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Wave-number selection and parity-breaking bifurcation in directional viscous fingering
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We present a mechanism of limitation for the possible wave numbers above an instability threshold. This
mechanism is experimentally investigated in the interfacial instability of directional viscous fingering in a finite
system. It is shown experimentally to be controlled by the divergence of a phase-diffusion constant. Theoreti-
cally, this limitation on the low value of the accessible wave numbers is a consequence of the interaction
between the fundamental and the first harmonic modes. The analysis of coupled amplitude equations demon-
strates theoretically the existence of a divergence of a phase-diffusion constant when approaching the threshold
of a parity-breaking instability.S1063-651X(98)13307-X]

PACS number(s): 47.20.Hw, 47.54.+r, 47.20.Ky, 47.20.Ma

I. INTRODUCTION II. EXPERIMENTAL RESULTS

. . _— A. Experimental setu
The nonlinear mechanism that limits the range of the un- P P

stable modes above threshold in a spatially extended dissipa- OUr experimental setup is an enlarged version of the one
tive system has been a puzzling subject for many yigs Presented in Ref$14] anq[15]. A flogted glass platgplane
This problem had been investigated experimentally, numeri@t =10 um over 50 cm)is lying horizontally over a steel
cally, and theoretically in particular in model systems suchrectified cylinder of radiu®k=50+0.01 mm and length 420
as Taylor-Couette floy2], Rayleigh-Beard convectioi3d], ~mMm (Fig. 1). The cylinder is partially |mmersed' in an oil tank
and in interfacial instabilities such as directional solidifica-thermostatically controlled at 320.1 °C. Rotation extrudes
tion [4], Taylor-Dean flow[5], directional viscous fingering from the tank a film of oil. This film fills the small gap
[6], and Rayleigh-Taylor instability7]. Usually the selection between the cylinder and the plate, and the excess oil flows
is well understood close to onset, but not in the nonlineaPack down along the cylinder. The amount of oil passing
regime. A first general selection mechanism for a onethrough the nip is controlled by the minimum distartuge
dimensional system is the Eckhaus instabili]. Other between the plate and the cylinder. At low velocity the
mechanisms Specific to the convection case were invesﬂjOWnStream meniscus is located at a constant distant from
gated by Buss¢9] and the effect of the boundaries were the nip. When observed from above through the glass plate,
investigated more recent(i2,10]. it appears as a line parallel to the cylinder axis. When the
We present here a study of a mechanism encountered fylinder speed is increased, this meniscus becomes unstable
the directional viscous fingering instability. It is found to be [6]. Our setup is similar to those found in the coating indus-
closely related to the parity-breaking bifurcation of an inter-try, where the instability is known as the ribbing instability
face, a secondary instability that was described by Coulle,16]. At threshold, the downstream meniscus undergoes a
Goldstein, and Gunaratid 1], Fauve, Douady, and Thual supercritical bifurcation to a stationary sinusoidal state of
[12], and Caroli, Caroli, and Fauy&3]. Some preliminary
results of this study were presented in Ré#]. p
This paper is organized as follows. In Sec. Il we present e o - Mylar
the experimental results: the set(pA), the stable states =~ K
(11 B), the processes of nucleation or death of a ¢BIC).
Then we present the phase-dynamic behavior and the evolu-
tion of the phase-diffusion coefficiefit D) and we conclude
this experimental part with a description of a long-lived self-
oscillating transientll E). In Sec. Ill we interpret the results
within the framework of the “k2k” model (Ill A) and of an
“antisymmetry” model(lll B).

