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We report an experimental study on the dynamics of a thin film of polymer
solution coating a vertical fibre. The liquid film has first a constant thickness and
then undergoes the Plateau–Rayleigh instability, which leads to the formation of
sequences of drops, separated by a thin film, moving down at a constant velocity.
Different polymer solutions are used, i.e. xanthan solutions and polyacrylamide
(PAAm) solutions. These solutions both exhibit shear-rate dependence of the viscosity,
but for PAAm solutions, there are strong normal stresses in addition to the shear
thinning effect. We characterize experimentally and separately the effects of these two
non-Newtonian properties on the flow on the fibre. Thus, in the flat film observed
before the emergence of the drops, only the shear-thinning effect plays a role, and
tends to thin the film compared to the Newtonian case. The effect of the non-
Newtonian rheology on the Plateau–Rayleigh instability is then investigated through
the measurements of the growth rate and the wavelength of the instability. Results are
in good agreement with linear stability analysis for a shear-thinning fluid. The effect
of normal stress can be taken into account by considering an effective surface tension,
which tends to decrease the growth rate of the instability. Finally, the dependence
of the morphology of the drops on normal stress is investigated, and a simplified
model including the normal stress within the lubrication approximation provides good
quantitative results on the shape of the drops.

1. Introduction
The fibre coating process is widespread in numerous industrial applications such

as the manufacture of glass, polymeric and optical fibres, conducting cables or
textile fibres. The application of a thin layer on these solid substrates should ensure
mechanical or optical properties of the final deposit. Hence, it is of crucial interest to
control the final thickness of the liquid film. It has been well known since Rayleigh
(1878) that a cylindrical free surface of a fluid is unstable under the action of the
surface tension. Later, Boys (1959) described in his monograph the patterns observed
in a spider web with a sticky fluid. He reproduced the experiment with castor oil and
a quartz fibre, and detailed the spatial variations of the film thickness. For a fibre
drawn out of a bath, Goucher & Ward (1922) and later White & Tallmadge (1966)
provided a first view of the flowing regime as a function of the capillary number
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and the Goucher number defined as the ratio between the radius of the fibre and the
capillary length. Subsequently, different configurations have been studied to identify
the different mechanisms responsible for destabilization of the film and the dependence
on various parameters such as the radius of the fibre, the viscosity, the inertial forces
or the influence of surfactant on the growth rate of the instability (Goren 1962, 1964;
Carroll & Lucassen 1974; Quéré 1990, 1999; Kliakhandler, Davis & Bankoff 2001;
Smolka, North & Guerra 2008; Duprat et al. 2009a; Duprat, Ruyer-Quil & Giorgiutti-
Dauphiné 2009b). More recently, we have reported a flow regime diagram which
identifies, depending on the fibre radius and the flow rate on the fibre, the dominant
physical mechanisms (Duprat et al. 2007, 2009a,b). It appears that for small fibre radii
compared to the capillary length and low flow rates, the liquid film is dominated by
the surface tension, and the instability mechanism is the Plateau–Rayleigh instability,
whose nature is absolute. For higher values of the parameters (fibre radius and/or flow
rate) two other regimes have been discerned, respectively dominated by gravity and
drag (the drag/gravity regime) or by inertia and drag (the drag/inertia regime). The
nature of the instability is then convective for these regimes. Extensive theoretical
studies have investigated the dynamics of the film (Frenkel et al. 1987; Quéré 1990;
Kalliadasis & Chang 1994). Among the most recent studies, we can mention the works
of Kliakhandler et al. (2001) and Craster & Matar (2009) on film thickness of the
same order as the radius fibre and with negligible inertia contribution. Their numerical
results are compared with experimental results (Duprat et al. 2009b) performed in the
three kinds of regime depicted above, with a predictable deviation for the drag/inertia
regime.

In most industrial situations, the coating fluid is a polymer material or a complex
fluid and exhibits non-Newtonian properties depending on miscellaneous parameters
such as concentration, structure or flexibility of polymers. Yield stress, shear-thinning
or elastic effects are some of the non-Newtonian behaviours which can affect the
structure of the flow, the appearance of the instability or the morphology of the
patterns. De Ryck & Quéré (1998), in the case of a ‘dip-coating’ configuration where
the fibre is drawn out of a bath of liquid, observed that the film swells due to the
presence of polymer in the solution. Considering the normal stress and the lubrication
approximation, they found an analytical expression of the film thickness as a function
of the withdrawal velocity and the normal stress coefficient. In general, for most of
the cases, when the instability is studied for non-Newtonian fluids it reveals different
classes of patterns, and the presence of polymers can drastically change the dynamic
of the system, as in Faraday or Saffman–Taylor instabilities (Lindner & Wagner 2009).
In the case of the instability of a liquid jet (Wagner et al. 2005; Clasen et al. 2006;
Eggers & Villermaux 2008; Bhat et al. 2010), the addition of polymers causes the
formation of a ‘beads-on-a-string’ structure, where adjacent beads are joined by a
thread which grows thinner and strongly delays the detachment of droplets. In this
configuration, the flow is subject to a strong elongation: a velocity gradient exists in
the direction of the flow due to gravity forces. This additional resistance to breakup
compared to a simple fluid is due to large extensional stresses. Contrary to the case of
a liquid jet, there is no elongational viscosity in the case of the flow down a fibre due
to the no-slip condition on the fibre, as detailed further.

