

Fluides, Automatique 😽

Drying of complex fluids: fractures

L. Pauchard Fluides, Automatique, Systèmes Thermiques Université d'Orsay, FRANCE

Cargèse, Corsica, 28/07-08/08 2008

Some motivations...

- growth patterns

cracks

Interests to study crack patterns...

- restoration, judging authenticity and knowledge of techniques in Paintings

ANR « Morphologies » L. Pauchard, B. Abou, V. Lazarus, K. Sekimoto C. Lahanier, G. Aitken (Centre de Recherche et de Restauration des Musées de France - Musée du Louvre)

"la Belle Ferronnière" De Vinci

De Vinci

large variety of craquelures

Interests to study crack patterns...

cracking due to a physical impact

"Saint Matthias" Georges de La Tour

Exemple of craquelures linked to the support la Joconde: Painting on a poplar panel

« la Joconde: essai scientfique» ouvrage collectif (2007)

X

No. of Concession, name

90

Model: drying colloidal suspensions

concentrated suspensions of colloidal particles (nanolatex $\emptyset \sim 15nm$, $\phi_{V0} \sim 30\%$)

Model: drying colloidal suspensions

concentrated suspensions of colloidal particles ($\phi_{V0} \sim 30\%$)

Drying stress due to:

- * shrinkage induced by capillary pressure limited by adhesion
- * shrinkage-resistance by the compressibility modulus of the gel

mechanical stress → elastic energy stored in the consolidating layer

flux balance at the drying surface: $\dot{V}_E = \frac{D}{\eta} \nabla P \mid_{surface}$ Darcy'law $D \propto (porosity) \times (pore \ radius)^2$ drying stress depends on transport parameters: $\sigma \sim \frac{\eta h \dot{V}_E}{D}$

mechanical stress depend on:

- * permeability of porous matrix
- * elasticity of porous matrix
- * drying kinetics
- * presence of surfactants (diminishing capillary pressure)

mechanical stress $\sigma_{ii} \rightarrow$ elastic energy stored in the consolidating layer

Griffith Trans. R. Soc. London (1920) Xia, Hutchinson J. Mech. Phys. Solids (2000)

II. fractures

Drying colloidal suspensions Mechanical stress induced by desiccation

QUIZ #1

What is the angles distribution in a cracks pattern ?

in the plane ?

<u>in 3D ?</u>

QUIZ #1 What is the angles distribution in a cracks pattern ?

- 120° due to nucleation process in certain conditions

<u>in 3D ?</u>

QUIZ #1 What is the angles distribution in a cracks pattern ?

II. fractures

- 120° due to nucleation process in certain conditions

<u>in 3D ?</u>

more complex: depends on the growth kinetics

Pauchard, Adda-Bedia, Allain, Couder Phys. Rev. E (2002)

Pauchard, Elias, Boltenhagen, Bacri Phys. Rev. E (2008)

magnetic colloidal particles

liquid

gel

II. fractures directional

magnetic colloidal particles

liquid

gel

II. fractures directional

Directional propagation of cracks

confined geometries

Allain, Limat *Phys. Rev. Lett.* (1995) Dufresne et al. *Phys. Rev. Lett.* (2003)

Gauthier et al. Langmuir (2007)

II. fractures directional

Isotropic crack patterns

Atkinson et al J. Mat. Sc. (1991) Hutchinson et al Advances in Applied Mechanics (1992)

Hierarchical formation of cracks network

II. fractures isotropic

Bohn, Pauchard, Couder *Phys Rev E* (2005)

Drying kinectics

Delamination process

II. fractures isotropic

II. fractures isotropic

measuring A_{adh}/A_{cell} ? ↓ ? adhesion energy gel/substrate

II. fractures isotropic

Competition between elastic energy : $\frac{h_f}{R} \ll 1$ $U_{buckl} = \frac{2C}{3\left[12(1-v^2)\right]^{3/4}} Y\left(\frac{h_f}{R}\right)^{3/2} r^3$

II. fractures isotropic

Pauchard Europhys. Lett. (2006)

II. fractures isotropic

RH = 70% Y = 8±2×10⁷ N.m⁻² R \approx 100.A_{cell}^{0.44} A_{cell} \approx 2.6 h²

 $\Gamma_{gel/sub}$ = 62±28N.m⁻¹

Pauchard Europhys. Lett. (2006)

Pauchard Europhys. Lett. (2006)

Drying kinectics

A new generation of cracks inside the adhering region of gel

100µm

rate $\times 5$

A new generation of cracks inside the adhering region of gel

100µm

rate ×5

A new generation of cracks inside the adhering region of gel

100µm

rate ×5

A new generation of cracks inside the adhering region of gel

substrat

Drying kinectics

II. fractures isotropic

Latex particles

suspension of hard particles

high Tg particles Tamb < Tg

suspension of soft particle

low Tg particles Tg < T_{amb}

binary mixtures

II. fractures

Influence of the porous matrix stiffness on the crack patterns

Mechanical characterization of gels made of binary mixtures:

1. mean stress measurements during bending of desiccating gelled layer/flexible plate

II. fractures

isotropic

stress (Pa)

II. fractures isotropic

Mechanical characterization of gels made of binary mixtures:

2. creep measurements by micro-indention process


```
Model for 1D-film formation:
                                                                                                   viscoelastic behaviour
                                                                                           F \sim -a^2 \left(\frac{G}{2(1-\nu)} + \eta \frac{d}{dt}\right) \epsilon^{3/2}
                                                                     G
                                                                    0000000
                                   Kelvin-Voigt model
                                                                                                                           Matthews (1980)
                                                                      η
                                                                                                       Man, Russel Phys. Rev. Lett. (2008)
micro-indentation measurements \Rightarrow (G, \eta)
                                                                       0
                                                                       -5
                                                                 elastic energy
  Recovery of elastic energy in the film:
                                                                      -10
                                                                                        \Delta U
                                                                                                                 \Delta U
             \Delta U = \sum_{i,j} \sigma_{ij} \epsilon_{ij}
                                                                      -15
                                                                                deformation of the
                                                                                                           cracks formation
                                                                                   porous matrix
                                                                      -20
                                                                                   crack-free
                                                                                                               cracks
                                                                      -25
                                                                                   0,2
                                                                                              0,4
                                                                                                        0,6
                                                                                                                   0,8
                                                                          0
                                                                                                    φ
```

II. fractures isotropic

Influence of the layer thickness and porous matrix stiffness on crack patterns

```
II. fractures isotropic
```


series of « les Apôtres » Georges de La Tour

experiments

Craquelures related to the composition of the painting layer

network of connected cracks

layer thickness~100µm "rigid" particles

dense network of isolated cracks

layer thickness~10μm "rigid" particles

low density of isolated cracks

layer thickness~100µm "soft" particles

equivalent thicknesse

