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Buoyancy driven mixing of fluids of different densities ��1 and �2� in a long circular tube is studied
experimentally at the local scale as a function of the tilt angle from vertical �15° ���60°� and of
the Atwood number �10−3�At= ��2−�1� / ��2+�1��10−2�. Particle Image Velocimetry �PIV� and
Laser Induced Fluorescence �LIF� measurements in a vertical diametral plane provide the velocity
and the relative concentration �and, hence, density� fields. A map of the different flow regimes
observed as a function of At and � has been determined: as At increases and � is reduced, the regime
varies from laminar to intermittent destabilizations and, finally, to developed turbulence. In the
laminar regime, three parallel stable layers of different densities are observed; the velocity profile is
linear and well predicted from the density profile. The thickness of the intermediate layer can be
estimated from the values of At and �. In the turbulent regime, the density varies slowly with z in
the core of the flow: there, transverse turbulent momentum transfer is dominant. As At decreases and
� increases, the density gradient � in the core �and, hence, the buoyancy forces� becomes larger,
resulting in higher extremal velocities and indicating a less efficient mixing. While the mean
concentration varies with time in the turbulent regime, the mean velocity remains constant. In the
strong turbulent regime �highest At and lowest � values�, the transverse gradient of the mean
concentration and the fluctuations of concentration and velocity remain stationary, whereas they
gradually decay with time when turbulence is weaker. © 2011 American Institute of Physics.
�doi:10.1063/1.3560005�

I. INTRODUCTION

Buoyancy driven flows are widely encountered in me-
teorology, oceanography,1 and volcanology2 as well as in
many practical applications in chemical,3 petroleum, and
environmental4 engineering. Together with the density con-
trast characterized by the Atwood number �At�, the angle �
of the mean flow with respect to vertical is a key parameter.
Depending on this angle, a rich variety of flows may be
observed, ranging from Rayleigh–Taylor instabilities5 �verti-
cal mean flow� to gravity currents �taking generally place on
horizontal surfaces or weak slopes�.6–9 Many of these flows
occur in confined geometries of tubes or open channels, par-
ticularly in industrial facilities; the confinement influences
the development of unstable modes and, as a result, the prop-
erties of the flow.

The present work deals specifically with the buoyant
flows of two fluids of different densities, �1 and �2���1�, in
the strongly confined geometry of a long �3.6 m�, narrow
�d=20 mm� tube. More precisely, we investigate by Particle
Image Velocimetry �PIV� and Laser Induced Fluorescence
�LIF� measurements the dependence of the local structure of
these flows on the tilt angle � from vertical and on the den-
sity contrast, characterized by the Atwood number
At= ��2−�1� / ��2+�1�. Practically, we use a symmetrical

lock-exchange configuration,10–12 in which the two fluids are
initially separated by a removable wall, each of them occu-
pying half of the length of the tube.

The flows investigated here involve a competition be-
tween different mechanisms. First, buoyancy forces due to
the component of gravity parallel to the tube axis induce an
interpenetration of the two fluids that flow in opposite direc-
tions. The resulting shear generates Kelvin–Helmholtz-like
instabilities and, therefore, mixing across the tube section.
This is opposed by the component of gravity transverse to
the tube axis, which tends to keep the two fluids separated.
The relative magnitude of these two effects depends both on
� and At.

Global measurements of the front velocity and of the
variation of the mean concentration along the tube in such
flows have been performed previously.13,14 They show in-
deed that as � decreases and At increases, there is a progres-
sive transition from a separated laminar counterflow of the
two fluids to weakly turbulent mixing. In another study,15

local measurements were performed in the same geometry
for one set of values of the angle ��=15°� and the density
contrast �At=10−2� corresponding to well developed turbu-
lent mixing. The experimental results were compared to di-
rect three-dimensional �3D� numerical simulations: this work
allowed us to validate the experimental measurements, to
determine the main features of these flows, and to character-
ize �from the numerical simulations� the geometry of the 3D
structures.
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Here, our objective is, instead, to focus on the influence
of � and At on the flow regimes and on the velocity and
concentration fields. The experiments have been performed
over a broad range of values of the control parameters,
15° ���60° and 10−3�At�10−2. This allows us to ob-
serve very diverse flow regimes ranging from developed tur-
bulence to intermittent and to laminar flows and to study
their local spatial structure as well as their variation with
time.

Practically, for each set of values of � and At, the local
concentration and velocity and their fluctuations are deter-
mined through different experiments as a function of the dis-
tance from the tube axis in the vertical measurement plane.
These data give access to the dominant momentum transport
terms and to the variation with � and At of their relative
magnitude in the different parts of the flow.

