Behavior of the phase-diffusion coefficient versus k

For low capillary number~Ca/Ca* 51.16, 1.30!, as shown
in Fig. 10~a!, D is decreasing at the extremities of the wav
number range. The values ofD for extremek are almost half
the values ofD for a meank. This result is the classica
result observed in other experiments exhibiting an Eckh
instability @20,21#.

For high capillary number~Ca/Ca* 51.65 or 1.80!, the
behavior ofD is quite different from the previous one: if
decrease ofD for the largestk can still be seen, the trend fo
the smallestk is opposite@Fig. 10~b!#. A growth of 50–
150 % of D when k decreases to its smallest value can
measured for Ca/Ca* 51.65. This quick growth ofD toward
the high values of Ca and low values ofk is also illustrated
by Fig. 11 which plots the behavior ofD with Ca for a given
k ~the size of the boxL and the number of cells is fixed fo
the whole run!. We can see thatD is 2 or 3 times larger for
the highest Ca than for a mean Ca, whereas it is slo
decreasing for the smallest values of Ca.

For intermediate capillary numbers (Ca/Ca* 51.50), the
behavior ofD corresponds to a blend of the two previo
behaviors~Fig. 12!. If the decrease for the largestk is still
observed, the behavior on the other edge of the wavele
range is less clear. We were unable to determine whethe
transition between the decreasing and growing behavior
easy through a state whereD goes to a finite nonzero valu
or if it is a fairly sharp jump from zero to1` @22#.

The behavior ofD for small Ca is close to the theoretic
behavior of the Eckhaus instability: the decreasing ofD to 0
on the edges of the wave-number range is the signatur
such an instability@8#. Experimentally, it is not possible t
reach these very low values ofD because any finite
amplitude perturbation induces a change of wave num
The behavior ofD for larger Ca can be interpreted the sam
way for the largestk: its decrease on the right-hand side
the wavelength range is clear but not strongly marked
cause here also it is experimentally difficult to perturb t
extreme values ofk. The unexpected result is the quic
growth of D for the smallestk, but as we will show in part
III, this growth can be ascribed to the proximity of a parit
breaking bifurcation.

E. Self-oscillating states

When we abruptly increase Ca, we sometimes obser
long transient self-oscillating state of the pattern~Fig. 13!. In
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this state, all the cells shift in phase alternately to the ri
and to the left. This state usually lasts more than one h
although in all cases when we waited long enough it ev
tually decayed and disappeared@Fig. 13~a!#, which makes it
a transient. This transient state is characterized by extrem
low oscillation frequencies (T>100 s). Similarly, slow os-
cillations have been observed in a Taylor-Couette sys
@23#. The oscillation amplitude of each cell varies accord
to its position along the interface. This amplitude is w
fitted by a sine function and thus corresponds to the fi
resonant mode of the effective intervalL* ~Fig. 14!. For
fixed values of the parameters, we also measure the perio
the oscillations as a function of the sizeL* of the box. This
is difficult to realize, as we are not able to trigger the
transients. However, the evolution of the frequency of os

FIG. 10. Evolution ofD vs k for L510 cm and for two values
of Ca. Error bars show the extreme measured values.~a!
Ca/Ca* 51.30. D decreases on both edges of the wave-num
range, which characterizes an Eckhaus instability process.~b!
Ca/Ca* 51.65. D decreases for largek, whereas it increases fo
small k.
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570 PRE 58BELLON, FOURTUNE, TER MINASSIAN, AND RABAUD
lations with L* is compatible with a linear behavior~Fig.
15!. Most of these results may be understood through
model coupling phase and antisymmetry presented in S
III C.

III. THEORETICAL INTERPRETATION

A. Long-wavelength instability of the k-2k model

There are different ways to model a parity-breaking bif
cation. One of these has been much studied in recent y
@12,18,24–26#. It involves the interaction between the fi

FIG. 11. Evolution of D vs Ca for k56.8 cm21 and
L510 cm. The coefficientD decreases for small Ca and increas
for large Ca.