A complication inherent in the use of these complex fluids is that they exhibit
different non-Newtonian properties with opposite effects. Notably, most polymer
solutions are both shear-thinning and present elastic effects. In the context of fibre
coating, and to obtain independently the role of the shear-thinning effect and normal
stress on the Plateau–Rayleigh instability, we have performed experiments with two
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different polymer solutions: one with a rod-like polymer (xanthan), exhibiting a pure
shear-thinning effect; the other with a flexible polymer (polyacrylamide, abbreviated as
PAAm), which exhibits non-negligible normal stress along with shear-rate dependence
of viscosity similar to the xanthan solutions.

Our experiments are all performed in a regime where inertial and gravitational
forces are negligible compared with capillary, elastic and viscous forces. The
Plateau–Rayleigh instability is then absolute (Duprat et al. 2007) and the flow patterns
consist of drops, where fluid is partly trapped in a recirculation zone, sliding down a
very thin (smaller than 100 µm) and quasistatic liquid substrate. This drop-like wave
train emerges from a constant film thickness, i.e. the flat film region. We investigate
the role of the non-Newtonian properties on such a flow, i.e. the flat film and the
drop-like wave train resulting from the Plateau–Rayleigh instability.

This paper is organized as follows. In § 2.2, we proceed to a rheological
characterization of the solutions. In § 2.3, we present the experimental setup and
visualization techniques. In § 3, we look at the flat film before the appearance of the
instability and the shear-thinning effect on the film thickness. In § 4, the experimental
growth rate and the wavelength of the instability are measured experimentally for
xanthan solutions (only the shear-thinning effect) and for PAAm solutions exhibiting
strong normal forces and similar viscosity/shear-rate dependence. These experimental
data are then compared to the results of a linear stability analysis, taking into account
a non-constant viscosity with the shear rate. In the last part, § 5, we will discuss the
effect of normal stress on the morphology of the drops and provide a simplified model
to explain the dependence of the drop shape on normal stress.

2. Materials and characterizations

Before considering the non-Newtonian properties, certain conditions are required:
first, to avoid inertial forces, and second to ensure perfect wetting on the fibre. In
a previous paper (Duprat et al. 2009b), we presented a diagram of the expected
flow regime which details the dominant physical mechanisms in the plane of the
dimensionless numbers R/lc versus h0/R with R, the radius of the fibre, lc the capillary
number and h0 the flat film thickness. To ensure that the flow is dominated by
capillary forces, with no inertia, some conditions on the fibre radius, the surface
tension and the viscosity of the fluid must be fulfilled in agreement with the flow
regime diagram mentioned above. In that capillary region, the flow on the fibre
consists of drops sliding on a quasistatic thin film. To ensure good wetting on the
fibre and consequently an axisymmetric pattern on the fibre, the surface tension has to
be lower than 40 mN m−1. Finally, these two conditions are satisfied by using a fibre
radius equal to 0.28 mm and solutions composed of a mixture of water, glycerol (to
increase viscosity) and surfactant to reach a surface tension close to 30 mN m−1.

Some previous experiments carried out with Newtonian fluids (Duprat et al. 2009b)
have shown that film thicknesses between 0.1 and 1 mm are possible with velocities
ranging from 1 to 10 cm s−1 and viscosities between 50 and 500 mPa s. This implies
that the shear-rate range encountered in our experiments is from 10 to 1000 s−1.

The liquids used are then semi-dilute solutions of polymers: xanthan and PAAm
purchased from Sigma-Aldrich. Both present shear-thinning behaviour but only the
second one exhibits large elastic effects in the shear-rate range considered in the
experiments. To discern the effect of elasticity, Boger fluids would have been
theoretically more appropriate. Nevertheless, in practice, the large quantities of liquid
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required for our experiments and the possible degradation of the nylon fibre by the
solvents used in Boger fluids are two reasons prohibiting their use.

2.1. Samples preparation
2.1.1. Polyacrylamide

PAAm is a high molecular weight chain resulting in long flexible chains (M '
1.5 × 107 g mol−1). The samples are prepared very carefully to get homogeneous
solutions. First, a solvent is prepared by mixing 50 % of purified water and 50 %
of pure glycerol (all percentages presented in this article are weight percentages).
Six polymer concentrations were studied in the range from 0.1 to 0.6 %. The
surfactant selected to reduce surface tension is Triton X-100 (TX-100). This choice
was motivated by its mixing properties at high polymer concentrations and for
the resulting low surface tension (Zhang et al. 1998). The TX-100 concentration
is 4.5 % (∼300 times the critical micelle concentration, CMC, in water). For this
high concentration we assume that the surfactant mobility time scale is higher
than the time scale for the instability growth rate. Indeed, the time variation
of the surface tension due to diffusion of surfactant is 10−2 s for a TX-100
concentration, 50 times the CMC in water (Fainerman, Miller & Joos 1994). This
time scale is of the same order of magnitude as the characteristic growth rate of
the instability: (ηR4)/(γ h3)∼ (0.1× (0.6× 10−3)