In the following, we identify first the different flow re-
gimes in order to map their domains of existence in the
�� ,At� plane: this is addressed through an analysis of the
spatiotemporal characteristics of the local velocity and rela-
tive concentration. Then, the profiles of the mean concentra-
tion and of the longitudinal and transverse velocity compo-
nents in both the laminar and the turbulent flow regimes are
determined. Their variation with � and At is analyzed to-
gether with the corresponding variations of the different
measurable momentum transport terms. A particular attention
is brought to the analysis of the stationarity of the mean
velocities and of the fluctuations of the local velocity and
concentration. Finally, we introduce models of the velocity
field in the laminar regime and of the momentum balance in
the turbulent one.

II. EXPERIMENTAL SETUP AND PROCEDURES

A. Setup

The experimental setup and procedure are described in
Ref. 15. We use a long transparent polymethylmetacrylate
tube �internal diameter: d=20 mm; length: L=3.6 m� with a
tilt angle from vertical: 15° ���60° �see Fig. 1�. The x axis
coincides with that of the tube, the z and y axes are, respec-
tively, located in the vertical diametral plane and perpendicu-

lar to it. Water and a denser CaCl2-water solution fill the
lower and upper halves of the tube length, respectively; they
are initially separated by a gate valve that is opened at
the origin time and located at x=0. Due to their low concen-
trations, the solutes induce only small variations of the
viscosity ��� /��0.06�; the viscosities of the two solutions
will therefore be assumed to be equal to �=10−3 Pa s.

The local relative concentration c�x ,z , t� of the lighter
fluid and the velocity components u�x ,z , t� and w�x ,z , t� are
measured in the plane y=0, which is illuminated by a 2-mm-
thick laser sheet �	=532 nm�. Separate experiments using
the LIF and PIV techniques are performed in order to obtain
the concentration and velocity maps, respectively. For the
LIF measurements, fluorescent rhodamin 6G dye, with con-
centration of 0.2 mg/l, is added to the lighter solution. For
the PIV measurements, particles containing rhodamin B dye,
with a maximum diameter of 50 �m and at a concentration
of 0.3 mg/l, are added to both solutions. After the gate valve
has been opened, LIF and PIV measurements are performed
at constant time intervals equal to 0.5 and 0.25 s, respec-
tively; the corresponding lengths �x of the fields of view are
120 and 64 mm and their center is 300 mm above the gate
valve.

The quantitative determination of the relative concentra-
tion of the fluids by the LIF technique is achieved by means
of reference images obtained with the tube saturated by the
pure fluids: the actual procedure is described in Ref. 16. The
spatial resolution of the LIF images is 0.1 mm/pixel and that
of the velocity maps is 0.4 mm. The relative uncertainty in
the velocity is 
2% and the absolute one in the relative
concentration is 
0.03. The local density ��x ,z , t� of the
mixture is estimated from the local relative concentration
c�x ,z , t� by a linear interpolation between the respective
densities �1 and �2=�+�� of the lighter �c=1� and heavier
�c=0� fluids.

B. Averaging procedure and notations

The flow is characterized quantitatively by the average
values of the local concentration and velocity and by either
the variance or the standard deviation of their fluctuations. In
all cases, the averages are first performed over the length �x
of the measurement window; they are generally also per-
formed over a time interval �t and over an ensemble e of
�typically 4� experiments corresponding to an identical set of
control parameters. Averaging over a set of experiments re-
duces indeed the effect of the variability of the measure-
ments from one experiment to another on the final results.
The choice of �t will be discussed separately for laminar and
turbulent flows. The notation � � is used if the three types of
averages mentioned above have been performed. Otherwise,
the indices x, e, and/or t are mentioned explicitly. In some
cases, an additional average is performed over the width �z
of the measurement window and referred to by the index z.

Note that the characteristic distances for the variation of
the mean flow along x are on the order of the total length,
L��x. Spatial variations of the velocity and of the concen-
tration in the window �x reflect therefore only local fluctua-
tions. In the turbulent regime, these fluctuations have a key
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FIG. 1. Schematic front view of the experimental setup and of the lock-
exchange flow. Inset: detailed oblique view of the region of the measure-
ment window and of mean velocity field �u��z�.
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influence on mass and momentum transport. The fluctuations
u� and w� of the components u and w of the velocity are
defined as u�=u− �u�x,t and w�=w− �w�x,t, respectively. Simi-
larly, the fluctuations of the concentration are defined as
c�=c− �c�x,t; in all cases, both the instantaneous local value
and the average used to compute the fluctuations correspond
to the same transverse distance z.