FIG. 12. Behavior ofD with k for various values of Ca
@Ca/Ca* 51.16 ~n!, 1.3 ~m!, 1.5 ~h!, 1.65 ~d! and 1.8~s!#. The
lines are guides for the eyes. If the behavior ofD for largek is the
same for all Ca, it switches from decreasing to increasing for
smallestk when Ca increases.
e
c.

-
ars
t

modek to appear in an instability and its 2k harmonic. The
presence of this harmonic breaks the air-oil symmetry of
interface@Fig. 4~b!#. The so-calledk-2k model can be writ-
ten as a set of two coupled Ginzburg-Landau equations:

s

e

FIG. 13. Spatiotemporal images of self-oscillating states.~a!
Ca/Ca* 51.6, L* 57.1 cm, and time from top to bottom corre
sponds to 2500 s. The period is of the order of 130 s. Note that
amplitude of the oscillations decreases slowly with time.~b!
Ca/Ca* 51.2, L* 513.6 cm, and time from top to bottom corre
sponds to 2000 s. The period is of the order of 400 s and
amplitude much larger than in case~a!. The oscillations are of large
amplitude and not sinusoidal. Note that the right-hand boundar
not visible in this picture.

FIG. 14. Amplitude of the oscillation vs the dimensionless a
scissax/L* corresponding to Fig. 13~b!. The dashed line is a fit
a sinusoidal function of period 2.
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Ȧ15m1~k!A12gA1* A22a1uA1u2A12b1uA2u2A1 ,
~1!

Ȧ25m2~k!A21gA1
22a2uA2u2A22b2uA1u2A2 ,

with A1 andA2 respectively the amplitudes of the first mod
and its harmonic. This model is valid in the vicinity of th
codimension-2 point, where bothm1 andm2 are small. In our
study we will further expand the range of validity of th
approximation. The originality of this model lies in the fa
that the parity-breaking mechanism is not explicitly intr
duced in the equations, contrary to other analyses@11#. In
fact, the interactingg terms control the phase shift betwee
modesk and 2k.

As long asA2 is strongly damped, the 2k mode is slaved
to thek mode, and there is no phase shift between them.
when m2 gets closer to 0~but remains negative!, the 2k
mode grows independently and the pattern breaks the ri
left parity. This pattern is no longer stationary: all the ce
propagate steadily along the interface@26#. This parity-
breaking bifurcation occurs on the line whereC50, where

C5~m1b2m2a!22g2~2a1b!~2m11m2!, ~2!

with a52a11b1 andb52a21b2 .
In fact, in experiments, the control parametersm1 andm2

depend not only on the capillary number Ca but also on
wave numberk. Therefore, this parity-breaking bifurcatio
~PB! condition corresponds to a line in the (Ca,k) plane. In
Fig. 16 we plot the two curves~m150 andm250! given by
the linear stability analysis of the meniscus~Appendix of
@18,19#!and we draw the PB line close tom250 according
to previous arguments. Figure 16 shows that the pat
should be stable between the Eckhaus line and the PB
Beyond the Eckhaus line the pattern is expected to be
stable and to exhibit a behavior consisting of concentra
of phase defects, whereas over the PB line, it is likely
exhibit a propagative state or some kind of transient scen
beginning with a parity breaking@4,18,26#.

FIG. 15. PeriodT of the self-oscillation vs the effective size o
the cellL* .
ut

t-

e

rn
e.
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However, at this stage, we have not yet proved that
upper limit of the experimental wave number stability ran
~Fig. 3! is due to a parity-breaking bifurcation. In particula
the large increase of the phase-diffusion coefficientD ~Figs.
10–12! has yet to be understood.

Therefore, we study thek-2k coupled equations unde
infinitely small perturbationsq on the wave numberk:

A15A1o@11a1,1qexp~st1 iqx!

1a1,2q exp~st2 iqx!#exp i ~kx1u!,
~3!

A25A2o@11a2,1qexp~st1 iqx!