~” Thermosutically controlled
oil ank

*Ergsent address: Laboratoire de Physique de I'Ecole Normale FiG, 1. Scheme of the experimental setup. The rotating cylinder
Supeieure de Lyon, 46 Alle d'ltalie, 69364 Lyon Cedex 07, extrudes the oil from a thermostated bath. This oil fills the upper nip

France. _ L ~ between the cylinder and the horizontal glass plate. The down-
"Present address: Laboratoire FAST, assati€NRS et aux Uni-  stream meniscus is unstable if the rotation is fast enough. Two

versites Paris VI et XI(UMR 7608), Baiment 502, Campus Uni- plastic strips are located in the nip and serve as boundaries for the
versitaire, 91405 Orsay Cedex, France. Electronic addressnterface. The displacement of one of the strips is controlled by a
rabaud@fast.u-psud.fr computer and a stepper motor.
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FIG. 2. Image of the downstream meniscus above threshold. % 18 .
The dark line separates the #irelow) from the oil (above). In the S 1.6 * . *
central portion, the plastic strip is visible as it deforms the pattern, % . . "
which is otherwise regular and static. On each side of the strip, the O 1.4 . .
first oil rib is fixed in position. Thus the strip acts as a rigid bound- % . .
ary condition for the phase of the pattern. 1.2 ¥ +*
$ o

uniform finite wavelength. This transition is characterized by 1 (-:.4'
a critical value C& of the capillary number GauV/T [17].
This critical value depends on the thicknelsg. In the 0.8
present study the thickness is kept constayg=(0.4 mm) 4 s 6 7 8 9
and we used a silicon ofRhodorsyl V20)of surface tension k (e 1)

T=20.9x10 3 N/m and viscosity u=0.020 kg/ms. The

critical tangential velocity is thus 220 mm/s, which corre- £, 3. Limits of observed stable wave numbérsersus the
sponds to Ca~0.20. The rotation of the cylinder is con- normalized control parameter Ca/CéObserved steady states lie in
trolled by a DC motor with a velocity resolution of the central tongue. The plotted data represent the last observed per-
=1 mm/s. The interface is observed from above by a chargemanent state before a nucleation or a disappearance of a cell. The
coupled-devicd CCD) camera. The video signal is digitized plot is a compilation of the results obtained by increasing or de-
on a computer and can be analyzed with the freeware NlHreasing quasistatically either the velocity or the length of the in-
Image. terface around a mean vallie=20 cm.

In this particular setup, as in RéfL4]and in contrast with
previous experimen{s 8,19], we can impose the lendthof
the interface by positioning two plastic strips that fill almost
completely the gap between the glass and the cyliEigy.

interfaceL =20 cm. No meaningful change in this diagram
was noticed for the different values of we have explored

1). The maximum value df that we can use is 20 cm due to (L=6 cm). This shows that finite-size effects are not impor-
the limited flatness of the float glass on larger scales. Th&#Nnt when the number of cells is larger than a few ufSter
plastic strips are mounted on carriages that can run along thi?)- At low wave numbers, we completed the diagram by
cylinder axis. One of the two carriages is controlled by avarying L around its average valuévariations of about
stepper motor and an endless screw, allowing one to set tHe€%): “Horizontal” runs (for a given Ca/Ca) were more
position of the strip with a relative precision of 1@n. Each  suited to this region. Increasingby small stepsk decreases
strip acts as a boundary for the interface, and fixes the neigland we can measure the wave number before nucleation and
boring cell at a constant distance from the stfjg. 2). Thus  this gives the left boundary of the wave-number range,
we can introduce an effective length of the Hox defined as  whereas decreasirigleads to the disappearance of one cell,
the real sizeL minus the width of the two trapped cells. In limiting the wave-number range on the right-hand Sigig.
contrast with the case of low thickness gradiert], here the  3). After any step inL or Ca, we waited at least 5 min to
interface does not present very deep air fingers, but smootheck the pattern stability. A similar technique of varying

cells above threshold. was used by Ahleret al.[2] for their study of the stability of
the wave number in Taylor vortex flow.
B. Permanent stable states Figure 3 shows that a wave number is stable in a finite

range of capillary number. These results are in clear contrast
) ) ) with the observed evolution of the wave number in the same
Increasing or decreasing the velocity, we observe eyxperiment when no plastic strips were predd®]. In that
changes of wave number. However, after some transients the,se \yhere the lateral boundary conditions for the phase
interface always evolves to a static periodic shape of COMyare “free,” we observed a continuous evolution of the

