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Abstract – Contraction due to drying or cooling of materials yields various self-organized crack
patterns. The junctions between the cracks are complex and form in some conditions, star-shaped
cracks with mostly 90 degrees or 120 degrees intersection angles. Any physical explanation of
the selection of the angle is lacking. Here, we report directional drying of colloids experiments in
capillary tubes allowing to obtain a reversible transition between 90 degrees and 120 degrees. We
show that the transition is governed by a linear elastic fracture mechanics energy minimization
principle hence by only one dimensionless parameter: the ratio between the Griffith length (balance
between the energy needed to create cracks and to deform the material elastically) and the cell
size. We give a straightforward characterization technique to estimate Griffith’s length by changing
the cell geometry. As a bonus, we deduce from it the toughness of drying colloidal suspensions. We
underline that the method may be applied to a broad area of materials, from suspensions (colloids,
paints or mud) to engineering (ceramics, coatings) and geological materials (basalt, sediments).

Copyright c© EPLA, 2010

Introduction. – Giant’s Causeway [1,2], Port Arthur
tessellated pavement [3], Bimini Road [4], Mars poly-
gons [5,6], septarias [7,8], fracture networks in muds,
permafrost [9], paintings [10], gels [11], concrete [12],
coatings are some more or less known examples of
self-organized crack patterns that have intrigued people
throughout history. These patterns are formed by
constrained shrinking of the medium due, for instance, to
cooling or drying leading to fracture. The crack networks
form mostly 90 ◦ or 120 ◦ angles. Intersections at 90 ◦

angles form ⊤ or + shaped connections. ⊤ intersections
are present in fracture networks formed in thin films due
to sequential formation of the cracks [13]. The horizontal
bar of the ⊤ is formed first and the vertical one later.
On the other hand, + shaped connections are necessarily
mostly formed simultaneously, since a crack cannot cross
the free surface formed by another. They can be observed
on Bimini Road formed by contraction of sedimentary
rocks [4] or Port Arthur tessellated pavement (Eaglehawk
Neck, Tasmania) (fig. 1(a)) whose formation is poorly
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understood but may be due to evaporation or cooling
shrinkage of sedimentary rocks [3]. Intersections at 120◦

can be observed during the cooling of basalt [2]. They
are formed simultaneously and appear as � star-shaped
connections. The Giant’s Causeway, forming at some
places a regular hexagonal tessellation (fig. 1(b)), is an
example of such connections.
Intersections formed simultaneously, that is � or +

intersections, can be reproduced experimentally in differ-
ent kinds of experiments. In experiments on drying of corn
starch [14–16] or on cooling of ice [17], the fracture network
is complex and forms a polygonal pattern with mainly
� intersections. + intersections have been observed in
directional-drying experiments of colloidal suspensions in
capillary tubes [18]. But to date, no experiments exist that
allow to control the transition from � to + intersections.
In the lack of such experiments, previous theoretical
predictions focused mainly on quasi-hexagonal crack
patterns, in particular on their scaling [19–21] or the
maturation of their shape [22–25]. In general, the hexag-
onal crack pattern is believed to be the solution of the
energy minimization principle as in foams [22,26].

26002-p1



G. Gauthier et al.

Fig. 1: (Colour on-line) Examples of polygonal patterns:
(a) Port Arthur rectangular tessellated pavement, Tasmania
(Courtesy of Wayne Bentley); (b) Giant’s Causeway hexagonal
tessellated pavement, Ireland (Courtesy of A. Davaille).

In this letter, we report directional-drying experiments
of colloidal suspensions in capillary tubes that allow to
control the transition from � to + intersections. We show
that the transition is governed by a Linear Elastic Fracture
Mechanics (LEFM) energy minimization principle [27],
hence by only one dimensionless parameter: the ratio
between an internal length, the Griffith length, depending
on the loading and the material, and an external length,
the diameter of the tube. A straightforward method to
estimate this parameter is given. This method is applied
to the determination of the toughness of drying colloids
(it seems that to date, only one such data exists [28]).