4
)/(30× 10−3 (0.2× 10−3)

3
)= 0.05 s

(using typical values for the viscosity η, the fibre radius R, the surface tension γ ,
and the film thickness h). Consequently, in the range of concentrations considered
in our experiments, we assume that the interface is rapidly saturated with surfactant
molecules before the instability occurs. The surface tension of the final solution is then
γ = 32.3±0.5 mN m−1. We should note that no apparent rheological modifications are
observed by varying the TX-100 concentration.

2.1.2. Xanthan
Xanthan is a rigid rod-like polymer (M ' 5 × 106 g mol−1). A preparation protocol

similar to the PAAm solutions was used for xanthan solutions. The solvent is slightly
different: 60 % of glycerol and 40 % of water. Since xanthan is a polyelectrolyte
polymer, the resulting rheological properties of this polymer are known to be modified
by the addition of salt (Wyatt & Liberatore 2009). Thus, different concentrations of
NaCl allow adjustment of the rheological properties. After the addition of TX-100, the
surface tension of the final solution is γ = 32.7 ± 0.8 mN m−1 independent of the salt
concentration.

2.2. Rheological characterization
The rheology of polymer solutions was performed using an ‘Anton Paar’ rheometer
with a cone and plate geometry. We have chosen a large cone (radius 49.988 mm) with
small angle (0.484◦) in order to measure precisely normal stress in a large range of
shear rates. The sample temperature was fixed at 20.00± 0.05 ◦C.

2.2.1. Polyacrylamide
The evolution of the apparent shear viscosity η is plotted versus the shear rate γ̇ for

two concentrations in figure 1. As usual, η decreases with γ̇ and, at a given shear rate,
increases with the polymer concentration. Such curves are typical for shear-thinning
fluids where a constant Newtonian low-shear viscosity is followed by a power-law
dependence before reaching the viscosity of the solvent at high shear rates. These
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FIGURE 1. (Colour online) Variations of the shear viscosity η of PAAm solutions versus
shear rate γ̇ , in a log–log scale. Each symbol refers to a different polymer concentration.
Plain curves correspond to data fits with a Carreau model. The inset shows the zero-shear-rate
viscosity η0 as a function of the concentration in PAAm.

measurements can be reasonably fitted by a four-parameter Carreau model (Macosko
1994),

η = η∞ + η0 − η∞(
1+ (τ γ̇ )2)(1−n)/2 , (2.1)

where η0 and η∞ are respectively the viscosity for the zero-shear limit and infinite
shear rate, and τ denotes a characteristic time scale that measures the scale at which
the shear thinning effect becomes important. The exponent n is the power of the
following Ostwald power-law equation:

η = βγ̇ n−1. (2.2)

The zero-shear limit increases rapidly with the polymer concentration, which is
typical of entangled polymer solutions (see the inset of figure 1). Recently, it has been
shown (Liu, Jun & Steinberg 2009) that in a good solvent the entangled concentration
ce for PAAm is about nine times the cross-over concentration c∗ ' 0.2 g L−1. The
temperature effect on the samples indicates that the viscosity decreases by 10 % for a
5 ◦C increase.

The normal stress measurements are presented in figure 2(a) as a function of the
shear rate for different PAAm concentrations over a wide range of shear rates. A
significant increase of the normal stress with the shear rate is observed in accordance
with

N1 = ψ1γ̇
2, (2.3)

where ψ1 is the first normal stress coefficient characterizing the fluid (Bird, Armstrong
& Hassager 1987). Values are given in figure 2(a) for several polyacrylamide
concentrations. In the inset graph, we have presented the data using a double log-
plot. It appears more clearly that, except for PAAm solutions at 0.6 %, there is a
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FIGURE 2. (Colour online) (a) Log–log plot of the normal stress N1 as a function of the shear
rate γ̇ , for PAAm solutions in water–glycerol (50 % : 50 %) solvent; 4.5 % TX-100 surfactant
was added to the solutions. Plain curves correspond to data fits using (2.3). (b) N1/(η(γ̇ )γ̇ )
versus shear rate γ̇ , for PAAm solutions.

discrepancy between the data and the curve fit for low shear rates (lower than 200 s−1),
indicating dependence of the first normal stress difference on the shear rate. Thus
the 0.6 % solution would be the best candidate for studying the normal force effect
in § 5. Normal stress magnitude can be compared to viscous stress by estimating the
ratio N1/(η(γ̇ )γ̇ ) as a function of the shear rate (figure 2b). This ratio increases with
the shear rate, highlighting the importance of the normal stress, which starts to be
dominant compared to the shear-thinning effect for shear rates larger than 100 s−1.
One should then expect a large amount of normal stress in the drops, for which the
shear rate is always larger than 100 s−1.