H H *
stant V\llaveé)numbéak_ in tr(;e do.ma':;“;h' Tgesel sta.bfle states wave number with the capillary number, without measurable
are only observed in a domain of the (€pplane: for any hysteresigsee Fig. 3 of Ref[19]).

velocity, depending on the history, any value lofin this
domain can be obtaine(Fig. 3). In order to observe the
limits of the wavelength range of the pattern, a first set of 2. Shape of the interface

experiments at fixed size were realized. Increasing the ve-

locity V (and therefore Gaby small steps of 1%, we mea- Just above the onset of the instability, the interface is
sure the wave number of the last observed stable pattergjnusoidal and thus exhibits an up/down symmeftFyg.
preceding the nucleation of a new cell. These data give oné(a)]. When Ca/Ca>1.10, the pattern loses this air-oil sym-
limit of the wave-number range. The other limit can be de-metry. Air cells become larger and oil domains narrower
termined the same way by decreasing the velocity andFig. 4(b)]: the harmonics of the fundamental mode have
watching for disappearance of cells. Figure 3 illustrates theonzero amplitudes, which gives to the pattern its nonlinear
stable states we have observed for an average size of tlshape.

1. Stable wave numbers
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FIG. 4. Images of all the unstable interfade<12 cm) between
oil (top) and air (bottom). (a) Symmetric case near onset
(Ca/C& =1.04). (b) Nonlinear shape for Ca/@& 1.63 when the
air-oil symmetry is broken.

C. Transient states

We will now describe the transients that give rise to an
adjustment of the wave number in the vicinity of the limits of
Fig. 3.

1. Large wave-number process

When studying the limits of stability in the right-hand
limit of Fig. 3, we observe transients that are different from
those observed with open boundary conditin9]. Here,
with the rigid boundary conditions, the transient linked to the
disappearance of a cell basically follows the same process
for all explored Ca. As illustrated in Fig. 5, one air cell
slowly starts shrinking and loses amplitude, then disappears
suddenly. The two neighbors form for a while a pair of

FIG. 6. Evolution of the entire interface during a nucleation for
e G 0 b S A Sl Cal/Cd =1.26. (a) Eight successive snapshots. Time progresses
S NN 40 s from top to bottom with nonconstant delay between each im-
i : ) age.(b) Temporal evolution of one horizontal video line during the
e e W N W N W o .
same event and for the same duration.
e W A W W N

et e e e NN IS asymmetric air cells. These larger cells shrink while the
phase defect diffuses through the whole pattern, leaving a
stable pattern with a new wave numtiér=k—2=7/L*. The

whole process is slow, of the order of 30 s in Fig. 5.

B P N N T o W
e N e W N W N
e e W N W W

P i A A T e e 2. Low wave-number process

B W N N Contrary to the preceding case, the nucleation process ob-
served in the left-hand limit of Fig. 3 depends on the value of
Ca. The transients are different for small or large Ca.

For small values of the capillary number
(Ca/C& <1.32), one air cell slowly starts increasing its
length and losing amplitudérig. 6). The process that con-
centrates this phase defect is fairly long. Then, an oil inden-
tation quickly grows at the tip of this air cell and the two new
cells grow while the phase defect diffuses through the whole
pattern. Conversely, as can be seen in Fig. 7 for larger
Ca (Ca/C&>1.32), the transient begins suddenly when one
oil domain changes shape; the two neighboring air cells lose
their left-right symmetry, creating a pair of abnormal cells

FIG. 5. Evolution of the entire interface during the disappear-L19); the amplitudes of which are smaller whereas their
ance of a cell for Ca/Ca=1.11. () Ten successive snapshots €NGths are larger. These abnormal cells have quite a long
showing the death of the second air cell from the left. Timelife (& few seconds). The separating oil domain then starts
progresses 30 s from top to bottom but there is no constant delagscillating from left to right, and finally splits into two dif-
between each imageb) Temporal evolution of one horizontal ferent oil domains separated by a new air cell. The nucle-
video line crossing the interface during the same event and for thation processes are thus quite different according to the value
same duration. Oil domains appear darker than air domains. Agaiaf Ca: for weak Ca, one oil domain grows in an air cell,
and as in all the figures, time progresses from top to bottom. whereas for strong Ca, one air cell grows in an oil domain.
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FIG. 8. Forced oscillations of the pattern. This picture shows the
evolution of one video line cutting the interface. Time progresses
530 s from top to bottom. The plastic strifeft) oscillates with a
frequencyf=0.005 Hz. The amplitude oscillation is very large in
order to obtain an easily observable deformation. The perturbation
of the oil ribs(dark)is attenuated and the phase shift from rib to rib
increases linearly with the distance from the plastic strip.