Experiments. – Directional-drying experiments are
performed in circular capillary tubes [18], of length 12 cm
and inner radius R= 0.5mm, with an aqueous colloidal

Fig. 2: The capillary tubes are filled with a colloidal suspen-
sion. The single bottom open edge allows for evaporation of the
solvent. Cracks appear following the compaction front (front of
the bottom-up growing gel). Their sectional shape depends on
the controlled drying rate: (a,c) + intersection (v≈ 64 nm s−1);
(b,d) � intersection (v≈ 31 nm s−1). (e,f) Pictures of the capil-
lary tube at different times showing the reversible transition
from � to + configuration: (e) the transition from � to +
observed when the drying rate changes from v≈ 31 nm s−1
to v≈ 64 nm s−1; (f) followed by the transition + to � observed
when the drying rate changes from v≈ 64 nm s−1 to v≈
31 nm s−1 again (on this picture, the first secondary cracks have
appeared explaining the finite observation scale).

suspension (cf. fig. 2); namely Ludox R© SM30 which is
made of 30% in mass of silica spheroids particles of average
diameter 2r= 7nm (data given by the manufacturer Grace
Davison). To ensure an unidirectional drying, the top
extremity of each tube is closed. To balance the loss
of water volume, tubes are only partially filled (≈ 7 cm
high) with suspension, so that the air trapped in the
tube expands during the drying. After filling, the tubes
dry in ambient condition for two hours, in order to form
a 1 cm plug at the drying extremity, and then put in
an airtight chamber. The drying rate is controlled either
by the relative humidity RH or by the temperature T
of the airtight chamber: changing T modifies the water
viscosity and, according to Darcy’s law, changes the water
velocity through the porous medium formed by the gel.
Experiments are performed at either 20 ◦C or 3 ◦C; the
humidity rate is fixed either smaller than 10% using
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desiccant or larger than 90% introducing water in the
chamber.
Above the plug, vertical cracks appear that

propagate following the compaction front (front of the
bottom-up growing gel). These cracks are organized
and clearly observable during a distance of propagation
smaller than 3 cm. After this distance, the propaga-
tion becomes disordered and secondary cracks appear
(fig. 2(f)). Experiments performed at T = 20 ◦C and
RH < 10% give rise to 4 crack surfaces (fig. 2(a)), while
drying at T = 20 ◦C and RH > 90% or at T = 3 ◦C and
RH < 10% gives 3 crack surfaces. Changing the drying
conditions changes the average velocity v of the crack
tips. The velocities of the cracks tips are measured using a
digital camera and are almost constant during the obser-
vation scale of the cracks (< 3 cm). Drying at T = 20 ◦C
and RH < 10% corresponds to v= 64± 10 nm s−1, while
drying at T = 20 ◦C and RH > 90% or at T = 3 ◦C and
RH < 10% gives v= 31± 5 nm s−1. Errors on the velocity
correspond to the scattering during one experiment and
to the reproducibility on typically 10 experiments. Due to
symmetry, the four cracks form a + connection. To check
this point, the capillary tubes have been cut, at the crack
tips, along a plane perpendicular to the tube axis (see
fig. 2(c)). Similar cuts of tubes (fig. 2(d)) for slow-drying
conditions (v≈ 31 nm s−1) reveal a � shaped connection
(fig. 2(b)). Changing the drying rate from v≈ 31 nm s−1
to v≈ 64 nm s−1 results in a reversible transition from +
to � shape connections (fig. 2(e),(f)).

Fracture mechanics model. – From a mechanical
point of view, the stationary behavior of the crack pattern
in the crack tips reference frame allows to approximate
the problem by using 2D plane strain linear elastic
fracture mechanics. The medium is assumed to evolve
quasistatically and to be subjected to a uniform isotropic
tensile prestress σ0 so that the Cauchy stress tensor σ is
linked to the strain tensor ε by

σ=
Eν

(1+ ν)(1− 2ν) trε1+
E

(1+ ν)
ε+σ01, (1)

where E denotes the Young modulus and ν the Pois-
son ratio. The prestress σ0 arises from the contraction of
the medium due to capillary pore pressure in poro-elastic
media during the drying process [29,30] and from thermal
contraction during the cooling process [31]. Furthermore,
our model assumes purely radial cracks, a perfect adhe-
sion of the gel on the walls and traction-free boundary
conditions on the cracks.
Then the local strain energy density U(n) depends

on the number n of radial cracks and is given as a
function of the strain components εij by (Einstein’s
implicit summation convention is employed for the indexes
i, j = 1, 2, 3, see [31])