2.2.2. Xanthan
Rheological measurements are typical of shear-thinning fluids, where a constant

Newtonian low-shear viscosity is followed by a power-law dependence before reaching



Instability and morphology of polymer solutions coating a fibre 7

0 % NaCl
0.8 % NaCl

10–1

100

100 101 102 103
10–2

101

FIGURE 3. (Colour online) Viscosity η as a function of shear rate γ̇ , for two solutions
consisting of water–glycerol (50 % : 50 %), 4.5 % TX-100 and 0.4 % xanthan: + (red), salt-
free solution; × (blue), salt concentration up to 0.8 %. Numbers indicate the slopes of the
Ostwald power-law model from fits over a γ̇ range of 10 to 2000 s−1.

the viscosity of the solvent at high shear rates (figure 3). Nevertheless, as shown in
figure 3, the power-law behaviour failed to fit the experimental results in the whole
range of shear rates. Since xanthan is a polyelectrolyte, the solution rheology and
molecular configuration are greatly affected by the solution’s ionic strength. Thus
by adding 0.8 % NaCl to the solution, the shear-thinning effect can be adjusted to
n = 0.73 in a reasonable range of shear rates from 5 to 2000 s−1. No significant
normal stress has been detected for xanthan below 4000 s−1, a shear rate which is not
expected to be reached in the experiment. Subsequently, we will exclusively use salted
xanthan solutions as pure shear-thinning solutions.

2.3. Experimental setup
As depicted in figure 4(a), the fluid flows from an upper reservoir (diameter 14 cm)
down a nylon fibre (diameter 0.56 mm). The relative pressure variation is ∼0.001 %
during one minute for the highest measured flow rates. The flow rate is controlled by
a valve composed of two axisymmetric cones. The mass flow rate Q is measured from
the weight variation of a collecting tank recorded by a computer-controlled scale. A
transparent nozzle guides the fluid on the fibre. Its verticality is crucial to obtaining
an axisymmetric flow and it is ensured by a mechanical device which enables very
accurate fibre displacements with a sensibility of 2.4 arc sec. Two perpendicular
cameras with zoom lens help to control the axisymmetry of the film flowing down the
fibre.

As depicted in figure 4(b), the flow presents three regions along the fibre. A
meniscus is followed by a flat film with a constant thickness on a distance called the
healing length, which increases slightly with the flow rate (Duprat et al. 2007). Then,
the Plateau–Rayleigh instability leads to the formation of a regular pattern of beads
flowing on a very thin and flat film. In this paper, we will deal only with the regime
dominated by capillary forces, so we exclude low flow rates (the dripping regime)
and high flow rates where inertial flow dominates. The flow regime is then absolute.



8 F. Boulogne, L. Pauchard and F. Giorgiutti-Dauphiné

Tank

Nozzle

Droplet

Flat film

Fibre

Weight

Scale

r

z

h(z, t)

30 cm

(a) (b) (c)
A

t

z

1 s

B

C

FIGURE 4. (Colour online) (a) Experimental setup. Scheme showing a fluid flowing down a
fibre from a upper tank. The flow rate is controlled by a valve and guided with a nozzle. (b)
Picture snapped by a high-speed camera with a telecentric lens (1×). The white bar length is
5 mm. (c) Spatiotemporal evolution of the film obtained by a vertical linear camera passing
through top drops (black lines). Letters A, B and C denote respectively the flat film, the
ordered and the disordered pattern regions.

The film thickness and the shape of the drops are captured by a high-speed digital
camera with a telecentric lens. The interface position is detected in both space and
time, so we are able to measure the film thickness h(z, t) with an accuracy of 0.02 mm.
A linear camera provides spatiotemporal diagrams which deliver information on the
dynamic of the flow. A vertical pixel line passing through the peaks of the drops is
recorded and stored at constant time intervals. The resulting spatiotemporal diagram
produces the (z, t) trajectories of the drops along the fibre. A typical spatiotemporal
diagram is shown in figure 4(c). The uniform grey region located at the upper part
of the fibre is the place where the film is flat (region A) and gives rise to a zone
of regular stripes with a constant wavelength and velocity for the drops (region B).
Finally, downstream, some coalescences between drops lead to the formation of a
disordered pattern (region C).

3. Flat film
In this section we focus on the region close to the inlet where the film thickness

is constant (flat film, grey uniform region: see figure 4a). In the case of Newtonian
fluids, the thickness of the film, h, is given by the classical Nusselt solution (Duprat
et al. 2007). In the case of very thin films (h� R), i.e. the planar case, there is a cubic
relation between the flow rate on the fibre and h. We define the cylindrical coordinates
system (r, θ, z), where r is the radial coordinate (the fibre centre is the origin), θ
the azimuthal coordinate and z the axial coordinate oriented downward in the flow
direction. In the case of a shear-thinning solution exhibiting normal stress effects, for a
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steady axisymmetric flow, the stress balance in the axial direction z is written as

∂σzz

∂z
+ 1

r

∂(rσrz)

∂r
= ∂p

∂z
− ρg (3.1)

for R < r < R + h(z), where σ denotes the stress tensor, p is the pressure field in the
film, ρ and g are respectively the fluid density and the gravitational acceleration. Since
the first normal stress difference, N1, can be expressed as σzz − σrr = ψ1 (∂v/∂r)2, with
v(r, z) the axial velocity, which varies along the film thickness, (3.1) becomes

∂N1

∂z
+ 1

r

∂(rσrz)

∂r
= ∂p

∂z
− ∂σrr

∂z
− ρg. (3.2)

As no spatial variations are detected in the flat film, z-invariance of the velocity field
implies that ∂N1/∂z= 0. Thus, normal stress has no effect on the flat film.