FIG. 7. Evolution of the entire interface during a nucleation for
Ca/Cé& =1.34.(a) Ten successive snapshots. Time progresses 50 s 2. Experimental procedure
top to bottom in with nonconstant delay between each imége. . .

Temporal evolution of one horizontal video line during the same O various capillary numbers, we want to measure the
duration. diffusion constanD varying the wave numbek, which can

be tuned by changing the size of the box. We must then

We will see in the next paragraph that these two differenh0ose the average lengthof the interface, the amplitude

processes for nucleation can be linked to the response of tHfe and the frequency of the oscillation. These three param-
pattern to small perturbations. eters must satisfy contradictory needs. Lengtimust be

large enough to have a large number of cells but not too

D. Measurement of the phase-diffusion coefficient

1. Demonstration of a diffusive process for the phase 1
of the pattern

T T

Following the works of Wesfreid and Croqueft20] and
Wu and Andereck21]and with the aim of characterizing the
Eckhaus limit, we tested the response of the pattern to a
small perturbation. We introduced an oscillating boundary
by imposing a sinusoidal motion to one of the plastic strips.
After a transient, the whole pattern oscillates at the forcing
frequencyf, but the perturbation is attenuated and out of
phase far away from the oscillating waHig. 8). The attenu-
ation from cell to cell of the amplitude of oscillation is well -
fitted by an exponential curve with a decreasing faator a
whereas the phase of the oscillation appears to have a lineal o
behavior of slopeB. The phase of the perturbation can there- A
fore be writteng(x,t) = ¢ exd —(a+iB)x+iwt], wherex is A
the distance to the oscillating sifi21]. The two coefficients &
a andB can be determined from the spatiotemporal image of 0.1
Fig. 8. 0.001 0.01 £ (Hz) 0.1

We have checked experimentally that for a wide range of

frequenciesf, a~pg and that the two coefficients scale as  F|G. 9. Evolution ofa and 8 vs the frequency of the oscilla-
f¥2 (Fig. 9). These results are typical of a diffusion equationtion on log-log scales. Within the limits of the precision of the
for the phase of the patterg;=D ¢,,. The diffusion coef- measurementsy=p. The dashed line represents the best power-
ficient D is then given byD = wf/aB [21]. law fit, whose slope is 0.48.

a, B (cm™)
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large, because the diffusion time scaled dsand transients 0.5 ' ~ -
become too long. The amplitudeof the perturbation has to I

be large enough to be measur@dfew pixels wide)but not *
too large compared to the wavelength, especially when 0.4 1
reaching the borders of the stable domain where the interface T I
becomes very fragile. Finally, the frequentymust be low }k H }
enough to have a large penetration depth of the oscillation, l
but not so low as to avoid the reflection of the oscillation on
the fixed boundary. We chose to work with an average size
L =10 cm(which leads to a typical diffusion time along the
interface of 500 s), an amplitude of the perturbation
A=0.6 mm (less than 10% of the wavelengthand a fre-
guencyf=0.02 Hz. These values allow for good precision in
a reasonable amount of time. We explored the values 0.1
Ca/C& =1.16, 1.30, 1.50, 1.65, and 1.80.