U(n) =
Eν

2(1+ ν)(1− 2ν)ε
2
ii+

E

2(1+ ν)
εijεij +σ0εii. (2)

The total energy E(n), corresponding to the sum of the
local strain energy and the crack energy, per unit height
is

E(n) =
∫
S

U(n) dS+nGcR . (3)

It depends on n, R, E, σ0 and on Gc, which is the
energy needed to create one unit area of crack [32]. Let
us introduce the Griffith length Lc defined as

Lc =
GcE

σ20
. (4)

The dimensionless form [21] of E(n) reads

E(n)E
σ20R

2
=

∫
S̄

Ū(n)dS̄+n
Lc
R
, (5)

where S̄ is a the cross-sectional surface with R= 1 and
Ū(n) is the local strain energy density in the presence
of n radial cracks for a constraint elastic medium of
unitary prestress σ0 = 1, unitary Young’s modulus E = 1
and radius R= 1.
Now we search among the radial crack configurations,

the one that minimizes the total energy E(n) (some
theoretical considerations about the principle can be found

in [27,33]). Since the dimensionless form E(n)E
σ2
0
R2
of E(n)

depends only on n and Lc/R (5), this minimization yields
nc as a function of a single dimensionless parameter
Lc/R. Lc gives the ratio between the energy needed to
create cracks (∝Gc) and to deform the material elastically
(∝ σ20/E). The larger the critical energy release rate Gc
(i.e. large value of Lc), the fewer the cracks. Hence the
minimization of E in terms of n yields the critical number
nc as a decreasing function of Lc/R. This minimization is
done numerically. For each given value of n, the mechanical
stress and displacement fields, and then the strain energy
density

∫
S̄
Ū(n)dS̄ corresponding to E = 1, R= 1 and

σ0 = 1 are calculated by finite elements using CAST3M.
Minimization of (5) in terms of n yields nc as a function
of LcR . This function is plotted in fig. 3 for the typical value
ν = 0.3. It is a stairlike curve since the number of cracks
can only be an integer.

Comparison with the experiments. – To compare
numerical predictions with experiments, one needs to
estimate Griffith’s length Lc. For this, we use directional-
drying experiments in flat (aspect ratio of w/e=20, w
being the width of the cell) Hele-Shaw cells [30,34], in the
same drying conditions as above (cf. inset of fig. 4). The
cells are 2 cm long for the 50, 100 and 200µm thick, and
4 cm long for the ones of thickness 300 and 400µm. The
cells are half-filled with the suspension. During drying,
a parallel array of cracks appears, with a crack spacing
l which depends on the cell thickness e and the drying
conditions. Applying again the minimization principle on
these crack patterns, we obtain by 2D finite-elements
computations, l= a

√
Lce with a= 3.1 for ν = 0.3. The

linear fit of l as a function of e gives the value of Lc
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Fig. 3: (Colour on-line) Number of radial cracks in a capillary
tube nc as a function of Griffith’s length Lc normalized with
the radius of the capillary tube R (n= 1 is not present for
symmetry reasons) for ν = 0.3. The values are obtained by
finite-element simulations: for each value Lc/R, the pattern
with nc radial cracks corresponds to the minimum of the total
energy, which is the sum of the strain energy and the crack
energy. Adhesion of the gel on the wall is supposed. The
Lc/R and cross-section view of the experiments realized with
Ludox R©SM30 are shown.

for each suspension and drying condition: Lc = 60± 18µm
for v≈ 31 nm s−1 and Lc = 34± 10µm for v≈ 64 nm s−1.
Now reporting the corresponding values of Lc/R (0.12 and
0.068, respectively) on fig. 3 allows for the determination
of nc (3 and 4, respectively.) for the tube experiments.
The predicted values are in good agreement with the
experiments.
Moreover, the model predicts, for a fixed length Lc,

that an increase of the radius R from 0.5mm to 0.75mm
is expected to give rise to 5 radial cracks in the case
v≈ 64 nm s−1: this transition is indeed observed (Lc/R=
0.045 in fig. 3). The model also works for experiments

on Ludox R© HS40 (2r≈ 12 nm). The values of Lc are
then Lc ≃ 40 µm when drying rapidly and Lc ≃ 45µm in
cases of slow drying, and yield by minimization nc = 4
(Lc/R= 0.08–0.09 in fig. 3) for both drying rates, that
is a + shape intersection for R≃ 0.5mm, in agreement
with the experiments. All these results allow to conclude
that the transition between � and + (and also 5 cracks)
intersections is governed by energy minimization hence by
the ratio of Griffith’s length to the size of the cell.