To calculate the velocity profile in the flowing film, we model the shear-thinning
effect by a power-law in accordance with (2.2). Thus (3.2) becomes

1+ 1
1+ r̃

d
dr̃

(
(1+ r̃)

(
dṽ(r̃)

dr̃

)n)
= 0, (3.3)

where the following dimensionless variables are introduced: r̃ = (r − R)/R, h̃ = h/R,
ṽ = v/V and V ≡ R ((ρgR)/β)1/n.

The fluid velocity satisfies two boundary conditions: no-slip on the fibre (ṽ(r̃ = 0)=
0) and zero tangential stress at the liquid–air interface (∂r̃ṽ(r̃ = h̃) = 0). Considering
this last boundary condition, (3.3) becomes

dṽ
dr̃
=
(

1
1+ r̃

(h̃(1+ h̃/2)− r̃(1+ r̃/2))
)1/n

. (3.4)

The flow rate per unit length q= Q/(2πρR) is written in dimensionless form as

q̃= q
1

RV
=
∫ h̃

0
ṽ(r̃ + 1) dr̃. (3.5)

We note that for the Newtonian case n = 1 and β = η, we recover the analytical
Nusselt solution v = (ρg)/(4η)(2 (R+ h)2 ln(r/R)− (r2 − R2)).

Equation (3.4) is solved using a Runge–Kutta algorithm (starting at ṽ(r̃ = 0) = 0
in order to satisfy the boundary condition on the fibre). First, the influence of the
parameter n is studied for a constant flow rate q̃ = 1, and the integral of the (3.5) is
estimated by the trapezium rule. We choose two values for the h̃ parameter (hmin and
hmax) satisfying q̃(h̃min) 6 1 6 q̃(h̃max) and we find the film thickness by a bisection
method for which the condition q̃ = 1 is satisfied at 0.1 %. The results are shown in
figure 5. The numerical solution for the Newtonian case, n = 1, is identical to the
analytical Nusselt solution. For a constant flow rate, an increase in the shear-thinning
effect modifies the velocity profile shape: the parabolic profile tends to be replaced by
a plug-like profile. This results in a higher velocity gradient close to the fibre, whereas
close to the interface, the velocity gradient is almost zero. The film thickness is always
smaller than for Newtonian fluids. The film thickness is plotted as a function of the
flow rate on the film for a PAAm solution (0.4 %, n = 0.71), in figure 6. We choose
to present experimental data only for PAAm solutions, since for xanthan solutions
the healing length is two or three times smaller than for PAAm solutions. The good
agreement between the numerical solutions and our experimental data validates the
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FIGURE 5. (Colour online) Velocity profiles of the flowing film at a constant flow rate (q̃= 1)
for several n values from a Newtonian fluid (n = 1) to a high shear-thinning effect (n = 0.4).
The inset is a close-up of the liquid–air interface region.
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Shear thinning planar case
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FIGURE 6. (Colour online) Numerical solution (solid line) and experimental results for a
concentration in PAAm equal to 0.4 %. The dashed curve is the analytical solution for h� R
given by the (4.8) for n= 0.73.

choice of the Oswald power-law model for the viscosity and also our assumption of
the negligible effect of surfactant on the zero-shear stress boundary condition at the
liquid–air interface.

4. Instability growth rate
The impact of the shear-thinning and elastic effects on the growth rate of the

Plateau–Rayleigh instability is investigated through experiments with xanthan (0.8 %
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NaCl) and PAAm solutions (0.4 %) in order to distinguish the role of each non-
Newtonian property. After the flat film region, some variations in film thickness
are detected, and a regular pattern of drops emerges due to the Plateau–Rayleigh
instability, as shown in figure 4(b). The wavelength of the drop-like pattern is plotted
in figure 7 as a function of the distance to the entrance nozzle. The wavelength
increases (regime A in figure 7) until it reaches a well-defined value (regime B
in figure 7). Then, lower down, some coalescence events can disrupt the regular
pattern (regime C particularly in figure 7a). The wavelengths of the regular pattern
for non-Newtonian fluids are somewhat higher than those expected with Newtonian
fluids. Nevertheless, in both cases, the classical Rayleigh–Plateau wavelength fails to
fit the experimental data and is always smaller. The length of the regular pattern
depends on the flow rate (at high flow rates, coalescence events occur earlier) but it is
typically of the order of seven centimetres for PAAm solutions (figure 7a) and shorter,
about four centimetres, for xanthan solutions (figure 7b). In the former case, we can
note that axisymmetric conformation is not the only case observed on the fibre: some
non-axially symmetric conformations can be observed with asymmetric drops. Such
conformations were described by Carroll (1986) as a roll-up transition, and must be
avoided in our case.