D (cm?/s)
[—)
b w
=~
L
——y

3. Behavior of the phase-diffusion coefficient versus k 0 . .

For low capillary numbefCa/C& =1.16, 1.30), as shown 4 5 6 7
in Fig. 10), D is decreasing at the extremities of the wave- k (cm™ 1)
number range. The values Dffor extremek are almost half
the values ofD for a meank. This result is the classical 1.2 y T T
result observed in other experiments exhibiting an Eckhaus I
instability [20,21]. [
For high capillary numbefCa/C4& =1.65 or 1.80, the 1 lT
behavior ofD is quite different from the previous one: if a -
decrease oD for the largesk can still be seen, the trend for 0.8
the smallestk is opposite[Fig. 10(b)]. A growth of 50—
150 % of D whenk decreases to its smallest value can be
measured for Ca/Ca=1.65. This quick growth oD toward
the high values of Ca and low values lofs also illustrated
by Fig. 11 which plots the behavior &f with Ca for a given
k (the size of the box. and the number of cells is fixed for
the whole run. We can see thdD is 2 or 3 times larger for
the highest Ca than for a mean Ca, whereas it is slowly 0.2
decreasing for the smallest values of Ca. b
For intermediate capillary numbers (CafGal.50), the ) . ' .
behavior of D corresponds to a blend of the two previous 06 7 8
behaviors(Fig. 12). If the decrease for the largédsis still -1
observed, the behavior on the other edge of the wavelength k (cm )
range is less clear. We were unable to determine whether the ;5 15 Evolution ofd vs k for L =10 cm and for two values
transition between the decreasing and growing behaviors i ca Error bars show the extreme measured values.
easy through a state wheie goes to a finite nonzero value ca/ca=1.30. D decreases on both edges of the wave-number
or if it is a fairly sharp jump from zero te-o [22]. range, which characterizes an Eckhaus instability procéss.
The behavior oD for small Ca is close to the theoretical ca/C4 =1.65.D decreases for largk, whereas it increases for
behavior of the Eckhaus instability: the decreasindpab 0  smallk.
on the edges of the wave-number range is the signature of

such an instability8]. Experimentally, it is not possible to s state, all the cells shift in phase alternately to the right
reach these very low values db because any finite- ang to the left. This state usually lasts more than one hour
amplitude perturbation induces a change of wave numbegjthough in all cases when we waited long enough it even-
The behavior oD for _Iarger Ca can be inte_rpreted the_sametua"y decayed and disappeardelg. 13(a)], which makes it
way for the largesk: its decrease on the right-hand side of 5 transient. This transient state is characterized by extremely
the wavelength range is clear but not strongly marked bepy oscillation frequenciesT=100s). Similarly, slow os-
cause here also it is experimentally difficult to perturb thegjjlations have been observed in a Taylor-Couette system
extreme values ok. The unexpected result is the quick [23]. The oscillation amplitude of each cell varies according
growth of D for the smallesk, but as we will show in part to its position along the interface. This amplitude is well
IIl, this growth can be ascribed to the proximity of a parity- fitted by a sine function and thus corresponds to the first
breaking bifurcation. resonant mode of the effective intervial (Fig. 14). For
fixed values of the parameters, we also measure the period of
the oscillations as a function of the sik& of the box. This
When we abruptly increase Ca, we sometimes observe ia difficult to realize, as we are not able to trigger these
long transient self-oscillating state of the pattéfig. 13). In  transients. However, the evolution of the frequency of oscil-

—p—i

D (cm2/s)

=

L.
—p—

—

E. Self-oscillating states
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FIG. 11. Evolution of D vs Ca for k=6.8cm! and
L=10cm. The coefficienD decreases for small Ca and increases
for large Ca.

lations with L* is compatible with a linear behavidFig.
15). Most of these results may be understood through the

Ca/C&=1.6, L*=7.1cm, and time from top to bottom corre-

e. sponds to 2500 s. The period is of the order of 130 s. Note that the
IIl. THEORETICAL INTERPRETATION amplitude of the oscillations decreases slowly with tingb)
) Ca/C&=1.2,L*=13.6cm, and time from top to bottom corre-
A. Long-wavelength instability of the k-2k model sponds to 2000 s. The period is of the order of 400 s and the

h diff del itv-breaking bif amplitude much larger than in ca&®. The oscillations are of large

T ere are different ways to model a parle— reaxing i ur'amplitude and not sinusoidal. Note that the right-hand boundary is
cation. One of these has been much studied in recent years; visible in this picture.

