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Abstract
We study the deformation of a thin elastic shell in di� erent situations: case (i)

contact with a rigid plane; and case (ii) subject to a localized load. In case (i),
experiments show a ® rst-order (discontinuous) transition between two di� erent
con® gurations: the ® rst characterized by ¯ at contact between the shell and the
rigid plane and the second by an inversion of curvature leading to contact with
the plane along a circular ridge. In addition, the s̀low’ impact of an elastic ball
presents, qualitatively, a highly anomalous behaviour of the restitution coe� cient
due to the dissipative energy caused by the friction between the shell and the rigid
plane. Case (ii) does not present a transition for small deformations; however, for
large deformations on a spherical shell there is a symmetry breaking of the
axisymmetric fold shell into corners and polygons to diminish its energy.

§1. Introduction

One of the most famous problems of contact goes back to the wonderful solution
by Hertz of the deformation of elastic bodies when they are compressed against each
other. The contact appears as an extreme of the body realizing a singular contact.
The problem is to determine the way in which the force is transmitted. Let us
describe the Hertz solution brie¯ y. As shown in ® gure 1, the deformation ² happens
in a region of linear size z ~ ( R²) 1 /2. Therefore, the strain scales as
¶ u/¶ x ~ ² /( R²)1 /2 = (² /R)1 /2, and the total elastic energy stored in the volume
( z 3) where the elastic deformation occurs is

U < E ò dV
¶ u
¶ x( )

2

~ E z 3 ²

R
~ ER1 /2

²
5 /2. (1)

Here, E is Young’s modulus. The force (- ¶ U /¶ ²) is then proportional to the sesqui-
power of the deformation. This nonlinear law comes only from a geometrical factor,
for instance in the case of an elastic cylinder in contact with a rigid plate, the elastic
energy is quadratic in the deformation: U ~ EL²

2, L being the length of the cylinder
taken to be much larger than the radius R.

In this paper we deal with the contact and deformation of elastics shells. We
consider them as quasi-two-dimensional elastic sheets, where the thickness, denoted
by h, is much smaller than the other two spatial lengths. The theory of plates was
established by FoÈ ppl (1907) and provides a set of nonlinear coupled partial di� er-
ential equations, the so-called FoÈ ppl± von KaÂ rmaÂ n equations, which are easier to
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write than to solve. These are valid only for a planar geometry, and a covariant
generalization for any curved shell is lacking. However, in the limit of very thick shell
some results have been obtained (Ben Amar and Pomeau 1997, Pomeau 1998). The
FoÈ ppl-von KaÂ rmaÂ n theory could be applied to shells, if the main deformation is
larger than its radius of curvature. In order to consider the shell as a planar sheet,
Pauchard et al. (1997) found the energy of a deformed spherical shell when the
deformation has an axial symmetry.

In §2 we summarize the experiment and theory realized by Pauchard et al.
(1997). In §3, we describe the dynamical impact of spherical shells and discuss the
restitution coe� cient. Finally in §4, we study a c̀rumpled shell’ , that is a shell under
a large deformation.

§2. Contact of a spherical shell and a plane

In this section, we deal with a situation, rather analogous to the Hertz problem
but for shells: the contact between a spherical shell and a rigid plane. Pauchard et al.
(1994) have discussed recently the compression of a spherical shell (strictly speaking
a t̀ennis’ or a `ping± pong’ ball) in static contact with a rigid plane. This contact
reveals some surprises: the existence of a ® rst order transition as the compression
increases. We have studied such a transition by the following simple experiment.

Let us consider an hemisphere characterized by its thickness h and its radius R.
We studied two types of shells: h/R < 1

10 (tennis balls) and 1
50 (ping± pong balls). Such

an hemisphere is compressed by two parallel rigid plates. The boundary of the half-
sphere is ® xed to the upper surface in order to eliminate possible non-axisymmetric
deformations. The applied load is measured using a dynamometer (® gure 2). The
experiments lead to two di� erent con® gurations corresponding to the contact of the
shell. For low applied forces, the shell ¯ attens against the horizontal surface with a
pro® le schematized on the left in ® gure 3 we call this con® guration I. For higher
compression forces the ¯ attened region buckles upwards as shown on the right in
® gure 3. This inversion of curvature leads to a circular fold and to a trough: this
con® guration will be denoted II. The change in behaviour of the shell can be
described by the variations in the applied force F as a function of the deformation
² ( ® gure 4). Experimental results show that the transition from the ¯ attened to the
buckled con® guration occurs suddenly, revealing a ® rst-order transition at a defor-
mation ² close to twice the thickness h of the shell.
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Figure 1. Elastic deformation of a compressed spherical elastic body of radius R. The region
where the deformation occurs is of size z and it is drawn in grey. The sphere before
deformation is denoted by the grey circle PQ. The linear deformation is denoted by ².
The distance PQ is 2z = (2R²) 1/2 to ® rst order in ².