In order to characterize the instability growth rate, we record a stack of images
at a typical frame rate of 1000 images per second. Then, the position of the film
interface is detected over space and time: h(z, t). Figure 8 shows the average film
thickness over the time 〈h (z, t)〉t and the extremal film positions for a PAAm solution.
It shows successively the meniscus, the flat film and the onset of the instability, which
is marked by a strong variation of the film thickness. The velocity of the interface is
calculated for each stack. Then, a point on the interface (chosen to become a point
of maximum height) is followed at this velocity using the set of data h(z, t). The
resulting values of the normalized profile (h − h0)/h0 as a function of time for a
typical experiment are plotted in the inset of figure 9 and fitted by an exponential
law (h − h0)/h0 = AeΩt in the early linear stages. From this fit, the growth rate Ω
is extracted and averaged over several other experiments; the results for xanthan and
PAAm solutions were reported in figure 9.

A first simplified attempt to obtain an expression for the growth rate consists
of a linear stability analysis. The fluid is assumed to exhibit pure shear-thinning
effects with η(γ̇ ) = βγ̇ n−1, and we assume very thin films such that h� R (planar
approximation). Thus, in Cartesian coordinates, the following momentum equation
holds, in the lubrication approximation:

0=Π + ∂η(γ̇ )γ̇
∂r

, (4.1)

where Π is the pressure gradient given by

Π = ρg+ γ
(

∂zh

(R+ h)2
+ ∂

3h

∂z3

)
' ρg+ γ

(
∂zh

R2
+ ∂

3h

∂z3

)
. (4.2)

Given that there is no fluid slippage on the fibre and no stress on the liquid–air
interface, the velocity is calculated from the momentum equation, so that

v(r)= 1
1+ 1/n

(
Π

β

)1/n [
h1+1/n − (h− r)1+1/n

]
. (4.3)
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FIGURE 7. (Colour online) Wavelength at different flow rates for (a) xanthan and (b) PAAm
solution. Letters A, B and C denote respectively the growth of the instability, the ordered and
the disordered pattern regions.

The flow rate per unit length, defined as qp =
∫ h

0 v dr, is given by

qp =
(
Π

β

)1/n h2+1/n

2+ 1/n
, (4.4)

and also satisfies the mass conservation equation

∂h

∂t
+ ∂qp

∂z
= 0. (4.5)

We assume infinitesimal perturbations around the uniform film thickness h0, and for
the corresponding flow rate qp0, so that

h(z, t)= h0 + h1(z, t), (4.6)
qp = qp0 + qp1. (4.7)
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FIGURE 8. (Colour online) Average film thickness in time 〈h〉t along the z fibre axis
(Q = 0.032 g s−1). Bars indicate the extreme values of the film thickness. The flat film
thickness is denoted by h0.
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FIGURE 9. (Colour online) The growth rate, Ω , is plotted versus the flat film thickness, h0.
The experimental data are represented by the dots and the (4.13) by curves. The inset shows
the growth of the film using the method described in § 4.

This results in the expressions

qp0 =
(
ρg

β

)1/n h2+1/n
0

2+ 1/n
, (4.8)

qp1 = qp0

[
γ

nρg

(
∂zh1

R2
+ ∂

3h1

∂z3

)
+
(

2+ 1
n

)
h1

h0

]
, (4.9)
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and in the linearized equation

−∂h1

∂t
= qp0γ

nρg

(
∂2

z h1

R2
+ ∂

4h1

∂z4

)
+
(

2+ 1
n

)
qp0

h0

∂h1

∂z
. (4.10)

Developing the thickness perturbation as h1 = Aei(kz−ωt) leads to the dispersion
relation

ω(k)= k
qp0

h0

(
2+ 1

n

)
+ i

qp0γ

nρg

(
k2

R2
− k4

)
. (4.11)

The maximum of Im(ω(k)) gives

Ω = qp0γ

4nρgR4
, h� R. (4.12)

As shown in figure 6, the flow rate given by (4.8) does not reproduce the experiment
where the planar approximation (h� R) is not valid. In previous work on Newtonian
fluids (Craster & Matar 2009) it has been shown that for h ∼ R the expression for the
growth rate is similar, except that R should be replaced by R + h. Moreover, we made
the choice to use our numerical calculation described in § 3, which provides qnum(h)
without assumption on the film thickness. Finally, the addition of a large amount of
surfactant modifies the growth rate by a factor 4, as described by Carroll & Lucassen
(1974), since surfactants change the surface elasticity.