[12,18,24-26]. It involves the interaction between the first

modek to appear in an instability and itskzharmonic. The
presence of this harmonic breaks the air-oil symmetry of the
interface[Fig. 4(b)]. The so-callet-2k model can be writ-

1.4
] ° ] ten as a set of two coupled Ginzburg-Landau equations:
1.2
' 200
A A A A
@ 150 N
oy
= A
: A
8100 A
s s s
N’
< 50 =
A
0
4 5 6 7 8 9 4 A
Kk (cm’ 1) *
0 0.2 0.4 0.6 0.8 1
FIG. 12. Behavior ofD with k for various values of Ca x/L*
[Ca/C& =1.16(A), 1.3(A), 1.5(0), 1.65(®) and 1.8(O)]. The
lines are guides for the eyes. If the behavioiDofor largek is the FIG. 14. Amplitude of the oscillation vs the dimensionless ab-

same for all Ca, it switches from decreasing to increasing for thescissax/L* corresponding to Fig. 13(b). The dashed line is a fit by
smallestk when Ca increases. a sinusoidal function of period 2.
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800 Ca 2 =0 c =0
A H 7
43/ Eckhaus
R 4
600
A
@ =0
f= 400
o2 c 'k
200
A FIG. 16. Theoretical wave-number selection diagram. The line
n1=0 is the marginal stability of & mode (appendix of{18,19]),
mo>=0 corresponds to the marginal line forkamode whose har-
0 monic X becomes unstable. Ti@&=0 line is drawn close to thek2
0 2 4 6 8 10 12 marginal stability curve. The Eckhaus line is deduced from the
lower branch by a factor of 3 ifiCa-C&)/Ca‘. The stable domain
L* (cm) y c )

is between the Eckhaus and t8e=0 lines.
FIG. 15. PeriodT of the self-oscillation vs the effective size of .
the cellL*. However, at this stage, we have not yet proved that the
upper limit of the experimental wave number stability range
(Fig. 3) is due to a parity-breaking bifurcation. In particular,
(1) the large increase of the phase-diffusion coefficlentFigs.
. 10-12 has yet to be understood.
Az= a(K)Ag+ yAT —a,| Ag|?Ay— by  Ag %A, Therefore, we study th&-2k coupled equations under
infinitely small perturbationsg| on the wave numbek:
with A; andA, respectively the amplitudes of the first mode
and its harmonic. This model is valid in the vicinity of the A=A [1+a; expst+igx)
codimension-2 point, where bojky, andu, are small. In our
study we will further expand the range of validity of this
approximation. The originality of this model lies in the fact
that the parity-breaking mechanism is not explicitly intro-
duced in_the equations, contrary to other anal;l{sdg. In +ay _q expist—igx)]expi(2kx+¢),
fact, the interactingy terms control the phase shift between
modesk and X. where thea; . are small.

As long asA, is strongly damped, thekkmode is slaved We will also expandu,; and u, aroundk to the second
to thek mode, and there is no phase shift between them. Bubrder inq:
when u, gets closer to Qbut remains negative), thek2 .
mode grows independently and the pattern breaks the right- _ / 4y
left parity. This pattern is no longer stationary: all the cells pakF @)= () +apy () + 5 py k) £y
propagate steadily along the interfa¢6]. This parity- )

breaking bifurcation occurs on the line wheZe=0, where , a®
pa(k+ )= pa(K) +qua(k)+ = pa(k)+---

Ar= (KA — yAT A~ a1|A1|2A1_ b1|A2|2Ala

+a; _q expist—igx)Jexpi(kx+6), 3

A=Az [1+a, exp(st+igx)

C=(pib—p22)*=y*(2a+b)(2u1+ o), 2)