Contact and compression of elastic spherical shells 227

Figure 2. Experimental set-up. The dynamometer is shown as a spring. The boundary of the
half-sphere is ® xed to the upper surface in order to elimate possible non-axisymmetric
deformations.

Figure 3. Ideal scheme of the two di� erent con® gurations of the deformation of a spherical
elastic shell of thickness h and radius R. As in the Hertz problem the linear deforma-
tion is ². The contact line PQ scales as z ~ ( R²)1 /2.

Figure 4. Dimensionless force (F /Eh2)( R/h) as a function of the deformation (² /h) for a
tennis ball. The experimental measurements describe a cycle compression± decomposi-
tion revealing a hysteresis loop ( d ), forward, ( s ), backward. One notes a sharp
transition for ² /h < 2.



Theoretically, we have estimated the elastic energies for con® gurations I and II,
as a singular perturbation in the limit h ® 0 around an idealized deformation (see
® gure 3) for h = 0. We have (Pauchard et al. 1997)

UI =
C0

4
Eh5 /2

R
²

3 /2 + C1
Eh
R

²
3. (2)

UII = C0
Eh5 /2

R
²

3 /2 + C2
Eh3

R
². (3)

The elastic energy of con® guration I is the sum of two contributions. The ® rst term is
due to the existence of an axisymmetric circular fold, represented in the ® gure by the
angle AÂ PQ and PQBÂ . This energy arises as a balance by between the bending
energy and the stretching energy of a plate. The second contribution is the result
of the compression of a portion of a sphere (the lighter curve PQ in ® gure 3), into a
planar disc (the bold line PQ in ® gure 3). The corresponding length change leads to
an elastic energy term proportional to ²

3. This cubic dependence dominates for large
deformations and the force required to make such a deformation increases very
quickly, thus, it is not surprising that the system makes a transition to a lower-energy
con® guration.

The elastic energy of con® guration II contains a similar contribution coming
from the creation of a circular fold, represented on the right in ® gure 3 by the
angle AÂ PAÂ Â and BÂ Â QBÂ . The second term in equation (3) comes from the change
in elastic energy for the inversion of the spherical section PQ. When one makes such
an inversion, the external radius R+ h/2 becomes an internal radius R- h/2; the
length change makes an energy contribution linear in the deformation. It is then
possible to neglect the second term for ² @ h. However, as we shall see in §4, very
large deformations break the axisymmetric circular fold creating polygonal ridges,
which minimizes the energy.

For small deformations UI <UII, thus con® guration I is energetically favour-
able; however, as ² increases, UII <UI and con® guration II needs a lower elastic
energy. There is a critical deformation, roughly proportional to the thickness h
(depending on only the Poisson ratio), where the transition arises ² . There is no
reason for UI and UII to have the same slope at the transition point. Thus generically
there is a jump in the value of the force as observed in experiments. As we deal with a
® rst-order transition, one expects to observe hysteresis. This is indeed observed, even
qualitatively. However, this hysteresis is strongly dissipative as shown during the
loading± unloading experimental cycle. This dissipation can be determined experi-
mentally by the area enclosed in the loading± unloading cycle (® gure 4). We have
measured this dissipation for two di� erent sets of experiments consisting of a quasi-
static compression of a t̀ennis’ ball in contact with a dry plate and with a wet (with
oil) plate. We have realized di� erent cycles for each set. Those cycles are character-
ized by two deformations: ²i, which is the transition point to the `buckled’ con® g-
uration, roughly equal to 2h, and ²f , which is the maximum of compression.
Experimentally, we observe that the area under the hysteresis loop is essentially
proportional to the relative displacement ²f - ²i ( ® gure 5).
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A possible explanation of this dissipation is the following: the circular contact
line represented by the points P and Q of con® guration II in ® gure 3 makes a relative
displacement respect to the rigid plane AB, creating a mutual friction between the
surfaces in contact.