Discussion. – Our study demonstrates that Lc
depends on the drying rate. Several explanations can be
proposed. The first explanation is that the stress σ0 in
the area of the crack tips is dependent on v because of
diffusion effects [20]. The second explanation is that the
porous medium formed by agglomeration of particles on
the drying front has a different structure [35] as a function
of v that induces a change of the values of E and Gc. The
precise determination of the dependence of σ0, E and Gc

Fig. 4: (Colour on-line) Distance between cracks as a function of
the thickness of the Hele-Shaw cell for drying of Ludox R©SM30
at T = 3 ◦C (◦) and at T = 20 ◦C (�). Griffith’s length Lc
is obtained by interpolation (lines) with the solution of the
minimum-energy principle, that is l= a

√
Lce, a= 3.1 (obtained

by FE for ν = 0.3). The linear fit is done systematically, in
a least-square sense weighted by the error bars. The large
scattering in the data points is due to the high variations in the
crack spacing and the error bars correspond to the variability
of l over more than 10 experiments.

on the drying rate raises fundamental difficulties that are
behind the scope of this article. We emphasize that by
estimating directly Lc, we overcome these difficulties.
To simply derive Lc from Hele-Shaw experiments, the

dependence of σ0, that is Lc on the cell geometry, in
particular on e, linked to 3D diffusion effects [25,36], has
been neglected. The thicker the cells, the more important
these effects are (fig. 4). Since [34], l∝ e2/3, Lc varies
as e−1/3 which explains that the the slopes appear to
be off in particular for larger values of e. But it can
been disregarded here, e ranging from 50µm to 400µm,
especially in the absence of more rigorous methods. For
instance, the method consisting in translating measure
of Gc and E from film measurements into directional
drying is questionable, particularly since Gc and E are
position and time dependent. Measuring Lc in the same
kind of experiments overcomes these difficulties and allows
to show that the transition between + and � intersections
is governed by the ratio of Griffith’s length to the size of
the cell.
The model can be used to estimate Griffith’s length

Lc. Since Lc depends on three parameters Gc, E and σ0
(or two if one considers the mode I toughness defined by
K2Ic =

E
1−ν2Gc), this gives a method to obtain one parame-

ter when the others are still known. For instance consid-

ering Ludox R©SM30, assuming σ0 =−2γ/r≃ 40MPa,
where γ ≃ 0.07N/m is the air-water surface tension [30]
and 2r= 7nm the particles diameter, the value of KIc
can be derived from the measure of Lc: KIc = σ0

√
Lc ≃

0.2–0.3MPam1/2. This value seems reasonable compared
to fused silica [37] for which KIc ≃ 1MPam1/2. It shall
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however be noticed that it is significantly higher than
the one often used in the literature for such mater-
ial (KIc ≃ 102 Pam1/2 [28]). The discrepancy may be
explained by the fact that the toughness seems to corre-
spond to the fracture of solid/liquid interfaces in their
experiments, and to the fracture of solid/solid ones in ours.
Further discussion of this point is devoted to another
article.

Conclusion. – We have observed a reversible transi-
tion � and + during directional-drying experiments in
capillary tubes. We show that the selection between �

and + intersections is controlled by the ratio of Griffith’s
length Lc to the diameter of the cell. It corresponds to
a local minimum of the total energy, i.e. the sum of the
elastic and crack energies. This is an experimental dem-
onstration that the crack pattern satisfies the often used
[21,22] principle of energy minimization. Directional-
drying experiments in capillary tubes can be used to
estimate Griffith’s length Lc. Since Lc depends on three
parameters Gc, E and σ0 (or two if one considers the
toughness defined by K2Ic =

E
1−ν2Gc), this gives a method

to obtain one parameter when the others are still known.
We applied it to estimate the toughness of consolidated

Ludox R©SM30. Extension from bounded to unbounded
conditions is not straightforward and is the subject of fur-
ther developments to infer new information on tessellated
pavements formation on Earth or on other planets, as
Mars where polygons are widely studied.
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