This leads to a A4 matrix on thea; .. This matrix has

with a=2a;+b; andb=2a,+b,. four eigenvalues, three of which are negative. The last one is
In fact, in experiments, the control parametarsand w, close to 0 and is given by

depend not only on the capillary number Ca but also on the
wave numbetk. Therefore, this parity-breaking bifurcation
(PB) condition corresponds to a line in the (Raplane. In
Fig. 16 we plot the two curvelu,;=0 andu,=0) given by
the linear stability analysis of the menisc(&ppendix of  whereF is a complicated number which is positive for small
[18,19])and we draw the PB line close @,=0 according enoughy, by continuity with the case/=0, andC [defined
to previous arguments. Figure 16 shows that the patterin Eq.(2)]is positive and goes to zero at the PB bifurcation.
should be stable between the Eckhaus line and the PB lingherefore, theory predicts th&t will diverge to + in the
Beyond the Eckhaus line the pattern is expected to be urvicinity of the PB line. This behavior was checked numeri-
stable and to exhibit a behavior consisting of concentratiorcally as well(see Fig. 4b of Ref[14]).
of phase defects, whereas over the PB line, it is likely to This model first explains why we have observgdD)
exhibit a propagative state or some kind of transient scenarithis strong increase iD. It also shows that a divergence of
beginning with a parity breaking#,18,26]. D is thesignatureof a parity-breaking bifurcation. We may

_ F
s=—Dg? with D=5, (5)
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where all the parameters are real and the control param-

2.2
/ eter of the PB state.
5 / 1 In a spatially extended system, these coupled equations
/ o . with all the terms allowed by the symmetrigk3] are given
b
1.8 / o Y
/ 0" G Xt:dXxx+8¢xX+MX_aX3+a1¢xx+ YXXxt D1y bxx,
2‘3 1.6 / T (5] (7)
[n) a
B 1.4 /n = 1= D yxt o)X+ xxxx+ Cox XxT A2Pxbx -
/@D o Fauve, Douady, and Thugl2]and Riecke and Pad@7]
1.2 e S— .;pD ot 4 showed that the term ¢,y makes the PB-state phase un-
/ @ oalat & stable just beyond the bifurcation where it should appear.
1 ,A“‘ 15 8 However, it has been shown that inclusions of such a parity-
breaking state may exi§28,18,26].
In our case, we want to study what happens before the
0.8 ) 3 4 5 p ; s 9 parity-breaking bifurcation takes place. We will therefore
L study the following system where all the second-order and
k(em™ ) third-order terms are neglected:
FIG. 17. Experimental wave-number selection diagram. The Xt= Xt Axyxt a1 dyx,
open squareg[]) represent the experimental limitsipper and ®)
lower branchespf the observed modgsame as Fig. 3). The open dr=wx+ D dyxtasxxx-

triangles(A) are deduced from the lower branch by a factoéo'h

(Ca-Ca)/Ca. Filled triangles are deduced from the open triangles  In this systemu is negative and andd represent the

by a horizontal compression factor of 2kn The extrapolation of a  “natural” diffusion. Conversely, thea; term introduces the

parabolic fit through these filled trianglésontinuous linejs in fair ~ effect of phase inhomogeneities on the antisymmetry of the

agreement with the upper branch of the experimental data as pr¢gattern, which is a fairly natural effect that would otherwise

dicted by the model. not be taken into account. Tta term will be considered to
be weak against they term.

check the validity of this understanding of the wavelength- This linear system quds to a.dispersion relation for nor-
selection mechanism as a PB bifurcation by deducing thd'al modes of the following form:

expected position of the PB line on the experimental graph _ ;
(Fig. 17). In this figure we first plot the experimental data of $= doexpshexpiax), 9
Fig. 3. From these data, assuming that the lower branch cor- Y= XoEXP(Shexpigx).

responds to the Eckhaus line, we estimate the marginal sta-
bility curve (u,=0) by a compression by a factor 3 of the  Introducing these expressions in E8), one reaches an
Ca axis(this transformation would be exact near thresholdeigenvalue problem for which the discriminant is to the order
for a parabolic marginal stability curyeFrom this new g2

curve, we deduce the marginal stability curve of tiken2ode

(u2=0) by a compression by a factor 2 of tkeaxis. The A(q)=u®~2(d—D)ug®~4a;09°. (10)
extrapolation of this last curve for larde is close to the
experimental low limit ok. The agreement between the two
curves is surprisingly good considering the approximaed _ 2.

