

Instabilités dans les systèmes complexes

L. Pauchard FAST – Orsay

Thèmes de Recherche du laboratoire FAST

Écoulements et Transferts

- Convection thermique et solutale
- Écoulement de Poiseuille-Rayleigh-Bénard
- Séchage de fluides complexes

Milieux Granulaires et Suspensions

- Sédimentation-fluidisation, ségrégationmélange, rhéologie
- Avalanches, dunes, impacts, chaînes de forces/

Instabilités et Turbulence

- Instabilités interfaciales et convectives
- Mélange turbulent en tube
- Turbulence en rotation

Milieux Poreux et Fracturés

- Physique et mécanique de la rupture
- Propriétés de transport hydrodynamique
- Écoulements réactifs

100µm

L. Pauchard

Séchage d'une goutte déposée sur un substrat

Séchage d'une goutte déposée sur un substrat

solutions diluées

figures de dépôts laissés par des gouttes de suspensions colloïdales

Deegan et al. Phys Rev E (2000)

vues de dessus

solutions concentrées

- 1- ancrage de la ligne triple
- 2- gradients de concentration

3- instabilités <u>hydrodynamique</u> (Rayleigh-Bénard ou Bénard-Marangoni) ou <u>mécanique</u>

 \Rightarrow formes de gouttes complexes

Séchage d'une goutte déposée sur un substrat

I. Séchage en milieu confiné F. Giorgiutti-Dauphiné, L. Pauchard

séchage directionnelle

temps caractéristiqu ${f R}_s^2$

paramètres expérimentaux:

- solution (colloïdes, polymères,...)
- conditions de séchage (géomètrie, RH,T)
- conditions de mouillage (solutions, substrats)

F. Clément, J. Leng Langmuir (2004)

Séchage en milieu confiné

flambement de l'enveloppe poreuse

 $2,4\ 10^3$

0

 $4,8 \, 10^3$

 $7,2\ 10^3$

t(s)

 $9,6\ 10^3$

 $1,2 \ 10^4$

L. Pauchard, M. Mermet-Guyennet, F. Giorgiutti-Dauphiné EPJ-ST (2009)

Séchage en milieu confiné

flambement de l'enveloppe poreuse

Pc

Pi

d'après loi de Darcy:

$$\Delta P_B = P_i - P_c = -\frac{1}{k}\eta V_E h_B$$

k: perméabilité (Carman-Kozeny) η: viscosité solvant V_E: vitesse d'évaporation h_B: épaisseur enveloppe au flambement

Séchage en milieu confiné

flambement de l'enveloppe poreuse

Pc

Pi

d'après loi de Darcy:

$$\Delta P_B = P_i - P_c = -\frac{1}{k}\eta V_E h_B$$

k: perméabilité (Carman-Kozeny) η: viscosité solvant V_E: vitesse d'évaporation h_B: épaisseur enveloppe au flambement

L. Pauchard, M. Mermet-Guyennet, F. Giorgiutti-Dauphiné EPJ-ST (2009)

couche

substrat

II. Morphologies de fractures induites par séchage G. Gauthier, V. Lazarus, L. Pauchard

séchage d'une suspension concentrée de particules colloïdales

gel colloïdal = matrice poreuse solide saturée en solvant

évaporation ⇒ **contraintes d'origine capillaire**

$$P_{cap} = lpha rac{\gamma_{solvant/air}}{r_{pore}} cos heta \sim 10^7 Pa$$

rétraction limitée par l'adhésion sur le substrat

thèse M. Chekchaki

 $\sigma_{film} \sim rac{E_{substrat}h_{substrat}^2}{6h_{film}L}\gamma$ (formule de Stoney)

thèse M. Chekchaki

thèse M. Chekchaki

 $P_{cap} = \alpha \frac{\gamma_{solvant/air}}{r_{nore}} cos\theta \sim 10^7 Pa$

contraintes influencées par:

- perméabilité de la structure poreuse
- effets de la présence de surfactants (réduction de la pression capillaire)
- rigidité de la structure poreuse
- cinétique de séchage

propagation d'une fracture: facteur d'intensité des contraintes: $K = \sigma \sqrt{h} K_{fissure}^*$ $\begin{cases} K < K_c \text{ pas de propagation} \\ K > K_c \text{ propagation} \end{cases}$ (critère d'Irwin) K_c : ténacité du matériau \Rightarrow micro-indentation

latex suspension de particules colloïdales rigides

 $T_{amb} < T_{g}$

suspension de particules colloïdales déformables

Morphologies à la fin du processus de fracturation

Formation hiérarchique d'un réseau de fractures connectées

Bohn, Pauchard, Couder Phys Rev E (2005)

Formation successive de fractures

Croissance directionnelle de fractures

orgues basaltiques

G. Gauthier, V. Lazarus, L. Pauchard Langmuir (2007)

Conclusion

Exemples de problèmes couplant

- hydrodynamique
- rhéologie
- mécanique
- physico-chimie
- mouillage

Aspect multi-échelles

