
On the effects of Non-Newtonian fluids above the ribbing
instability

L. Pauchard, F. Varela LÓpez*, M. Rosen*, C. Allain, P. Perrot** and M.
Rabaud

Laboratoire FAST, Bât. 502, Campus Universitaire, 91405 Orsay Cedex, France
*Grupo Medios Porosos, Facultad de Ingeneria-UBA, Paséo Colon 850,1063

Buenos Aires, Argentina
** Laboratoire Biorhéologie et Hydrodynamique Physicochimique, 2 place

Jussieu, Campus Universitaire, 75251 Paris Cedex 05, France

The topology of the flow is of most importance for the final properties of coated
surfaces. This topology is mainly controlled by the viscosity of the liquid sheet.
However, in most coating systems this viscosity is not a constant and depends on a
variety of experimental parameters, the most important being the mechanical stress
the fluid is exposed to. Thus, for Non-Newtonian fluids in roll coating geometry,
several changes are observed in the manifestation of the instability. In this article, we
present first the rheological properties of some Non-Newtonian fluids used, then the
experimental results on the shape of the unstable meniscus observed above onset in a
journal bearing geometry described in a previous paper1.

1. RHEOLOGICAL PROPERTIES

The liquids used are semi-dilute solutions of two polymers in a mixture of
water and glycerol (usually 10% and 90% respectively). One fluid is a solution of a
semi-rigid polymer, a polysaccharide (Xanthan), exhibiting strong shear-thinning
properties. The second fluid is a solution of a flexible polymer, an hydrolysed
polyacrylamide (Separan AP45), exhibiting shear-thinning but also strong elastic
properties. For each solutions, the apparent shear viscosity µ was measured in a
large range of shear rate ˙ γ  at 20°C, using a constant stress rheometer (Rheological
Stress-Tech) in a cone-plate configuration. The steady state shear viscosity
decreases with the shear rate and increases with the polymer concentration (Fig.
1a). These measurements are characteristic of a shear-thinning behavior and well

fitted by a Carreau law : µ =µ s +
µ 0 −µ s

1 + ( ß ˙ γ )α  where µs is the viscosity of the

solvent, µ0 is the law shear viscosity of the solution and with the exponent 0 < α <
1.

In addition, a very important effect for the flow of concentrated solutions of
flexible polymers is the existence of large normal stress. Indeed when such solution
is sheared in the xy plane by a velocity gradient dvx/dy, the pressure on a wall
located in the xz plane is augmented by the first normal stress difference, noted N1.
When in the lagrangien frame of reference of a fluid particle the flow is non
stationary, the structure of the flow is extremely sensible to the existence of such



normal forces. One of the most classical phenomenon characterising elastic
polymer solutions is die swell effect. Such liquids emerging from a capillary tube at
low Reynolds number form an expanding jet which diameter increases to a
maximum value downstream of the exit. The maximum diameter may be several
times larger that the capillary inner diameter, depending on the imposed flow rate
and thus on the wall shear rate (Fig. 2). The first normal stress difference can be
directly measured with our rheometer or deduced from the swell ratio using the
Tanner’s model2 a method that allows to reach larger flow rate. The variations of
N1 as well as the normal stress coefficient Ψ1 (defined as     Ψ1 = N1 / ˙ γ 2 ) versus the
permanent shear rate ˙ γ  are presented on Fig. 1b for the polyacrylamide solution.
For the Xanthan solutions, no significant normal stress can be measured.

In a cylinder/plate geometry or in a journal bearing one induced by the walls,
the effective shear rate can be estimated as planar Couette shear, thus as the ratio
V/b, V is the difference of tangential velocities of the two surfaces and b the
clearance between them ; such estimation neglects all the shear induced by the
pressure gradient along the flow. With the selected fluids, the instability occurs
when the shear rate is in the range 10 to 100 s-1, thus in the region where the shear-
thinning behaviours are significant. The experimental results for the onset values of
the ribbing instability are presented in a companion paper1.
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Fig. 1 : (a) Variations of the shear viscosity µ versus the shear rate : (m) Xanthan at a
concentration of 3000 ppm in weight in a mixture of 90 % glycerol and 10 % of water ; (u) AP45
at 3000 ppm in the same solution and (5) Xanthan at 1000 ppm in pure water. Dashed lines are
adjustment by Carreau laws with respective exponent α = 0.71, 0.82 and 0.55.

(b) First normal stress difference N1 and coefficient Ψ1 versus the shear rate for
AP45 : (s) N1 measured with the rheometer ; (l) N1 deduced by the die swell and (m) Ψ1
calculated with the previous points. For the Xanthan solutions, N1 is so small that it cannot be
measured (N1 < 5 Pa).

    

Fig. 2 : Photographs of the die swell jet of a 3000 ppm for AP45 in a mixture of 90 %
glycerol and 10 % of water, for increasing values of the wall shear rate ( ˙ γ  = 29, 140 and 714 s-1).
Note that the maximum diameter of the jet is obtained at a distance of the orifice. This distance is
related to the short time of relaxation of the solution ; this time is here of the order of 0.1 s but
decreases with ˙ γ .2



2. SHAPE OF THE AIR FINGERS ABOVE THRESHOLD

In a roll coating geometry, when the angular velocity of a roll exceeds a critical
value, a steady state of a stable fingering pattern with characteristic wavelength is
formed. Above onset, the amplitude of such deformation of the interface, i.e.
difference between the front and the back of the fingers, were measured as a
function of distance to threshold ε=(V-Vc)/Vc (Fig. 3a). On Fig. 3b the evolution of
the wavelength is plotted versus distance to threshold. As for newtonian fluids the
wavelength decreases as ε3. Figure 4 shows pictures of Xanthan–air and AP45-air
interfaces as well as the shape of a newtonian oil-air interface for comparable ε.
With Xanthan as well as with AP45, the shape of the air fingers evolves
continuously to an angular shape comparable to a gothic arch with almost an angle
at the tip of the finger. Such evolution was never observed with newtonian fluids,
but is observed also for Boger fluids4. Thus this change of the form is not only due
to the shear-thinning properties of our fluids.

On figure 5 we present such evolution of the shape of the finger when
increasing ε for a Xanthan solution.
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Fig. 3 : For a 3000 ppm Xanthan solution : (a) Evolution of the position of the meniscus xm

back (5) and xm front (❍) below and above threshold (Vc ≈  30 mm/s) as well as the amplitude A of
the finger A = (xm front - xm back) above threshold (l) and (b) evolution of the wavelength of the
pattern as a function of ε.



Fig. 4 : Three photographs of the steady state of the downstream meniscus for a velocity of the
inner cylinder above the critical value (the outer cylinder being fixed), at about the same distance
ε ≈ 0.2 from threshold. In each picture liquid is above and air below : (a) newtonian fluid (Silicon
oil) ; (b) Xanthan and (c) AP45.
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Fig. 5 : Photographs of the interface with a Xanthan solution (3000 ppm) for increasing ε : (a)
ε = 0.75 ; (b) 1.25 ; (c) 3.5 ; (d) 6.0 and (e) plot of the azimuthal position x of the interface versus
the dimensionless axial position z/λ where λ is the wavelength of the finger : (l) ε = 0.75, (5) ε
= 3.5 and ( ) ε = 6.0.



3. CONCLUSION

For shear-thinning solutions we determined the main rheological properties
and shown that above threshold the interface is still formed of air fingers
penetrating in the liquid, but contrary to newtonian cases, theses fingers become
sharp above the onset. This shape evolution exists for non elastic as well as for
strongly elastic fluids.
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