The energy W dissipated, during the loading± unloading cycle is due to the work
of the friction forces. In general, the frictional forces do not depend on the surface
contact and are roughly proportional to the normal force (the loading force here).
The frictional work is proportional to the normal force and the displacement z .
Consequently, the dissipated energy is

W = ¹ ò
²f

²i

d
R²

2( )
1 /2

[ ] C0
3Eh5 /2

2R
²

1 /2 + C2
Eh3

R( ) ,

= ¹
Eh7 /2

R1 /2
3C0

4 ´ 21 /2
(²f - ²i)

h
+

C2

21 /2
²
1 /2
f - ²

1 /2
i

h1 /2( ) . (4)

For large deformations, one neglects terms in ²
1 /2 and the dissipated energy is

proportional to the relative displacement to the transition point in agreement with
the experimental results.

§3. Impact of a `ping- pong’ ball: the restitution coefficient
Let us consider now the dynamical contact. First we shall discuss the dyna-

mical approach to the Hertz problem. Let us imagine a projectile, of mass m and
speed v0, impacting on a rigid plate. Ideally, the initial kinetic energy 1

2 mv2
0 (the

body is not yet deformed and thus there is no elastic energy) transforms com-
pletely into elastic energy during a time ¿c, to stop the motion of the projectile
at a maximal deformation ²max. The conservation of energy leads to (Young’ s
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Figure 5. The dissipated energy as a function of ²f - ²i. The slope is essentially proportional
to the friction coe� cient (see the text). For both experiments, one gets reasonable
values ¹ < 1 for a dry surface (L) and ¹ < 0.6 for the wet surface ( s ).



modulus is related to the sound speed of the elastic medium and to its mass
density by E ~ c2m/R3)

Ç²2 + kc2E
²

R( )
5 /2

= v2
0, (5)

where k is a dimensionless constant depending only on the Poisson ratio. The max-
imum of deformation scales as

²max ~ R
v0

c( )
4 /5

,
and the time during the collision is (~ ²max /v0)

¿c ~
c
v0( )

1 /5 R
c

.

Therefore, owing to the 1/5 power pre-factor the collision time is much longer than
the time taking by a sound wave to propagate the deformation into the solid ( R/c) .
In this case one might expect the static Hertz solution (1) for the potential energy to a
quasistatic process. In this case Hertz’ theory gives a satisfactory explanation of the
experiments. This quasistatic process could be applied only in few cases; for instance
this approximation in not ful® lled in the axisymmetric two-dimensional case of a
cylinder, where the contact time does not depend on the amplitude of the maximum
of deformation, and ¿c ~ R/c is roughly the time taken by a sound wave to travel in
the section.

The situation for a shell is di� erent; if the initial kinetic energy is low the ball will
be compressed only, resulting in con® guration I. For larger initial energies the
deformation will probably be larger than the critical deformation around 2h in the
experiments. Here we shall use only the ²

3 /2 dependence in equation (3), and neglect
the friction discussed in §2. From the conservation of mechanical energy one gets

²max ~
v
c( )

4 /3 R2

h

and for the contact time

¿c ~
v
c( )

1 /3 R
h

R
c

.

Both formulae are valid for ²max > 2h, that if v0 /c > (h/R)3 /2; for the ping± pong
balls we have v0 /c > 1

325, or v0 > 1m s- 1 because c < 320 ms- 1.
In this situation the contact time is su� ciently large with respect to the time

which is taken by a sound wave to travel around the spherical shell R/c, because of
the factor R/h. This is important because it allows us to use the quasistatic approx-
imation for the dynamic contact, as in the Hertz problem. For smaller speeds, the
force law is di� erent. In particular, it grows faster than linearly; thus the contact time
diverges as v0 goes to zero.

We ® nish this section with a few words about the dissipation created by the
friction between the circular fold of the shell and the rigid contact plane. The follow-
ing considerations are related to the problem of the restitution coe� cient of a ping±
pong ball. First, if the incident speed is slow, such that ²max < 2h, there will be no
strong dissipation due to the mutual friction; the only possible mechanism of dis-
sipation comes from the material, loss of linearity, fatigue, shock waves, etc. For a
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large incident speed, the dissipation comes mostly from the friction between the ball
and the table. This strong dissipation diminishes the speed of the incident particle
after the collision. The mechanical energy theorem gives

v2
0 - v2

1 ~ ¹c2 h
R( )

1 /2 v0

c( )
4 /3

.

Since the restitution coe� cient is de® ned by v1 = rv0, we have

1 - r2 ~ ¹
h
R( )

1 /2 v0

c( )
- 2 /3

.

All the formulae in §§2 and 3 are only applicable for relatively small deforma-
tions (² ! R) . For larger compressions or impact speeds the shell is submitted to
very strong stresses; the shell c̀rumples’ , making folds and ridges of di� erent kinds.
We shall discuss these in §4.

