A - Règle de charge.

1. Écoulement linéaire : \( M = 2 \) (profil parabolique).

2. \( U_q = \frac{1}{h} \left( U_{\text{max}} \left( 1 - \left( \frac{y}{h} \right)^n \right) \right) dy = U_{\text{max}} \left[ \frac{1}{n+1} \left( 1 - \frac{y}{h} \right)^{n+1} \right]_0^h = \frac{n}{n+1} \frac{U_{\text{max}}}{h} \)

   Pour \( n \to \infty \), \( U_q = \frac{n}{n+1} \frac{U_{\text{max}}}{h} \)

   Pour l'écoulement linéaire, \( n = 2 \), \( U_q = \frac{2}{3} U_{\text{max}} \).

   \( \frac{U_q}{U_{\text{max}}} = \frac{n}{n+1} \to 1 \) pour \( n \to \infty \) : on retrouve bien l'écoulement "bouchon".

3) \( y = h \), \( C_o = \gamma \left( \frac{\partial U}{\partial y} \right)_{y=h} = -\frac{n}{h} U_{\text{max}} m \left( \frac{y}{h} \right)^{n-1} \left| \right. y=h \)

   \( (\) et \( y = -h \), \( C_o = +\gamma m \frac{U_{\text{max}}}{h} \) \). Donc \( |C_o| = \gamma (n+1) \frac{U_q}{h} \).

   \( A = \frac{|C_o|}{\frac{1}{2} \rho U_q^2} = 2 \left( n+1 \right) \frac{U_q}{h} \frac{1}{U_q} = 4 \left( n+1 \right) \frac{Re}{h} \)

4) Dans le régime I, on a \( n = 2 \) et \( A = C_1 \frac{1}{Re} \)

   d'où \( C_1 = 4 \left( n+1 \right) = 12 \).

5) Dans le régime III, on a \( A = C_3 \frac{1}{Re^{1/4}} \)

   d'où \( M = \frac{C_3}{4} \frac{Re^{3/4}}{1} \).
6°) \( \frac{U_q}{U_{\max}} = \frac{n}{n+1} \) avec \( n = \frac{C_3}{4} \Re^{3/4} - 1 \), soit

\[
\frac{U_q}{U_{\max}} = 1 - \frac{4}{C_3} \Re^{-3/4}
\]

donc \( \alpha = \frac{4}{C_3} \)

\[ \begin{array}{c}
\frac{U_q}{U_{\max}} \\
\Re
\end{array} \]

7°) \( u^* \) tel que \( C_o = \rho u^* \)

donc \( u^* = \sqrt{\frac{C_o}{\rho}} \) avec \( C_o = \Lambda \frac{1}{2} \rho U_q^2 \)

soit \( u^* = U_q \sqrt{\frac{\Lambda}{2}} \) et \( \delta_v = \frac{\nu}{u^*} = \frac{\nu}{U_q} \sqrt{\frac{2}{\Lambda}} \)

\[
\frac{\delta_v}{h} = \frac{\nu}{\rho U_q} \sqrt{\frac{2}{\Lambda}} = 2 \sqrt{\frac{2}{\Lambda}} \Re^{-1/4}
\]

Avec \( \Lambda = C_3 \Re^{-1/4} \)

soit \( \beta = 2 \sqrt{\frac{2}{C_3}} \)

8°) A la transition, \( \frac{\delta_v}{h} = \frac{\nu}{h} = \varepsilon \), soit \( \Re_c(\varepsilon)^{-1/4} = 2 \sqrt{\frac{2}{C_3}} = \varepsilon \)

d'où \( \Re_c(\varepsilon) = \left[ 2 \sqrt{\frac{2}{C_3}} \right]^{-4/7} \varepsilon^{-8/7} \)

\( \gamma = -\frac{8}{7} \)

Dans la limite \( \varepsilon \to 0 \), \( \Re_c(\varepsilon) \to \infty \). Il n'y a plus de transition III \( \to \) IV. Donc \( \Lambda \sim \Re^{-1/4} \) reste valable à l'infini, et \( \Lambda \to 0 \) pour \( \Re \to \infty \) : Pas de frettement en fluide parfait.

9°) \( \Lambda = C_3 \Re^{-1/4} \) pour \( \Re = \Re_c(\varepsilon) \)

soit \( \Lambda(\varepsilon) = C_3 \left[ 2 \sqrt{\frac{2}{C_3}} \right]^{2/7} \varepsilon^{2/7} \)

soit \( \sigma = 2/7 \).