factor between the Eckhaus line and flag=0 curve. _& (a+ D)Zq = VA(@) )

The eigenvalues are written as

(11)

B. Antisymmetry/phase model In the limit g— 0 this relation is writters= u (damped

mode)and

A general way to describe a parity-breaking bifurcation
was proposed by Coullet, Goldstein, and GunardthE]. | ,
The basic idea is to postulate a pitchfork bifurcation for the s=—|D- 7 as (12)
antisymmetryy of the pattern(which can be understood in
the k-2k model as the phase shift between thenode and Equation(12) leads to a phase-diffusion equation:
the Z harmonic), and to introduce a link between the phase a
¢ and the antisymmetry. This leads to the following sys- -’ ; B
tem of coupled equations: $1=D" ¢y with D'=D W (13)

It is therefore shown that if the terin w is positive, the
6) effective phase-diffusion coefficiem’ actually diverges in
the vicinity of any parity-breaking bifurcation gg—0".
o= wy, This behavior should be observed in various other experi-

Xt=mx—ax®,
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mental systems. The measurement of the phase-diffusioof the oscillation(Fig. 14) corresponds to the first resonant
constant could then be a tool of investigation to identify anycavity modeg* = #/L*. Finally, Eq. (14) predicts that the

parity-breaking bifurcation. oscillation periodT is proportional toL* if g=qg*. In Fig.
15 we indeed observe an increaseTothat could be linear
C. Consequence: Evanescent cavity modes but not proportional td_*.

In a cavity of sizdL*, the phase perturbation must be zero
at the extremities of the interface, so the wave numndper

must be a multiple ofr/L* and cannot vanish. It is thus |y this paper we addressed the wavelength-selection
possible forA(q) to be negative for smalk if the terma;w  mechanism in a directional viscous fingering experiment. By
is positive. If it is the cases is complex and oscillatory the response of the interface to local periodic perturbations
states could exist in the cavity. For example if the t&r®  of the wave number, we observe a diffusive process of the
is dominant in Eq. 10A(q)~ —4a,0q°] the imaginary part phase perturbation and determine the corresponding diffu-

IV. CONCLUSION

of s corresponds to an oscillation of period sion constanD. From observation of the interface as well as
measurements oD, we demonstrate first that, close to
T=27l(qva,0) (14) " threshold, the wave-number range is controlled by the Eck-

haus instability. For larger control-parameter values the
wave numbek is still limited by the Eckhaus instability in
the large-klimit but not for low k. This lowk limit is char-
T=—2[pu—(d+ D)qz]_ (15) acterized by a strong increase®f This result and the shape
of this low-k limit, when analyzed through a model of
This equation shows that the less-damped mode corresoupled equations for theand & modes, suggest the prox-
sponds to the smallest mode of the cavity € #/L*). This  imity of a parity-breaking instability. We believe that this
mode will correspond to out-of-phase oscillationggindx  new wavelength-selection mechanism is general and should
[Eq. (9)]. Similar oscillatory states, but not transient in char-pe encountered and demonstrated by the divergengeinf
acter, were obtained theoretically in a parity-breaking bifur-other systems presenting a bifurcation to asymmetric states.
cation with an inhomogeneous syst¢29]. Finally, long oscillatory transients of the pattern were oc-
This analytical result on the existence of a transient oscilcasionally observed and were interpreted in the same parity-
latory state is strongly analogous to the experimental resultsreaking instability framework.
of Il E. Indeed, we observe in Fig. 13 in-phase oscillations of
the oil ribs. Thus, as time goes on, the interface alternately ACKNOWLEDGMENTS
presents a pattern with asymmetric propagating air cells of
homogeneous size and a pattern with symmetric air cells of We would like to especially thank Henry Thomand
inhomogeneous size. This behavior is exactly the one pre¥ves Couder for their help during the experiments and for
dicted by the previous analysis. Furthermore, the amplitudéruitful discussions.

when the negative real part sfcorresponds to a damping
time
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