§4. Compression by a localiz ed load

In §15 of the book by Landau and Lifshitz (1967), one ® nds the solution to the
problem of the deformation of a spherical shell under the e� ect of a localized applied
normal load. In a sense, this is the opposite limit to the contact by a rigid plane; the
length scale associated with the applied load is much smaller than the radius of
curvature of the shell. For a small applied load, the deformation is localized around
the single point of application and increases linearly with increasing force. For larger
applied loads, a circular fold centred on the point of contact appears. Here the
applied force is proportional to the square root of the deformation (Pogorelov
1988). The transition between these con® gurations is continuous and the ²

1 /2

power law for the force (Pogorelov 1988) is easy to verify experimentally. Here
there is not a large dissipation because there is no friction between the shell and
the source of the localized load, and the load± unload cycle is more or less reversible.

However, as the deformation is increased, it becomes energetically favourable to
create a polygonal structure essentially composed by a number of right ridges (® gure
6); each one joined by a corner A,B,C, . . .) ; a small-scale structure with a very low
energy, the d cones (Ben Amar and Pomeau 1997). The situation is very similar to the
problem of buckling under a large load considered by Pomeau (1998) in this volume.
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Figure 6. A view from above of the polygonal structure, and the ridges represented as rays
from the centre O to the corners A,B,C, . . . of the polygon.



The energy of the structure has two contributions: the ® rst comes from the
polygonal structure which appears at the place of the circular fold; the second con-
tribution comes from the ridges joining the vertex of the polygon to the centre O
where the load is applied. Let d be the length of an individual side (e.g. AB and n the
number of sides; thus one has nd < p (2R²)1 /2. In the second structure, one has again
n ridges but with a length z . The energy of a ridge depends on its length with
power 1/3 (Witten and Li 1993) and on the aperture angle with a power 7/3
(Lobkovsky 1996). The aperture angle for the ridges of the polygons is essentially
given by the angle AÂ PAÂ Â of con® guration II in ® gure 3, that is of the order of
(² /R)1 /2, while for the radial ridges the situation is more complicated. One needs to
estimate the angle between the `planes’ OAB and OBC which scales as ² /( Rn2) when
it is small. One may note that `planes’ OAB or OBC are not strictly planes because it
costs too much energy to transform a spherical surface OAB or OBC into planes. We
consider them as planes in order to estimate the angle of the ridge OB. The corners
or d cones do not modify the elastic energy very much. Putting all this together, one
gets

U(n,²) ~ Eh8 /3R1 /3 C1n
2 /3 ²

R( )
4 /3

+C2n- 11 /3 ²

R( )
5 /2[ ]. (6)

For a large deformation ², the 5/2 power term dominates. Then the energy
diminishes on increasing the number of ridges. One needs to compare the energies
U(n, ²) with U(n + 1,²) for a ® xed ², to see the number of ridges that needs less
energy, that is we are interested in ¶ U /¶ n = 0. Therefore, the number of ridges scales
as

n ~
²

R( )
7 /26

. (7)

Thus the number of ridges increases with increasing ² just as in experiments (® gure 7).
It is interesting to note that the number of sides of the polygon do not depend on the
thickness h of the shell since ² scales with R. We speak here of a very large deforma-
tion.

There is another physical system from which it is possible to observe a similar
scenario, where an axisymmetric pattern breaks its symmetry into a polygonal struc-
ture, namely a hydraulic jump of a viscous ¯ uid (Ellergaard et al. 1997).

In the case de® ned by equation (7) the elastic energy is a function of only the
deformation:

U ~ Eh8 /3 R1 /3 ²

R( )
59 /39

.

Even if the explicit exponent of ² is about 3/2 as in equation (3) there is a dimension-
less pre-factor proportional to (h/R)7 /39 which reduces the energy with respect to
equation (3) for large deformations. The cross-over deformation between the axi-
symmetric and the polygonal fold appears when one compares this energy with
equation (3), that is

² ~ h1 /15R14/15.
One gets the force directly from the derivative of the energy (6) and as before, having
in mind equation (7),

F ~
Eh8 /3

R2 /3
²

R( )
20 /39

.

In conclusion, `ping± pong’ is easier to play than to understand.
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Figure 7. (a) Number n of ridges of the polygonal structures versus deformation ².
Experimental measurements (X) correspond to the critical deformations at which
discontinuous transitions appear between the di� erent structures. The curve displays
theoretical predictions. (b) Low stress: circular fold centred on the point of contact. (c)
A polygonal structure displaying three sides and three ridges joining the vertex of the
polygon. (d) A polygonal structure displaying ® ve sides. The experiments were done
using a half-spherical shell (radius 28 mm, thickness 0.17 mm).