Taking into account these corrections, we obtain the expression

Ω = 1
4

qnum(h)γ

4nρg (R+ h)4
, (4.13)

which is plotted in figure 9 for both chemical systems.
Data for the xanthan solution are well described by (4.13). To validate our method

and to compare with a Newtonian fluid of similar surface tension (γ = 20.9 mN m−1)
and viscosity (η = 0.965 Pa s), we have performed an experiment with a silicon oil
(with ρ = 96.5 kg m−3 and h0 = 0.55 mm) and measured a growth rate Ω equal
to 10.9 ± 0.7 s−1. Equation (4.13) for n = 1 gives Ω equal to 11.1 s−1. The small
variations in growth rate between the xanthan solution and the silicon oil are
reasonable, as the value of the viscosity is of the same order. Concerning predicted
PAAm solutions, there is significant deviation from the theory due to the normal stress
of this solution. A qualitative explanation of the role of normal stress, can be provided
by the ‘hoop stress’ effect (Graham 2003). A short description of this effect can be
made by considering the liquid surface as an infinite cylindrical shell of thickness
e (figure 10). For a cylinder of radius R+ h, the balance between the internal pressure
P and the stretching stress σθθ leads to 2(R + h)LP = 2Lσθθe. The internal pressure P
is generated by the normal stress N1 in the bulk. Interpreting the stretching force by
unit length, 2σθθe, in term of surface tension γψ1 , we obtain

γψ1 =−ψ1γ̇
2(R+ h). (4.14)

An estimation for γ̇ = 100 s−1 gives a γψ1 of about −10 mN m−1, significantly
lowering the effective surface tension. The growth rate should therefore be estimated
with the effective surface tension lower than the fluid surface tension, and the resulting
curve for the growth rate would be shifted and enable us to recover the experimental
data.
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e

L

FIGURE 10. (Colour online) Stretching stress, σθθ , in a thin cylindrical shell of radius R+ h
and thickness e� R+ h.

5. Drop morphologies: normal stress effect
This section is devoted to a comparison between the patterns of flowing films of

PAAm and xanthan, focusing particularly on the normal stress effect on the shape
of the drops. Such a comparison requires polymeric solutions having similar shear-
thinning properties. Further, 0.8 % NaCl was added to xanthan (0.4 %) solutions to
decrease the high shear-thinning effect (figure 3). Optimal adjustment of the shear-
thinning of PAAm solutions (0.6 %) is achieved, as shown in the inset of figure 11.
Thus, the difference between the two solutions concerns only the presence or absence
of normal stress.

The typical pattern observed on the fibre consists of an axisymmetric film of
constant thickness. Then the film breaks up spontaneously into a drop-like wave
train, as described in the previous section.

For axisymmetric patterns, the superposition of drop profiles in PAAm and xanthan
films is shown in figure 11. Clear differences can be noticed in the profiles, notably
the steepening of the drop front for the PAAm solution compared to the xanthan
solution. In both profiles, there is a clear asymmetry between the front and back of
the drops, which is more accentuated for the xanthan drop. This remark suggests that
the shape of the drops is affected by gravity. The apex heights of both drops are
identical as well as the film substrate between drops (the trailing edge for PAAm is
longer than for xanthan). These observations confirm the fact that the normal stress
plays a significant role in the thin regions, close to the tail and the front of the
drops, but exhibits no effect in the centre of the drop (the thick region). To quantify
experimentally the swelling effect observed with a PAAm solution, we define the slope
of the front H/L as shown in figure 11. This parameter is plotted in PAAm and
xanthan solutions for different flowing rates in figure 12.

To highlight the swelling process, we consider a scaling law analysis, starting from
the stress balance equation (3.2). Since the film is not flat, the z-invariance is no longer
valid. Exhibiting the contribution of the normal stress difference σzz − σrr and the shear
stress σrz, (3.2) becomes

∂

(
ψ1

(
∂v

∂r

)2
)

∂z
+ 1

r

∂(rη(γ̇ )γ̇ )

∂r
= ∂p

∂z
− ∂σrr

∂z
− ρg. (5.1)
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FIGURE 11. (Colour online) Drop shapes for two polymer solutions. The drop front of the
viscoelastic solution (dashed green line) is swollen compared with the pure shear-thinning
liquid (solid red line).

Xanthan

PAAm
Xanthan

PAAm

0.15

0.20

0.25

0.30

0.35

0.40

0.1 0.2 0.3 0.4

Ca
0 0.5

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.1 0.2 0.3 0.4

Ca
0 0.5

0.10

0.45(a) (b)

FIGURE 12. (Colour online) Slopes of drop fronts for xanthan and PAAm as a function of the
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The axial velocity v(r, z) is determined using a series of the form (Boudaoud 2007)

v(r, z)= a0(z)+ a1(z)r + a2(z)r
2. (5.2)

Functions a0(z), a1(z) et a3(z) are calculated using the following three equations,
two for the boundary conditions and the last one for the mass conservation:

(i) boundary condition at the interface with the fibre, v(r = R, z)= 0,
(ii) boundary condition at the liquid–air interface, ∂v(r = R+ h(z))/∂r = 0,

(iii) the mass conservation equation,

∂h

∂t
+ ∂

∂z

∫ R+h(z,t)