1a2,2q exp~st2 iqx!#exp i ~2kx1w!,

where theai ,6q are small.
We will also expandm1 and m2 aroundk to the second

order inq:

m1~k1q!5m1~k!1qm18~k!1
q2

2
m19~k!1¯ ,

~4!

m2~k1q!5m2~k!1qm28~k!1
q2

2
m29~k!1¯ .

This leads to a 434 matrix on theai 6q . This matrix has
four eigenvalues, three of which are negative. The last on
close to 0 and is given by

s52Dq2 with D5
F

C
, ~5!

whereF is a complicated number which is positive for sma
enoughg, by continuity with the caseg50, andC @defined
in Eq. ~2!# is positive and goes to zero at the PB bifurcatio
Therefore, theory predicts thatD will diverge to 1` in the
vicinity of the PB line. This behavior was checked nume
cally as well~see Fig. 4b of Ref.@14#!.

This model first explains why we have observed~II D!
this strong increase inD. It also shows that a divergence o
D is thesignatureof a parity-breaking bifurcation. We ma

FIG. 16. Theoretical wave-number selection diagram. The l
m150 is the marginal stability of ak mode~appendix of@18,19#!,
m250 corresponds to the marginal line for ak mode whose har-
monic 2k becomes unstable. TheC50 line is drawn close to the 2k
marginal stability curve. The Eckhaus line is deduced from
lower branch by a factor of 3 in~Ca-Ca* !/Ca* . The stable domain
is between the Eckhaus and theC50 lines.
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check the validity of this understanding of the waveleng
selection mechanism as a PB bifurcation by deducing
expected position of the PB line on the experimental gra
~Fig. 17!. In this figure we first plot the experimental data
Fig. 3. From these data, assuming that the lower branch
responds to the Eckhaus line, we estimate the marginal
bility curve (m150) by a compression by a factor 3 of th
Ca axis~this transformation would be exact near thresh
for a parabolic marginal stability curve!. From this new
curve, we deduce the marginal stability curve of the 2k mode
(m250) by a compression by a factor 2 of thek axis. The
extrapolation of this last curve for largek is close to the
experimental low limit ofk. The agreement between the tw
curves is surprisingly good considering the approximate1

3

factor between the Eckhaus line and them150 curve.

B. Antisymmetry/phase model

A general way to describe a parity-breaking bifurcati
was proposed by Coullet, Goldstein, and Gunaratne@11#.
The basic idea is to postulate a pitchfork bifurcation for t
antisymmetryx of the pattern~which can be understood i
the k-2k model as the phase shift between thek mode and
the 2k harmonic!, and to introduce a link between the pha
f and the antisymmetryx. This leads to the following sys
tem of coupled equations:

x t5mx2ax3,
~6!

f t5vx,

FIG. 17. Experimental wave-number selection diagram. T
open squares~h! represent the experimental limits~upper and
lower branches!of the observed modes~same as Fig. 3!. The ope
triangles~n! are deduced from the lower branch by a factor of1

3 in
~Ca-Ca* !/Ca* . Filled triangles are deduced from the open triang
by a horizontal compression factor of 2 ink. The extrapolation of a
parabolic fit through these filled triangles~continuous line!is in fair
agreement with the upper branch of the experimental data as
dicted by the model.
-
e
h
f
r-

ta-

e

where all the parameters are real andm is the control param-
eter of the PB state.

In a spatially extended system, these coupled equat
with all the terms allowed by the symmetries@13# are given
by

x t5dxxx1«fxx1mx2ax31a1fxx1gxxx1b1fxfxx ,

~7!
f t5Dfxx1vx1a2xxx1c2xxx1d2fxfxx .

Fauve, Douady, and Thual@12# and Riecke and Paap@27#
showed that the term«fxx makes the PB-state phase u
stable just beyond the bifurcation where it should appe
However, it has been shown that inclusions of such a par
breaking state may exist@28,18,26#.

In our case, we want to study what happens before
parity-breaking bifurcation takes place. We will therefo
study the following system where all the second-order a
third-order terms are neglected:

x t5mx1dxxx1a1fxx ,
~8!

f t5vx1Dfxx1a2xxx .