On retrouve que plus le canal est rugueux, plus \( \Lambda(\varepsilon) \) augmente.
Pour \( \varepsilon \) entre 0.002 et 0.067, facteur 3.3
Soit un facteur \( 3.3^{2/7} \approx 2.7 \) entre \( \Lambda_{\min} \) et \( \Lambda_{\max} \), ça marche.
1°) RANS selon $x$ :

$$\frac{\partial \overline{u}}{\partial t} + \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} = - \frac{1}{\rho} \frac{\partial p}{\partial x} - \frac{\partial \overline{u}^2}{\partial x} - \frac{2}{3} \frac{\partial \overline{u} \overline{v}}{\partial y} + \nu \left( \frac{\partial^2 \overline{u}}{\partial x^2} + \frac{\partial^2 \overline{u}}{\partial y^2} \right)$$

Soit

$$\frac{\partial \overline{f}}{\partial x} = \frac{\partial}{\partial y} \left( \frac{-\overline{u} \overline{v}}{\gamma} + \nu \frac{\partial \overline{u}}{\partial y} \right) \left( \frac{\sigma_{xy}}{\sigma_{xy}} \right) \left( \sigma_{xy} \right) \left( \sigma_{xy} \right)$$

2°) Avec

$$\frac{\partial \overline{f}}{\partial x} = - \frac{\Delta p}{L}$$

On a

$$\frac{\partial}{\partial y} \sigma_{xy} = - \frac{\Delta p}{L}$$

Soit

$$\sigma_{xy} (y) = - \frac{\Delta p}{L} y + \text{cst.}$$

En $y = 0$, on a $\sigma_{xy} (0) = 0$ et $\overline{u} \overline{v} (0) = 0$

D'où

$$\sigma_{xy} (y) = - \frac{\Delta p}{L} y$$

Soit

$$\sigma_0 = \frac{\Delta p}{L} \frac{h}{L}$$

3°) Une fluctuation $\nu' > 0$ indique une

Survivette $\overline{u} (y) - \overline{u} (y + dy) = \nu' > 0$

D'où $\nu' > 0$, soit $\sigma_{xy} = - \rho \nu' \sigma' < 0$

Ou en $y > 0$, donc $\sigma_{xy}$ et $\sigma_{xy}$ de même signe.
4°) \( \mathcal{G}_{xy}^v(y) = \eta \frac{\partial \bar{u}}{\partial y} = -m \frac{\eta}{\text{h}} \left( \frac{y}{\text{h}} \right)^{n-1} \).

\( \mathcal{G}_{xy}(y) = -\rho \bar{u} \sigma^v = \mathcal{G}_{tot} - \mathcal{G}_{xy}^v \)

\[ = -y \frac{\Delta \rho}{\text{L}} + \eta \frac{\rho \eta}{\text{h}} \left( \frac{y}{\text{h}} \right)^{n+1}. \]

Près de \( y = \pm \text{h}, \mathcal{G}_{xy}^v \) domine.

5°) \( l_m(y) = \text{taille des structures les plus efficaces pour le transfert de quantité de mouvement.} \)

\( l_m \) maximum en \( y = 0 \), minimum en \( y = \pm \text{h} \).

6°) \( \mathcal{G}_{xy} = \rho \text{m}^2 \left| \frac{\partial \bar{u}}{\partial y} \right| \frac{\partial \bar{u}}{\partial y} \).

Pour \( y > 0 \), \( \left| \frac{\partial \bar{u}}{\partial y} \right| = -\frac{\partial \bar{u}}{\partial y} \), soit \( l_m = \sqrt{\frac{\mathcal{G}_{xy} \rho}{\partial \bar{u}/\partial y}} \).

En \( y = \pm \text{h} \), \( \partial \bar{u}/\partial y = \mathcal{G}_{0}/\eta \) et \( \mathcal{G}_{xy} = 0 \) \( \Rightarrow l_m = 0 \).

Mais en \( y = 0 \), \( \mathcal{G}_{xy} \propto 1/y \) et \( \partial \bar{u}/\partial y = 0 \) \( \Rightarrow l_m \text{ diverge.} \)

Le modèle n'est pas physique dans la région centrale.
Question subsidiaire.

On a 
\[ E = \frac{a}{b} = 0,02 \]

et 
\[ Re = \frac{2 \rho u_a}{\mu} = 3 \cdot 10^5 \]
soit 
\[ \log_{10} Re = 5,48. \]

D'après la Figure 2, 
\[ \log_{10} (100 \cdot A) \approx 0,6 \]
soit 
\[ A = \frac{1}{100} \cdot 10^{0,6} \approx 0,09. \]

Donc 
\[ C_o = A \cdot \frac{1}{2} \cdot \rho u_a^2 = 0,09 \cdot \frac{1}{2} \cdot 10^3 \cdot 3^2 = 180 \text{ N/m} \]

et 
\[ \Delta p = C_o \cdot \frac{L}{h} = 180 \cdot \frac{200}{0,05} = 7,20 \cdot 10^5 \text{ Pa}. \]

Surpression de 7,2 bar.