R
v(r, z) dr = 0. (5.3)

Considering (5.3) in the reference frame of a drop moving at a velocity U and
using the condition that the mean flow rate satisfies q∼ Uh−→

h→0
0, the axial velocity is
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expressed as

v(r, z)= 3
2

U
(R− r)(r − 2h(z)− R)

2h2(z)
. (5.4)

Assuming a constant viscosity η, the stress balance equation (5.1) to zero order in r
is

3ηU
h(z)− R

2Rh2(z)
− U2ψ1

9h′

2h3(z)
= ∂p

∂z
− ∂σrr

∂z
− ρg. (5.5)

The normal stress balance at the free surface of the film assumes that −P+σrr = γ κ ,
with κ the curvature of the interface. If L is the characteristic length in the axial
direction and if H is the characteristic apex height of the drop, then the normal stress
balance at the free surface of the film, accounting for the curvature, is given by

∂p

∂z
− ∂σrr

∂z
∼−γ

(
∂zh

R2
+ ∂

3h

∂z3

)
. (5.6)

Thus the right-hand side of (5.5) becomes

∂p

∂z
− ∂σrr

∂z
− ρg∼−γ

(
H

L3
+ H

LR2
+ l−2

c

)
, (5.7)

where lc =√γ /(ρg) is the capillary length.
Experimental observations suggest that H/L3� H/(LR2) and κ2� H/(LR2). So the

scaling law analysis leads to the equation

H3

L3
∼ R2

L2
Ca

(
1− 6

L

L

)
, (5.8)

where Ca = (ηU)/γ is the capillary number and L = (ψ1U)/η is the normal stress
characteristic length.

This scaling law gives the slope of the front of a drop, H/L, as a function of the
viscoelastic properties of the polymeric solution. In particular in the case of polymeric
solutions exhibiting normal stress, ψ1 6= 0, the expression (5.8) clearly shows that H/L
decreases. A comparison between the experimental data and the results of the scaling
analysis is presented in figure 12 for different flow rates. There is good agreement
between the experiment and the model, which succeeds in highlighting the swelling
effect on the drop shape induced by the normal stress effect.

6. Conclusion
The effects of non-Newtonian properties of fluids have been investigated in the case

of a film flowing down a vertical fibre. The flow on the fibre can be divided into three
regions: (A) at the inlet, the film exhibits a uniform thickness, i.e. the flat film region;
(B) the uniform film is progressively replaced by a well-defined pattern of drops
separated by a thin film, i.e. the Plateau–Rayleigh region; (C) the coalescence of drops
disrupts the flow and gives rise to a disordered pattern. In order to disentangle the role
of the shear thinning effect and of the normal stress, we have considered two kinds of
polymer solutions. The first consists of rigid rod-like polymers (xanthan), exhibiting a
strong shear-thinning behaviour but negligible elastic effects. For the second solution,
we used flexible polymers (PAAm) exhibiting strong elastic effects, and shear thinning
effects similar to those of xanthan under certain physico-chemical conditions. Some
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adjustments have been made by modifying both the polymer concentration and the
physico-chemical properties of the solutions to enhance or reduce one of the non-
Newtonian properties: shear-thinning or elastic effect.

Consequences of both effects have been investigated in the first two regions of
the flowing film. In the flat film region, due to the invariance of the film thickness
in the axial direction, only the shear thinning effect is effective. At a constant flow
rate, our experiments demonstrate that, as a consequence of the shear-thinning effect,
the thickness of the film is always smaller than in the case of Newtonian fluid. Our
results clearly show the influence of the shear-thinning effect on the velocity profile:
a parabolic profile in the Newtonian case tends to become a plug-like profile. Thus,
an increase of the shear-thinning effect yields a thinner, unperturbed film. Further
downstream on the fibre, the film undergoes the Plateau–Rayleigh instability. The
growth rate of the instability has been investigated experimentally and theoretically
using a linear stability analysis. Good agreement is found between the experimental
data for xanthan and the model. For PAAm solutions, and to take into account the
normal forces, we consider an effective surface tension (lower than the fluid surface
tension) which tends to decrease the growth rate and to recover the experimental
data. The morphology of the patterns resulting from the instability depends on the
non-Newtonian properties. In particular, the drops formed with PAAm solutions exhibit
a swelling effect compared to drops observed with xanthan solutions, for a similar
shear thinning effect. We observe that the drop of fluid with normal forces is less
rounded compared with the case of a pure shear-thinning drop. This swelling effect
has been quantified by a scaling law analysis where the slope of the drop front is
expressed as a function of the normal stress.

In conclusion, by considering two kinds of polymeric solutions with the same
shear-thinning effect, which differ from each other in the presence of normal forces,
we have succeeded in understanding the relationship between the rheological properties
and the destabilization of the flowing film on a fibre as well as the morphology of
the observed patterns. This should be helpful in understanding what happens with
more complex fluids, in particular fluids which exhibit more elastic effects, where the
elasticity could prevent the growth of the instability.
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