In this system,m is negative andD and d represent the
‘‘natural’’ diffusion. Conversely, thea1 term introduces the
effect of phase inhomogeneities on the antisymmetry of
pattern, which is a fairly natural effect that would otherwi
not be taken into account. Thea2 term will be considered to
be weak against thevx term.

This linear system leads to a dispersion relation for n
mal modes of the following form:

f5foexp~st!exp~ iqx!,
~9!

x5xoexp~st!exp~ iqx!.

Introducing these expressions in Eq.~8!, one reaches an
eigenvalue problem for which the discriminant is to the ord
q2

D~q!5m222~d2D !mq224a1vq2. ~10!

The eigenvaluess are written as

s5
m2~d1D !q26AD~q!

2
. ~11!

In the limit q→0 this relation is writtens5m ~damped
mode!and

s52S D2
a1v

m Dq2. ~12!

Equation~12! leads to a phase-diffusion equation:

f t5D8fxx with D85D2
a1v

m
. ~13!

It is therefore shown that if the terma1v is positive, the
effective phase-diffusion coefficientD8 actually diverges in
the vicinity of any parity-breaking bifurcation asm→02.
This behavior should be observed in various other exp
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mental systems. The measurement of the phase-diffu
constant could then be a tool of investigation to identify a
parity-breaking bifurcation.

C. Consequence: Evanescent cavity modes

In a cavity of sizeL* , the phase perturbation must be ze
at the extremities of the interface, so the wave numbeq
must be a multiple ofp/L* and cannot vanish. It is thu
possible forD(q) to be negative for smallm if the terma1v
is positive. If it is the case,s is complex and oscillatory
states could exist in the cavity. For example if the terma1v
is dominant in Eq. 10@D(q)'24a1vq2# the imaginary part
of s corresponds to an oscillation of period

T52p/~qAa1v! ~14!

when the negative real part ofs corresponds to a dampin
time

t522/@m2~d1D !q2#. ~15!

This equation shows that the less-damped mode co
sponds to the smallest mode of the cavity (q* 5p/L* ). This
mode will correspond to out-of-phase oscillation off andx
@Eq. ~9!#. Similar oscillatory states, but not transient in ch
acter, were obtained theoretically in a parity-breaking bif
cation with an inhomogeneous system@29#.

This analytical result on the existence of a transient os
latory state is strongly analogous to the experimental res
of II E. Indeed, we observe in Fig. 13 in-phase oscillations
the oil ribs. Thus, as time goes on, the interface alterna
presents a pattern with asymmetric propagating air cells
homogeneous size and a pattern with symmetric air cell
inhomogeneous size. This behavior is exactly the one
dicted by the previous analysis. Furthermore, the amplit
R.
.

e
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eid
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of
e-
e

of the oscillation~Fig. 14! corresponds to the first resona
cavity modeq* 5p/L* . Finally, Eq. ~14! predicts that the
oscillation periodT is proportional toL* if q5q* . In Fig.
15 we indeed observe an increase ofT that could be linear
but not proportional toL* .

IV. CONCLUSION

In this paper we addressed the wavelength-selec
mechanism in a directional viscous fingering experiment.
the response of the interface to local periodic perturbati
of the wave number, we observe a diffusive process of
phase perturbation and determine the corresponding d
sion constantD. From observation of the interface as well
measurements ofD, we demonstrate first that, close
threshold, the wave-number range is controlled by the E
haus instability. For larger control-parameter values
wave numberk is still limited by the Eckhaus instability in
the large-klimit but not for low k. This low-k limit is char-
acterized by a strong increase ofD. This result and the shap
of this low-k limit, when analyzed through a model o
coupled equations for thek and 2k modes, suggest the prox
imity of a parity-breaking instability. We believe that th
new wavelength-selection mechanism is general and sh
be encountered and demonstrated by the divergence ofD in
other systems presenting a bifurcation to asymmetric sta

Finally, long oscillatory transients of the pattern were o
casionally observed and were interpreted in the same pa
breaking instability framework.
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