In the following, most plots and discussions use dimen-
sionless variables, characterized with the symbol “	.” Dis-
tances are normalized by the tube diameter d �z̃=z /d�,
whereas the velocity components u and w are normalized by
the characteristic velocity Vt=
At gd. This velocity scale
reflects a balance between buoyancy and inertia and is thus
relevant in the present flow regimes.13 In the present work, Vt

ranges from 15 to 47 mm/s, which corresponds to Reynolds
numbers 300�Ret�1000 �with Ret=Vtd /��. Time is nor-
malized by the ratio L /Vt so that t̃= tVt /L �the length L of the
tube is used here because this normalization will mostly be
used for characterizing transit times parallel to this length�.

It is shown below that the flow is induced by the
transverse variation of the density in the section of the tube,
which is characterized by the difference 
��x ,z , t�
=��x ,z , t�−��x ,0 , t�. The corresponding normalized variable
is 
�̃=
� / �����zAt�. The factor 1 /At is included so that 
�̃,
like 
c, is of the order of unity. Actually, for low density
contrasts, one has 
�̃�−2
c.

III. MIXING FLOW REGIMES AND STATIONARITY
OF THE FLOW

A. Flow regimes as a function of At and �

The flow displays a variety of regimes, ranging from
laminar to turbulent, depending on both control parameters �
and At: these regimes are mapped in Fig. 2 and are discussed
in detail below. At the highest tilt angle ��=60°� and for a

small At, there is a stable laminar flow. In contrast, for a tube
close to vertical and a large density contrast, the flow is
turbulent and strong transverse mixing occurs. Between
these two extreme cases, one observes intermittent flows
with both a few strongly turbulent bursts and time intervals
during which the flow is laminar. Note that the boundaries
between the different domains in Fig. 2 are just indications:
no clear-cut transition between the different regimes is ob-
served.

These flow regimes have been identified from the time
sequences of both the velocity and the relative concentration
fields. These sequences are summarized in Fig. 3 by the spa-
tiotemporal diagrams of single experiments in the different
regimes: the transverse profiles �u�x�z̃� of the velocity and
�c�x�z̃� of the relative concentration of the lighter fluid at a
time t are coded in false colors �or gray levels� on the cor-
responding lines of the diagram. As mentioned above, the
velocity and concentration diagrams obtained for the same
set of values of At and � correspond to two different experi-
ments. The overall characteristics of the variations of the
velocity and concentration may therefore be compared but,
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FIG. 2. Map of the flow regimes as a function of the tilt angle � and of the
Atwood number �At� for two fluids of same viscosity �=10−3 Pa s in a 20
mm diameter tube. The symbols and labels mark pairs of values of At and �
corresponding to experiments performed in the different regimes during the
present work: ���, Ti: turbulent; ���, Ii: intermittent; and ���, Li: laminar.
The dotted lines are guides for the eye.
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FIG. 3. �Color online� Spatiotemporal diagrams of the profiles of the veloc-
ity �u�x�z̃� �a�, �c�, and �e� and of the relative concentration �c�x�z̃� of the
lighter fluid �b�, �d�, and �f� for three different pairs of values of � and At. �a�
and �b� �=60° , At=10−3 �case L2�; �c� and �d� �=45° , At=4�10−3 �case
I3�; and �e� and �f� �=15° , At=10−2 �case T3�. Each vertical line corre-
sponds to a time t and the color codes correspond to the respective values of
�u�x�z̃� and �c�x�z̃� �see scales at the bottom of each column�.
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of course, not the individual events. From the diagrams of
Fig. 3, the following features of the main types of flow re-
gimes have been identified.

�a� Laminar regime—L2 �Figs. 3�a� and 3�b��: the velocity
profiles are almost stationary after the perturbation, due
to the transit of the front, has died out �t̃�0.2 s� and
before the onset of the effect of the backfilling of the
tube after the fronts reach the ends �t̃�0.7�. The con-
centration diagram displays three layers in the station-
ary regime. Some fluctuations of the boundaries are
observed but they are too small to induce transverse
mixing �except right behind the mixing front as men-
tioned above�. Therefore, on the average, the concen-
tration profiles remain stationary after an initial tran-
sient phase.

�b� Turbulent regime—T3 �Figs. 3�e� and 3�f��: frequent
fluctuations of short duration are visible in the velocity
diagram. However, their distribution does not vary with
time �0.3� t̃�5�, suggesting that the flow is statisti-
cally stationary. The concentration map displays simi-
lar fluctuations, but the mean value of the relative con-
centration varies with time.

�c� Intermittent regime—I3 �Figs. 3�c� and 3�d��: the fluc-
tuations of the velocity and of the concentration have a
much larger amplitude and a longer duration than in the
turbulent case. In several cases, an accelerating laminar
counterflow is observed until a large turbulent burst is
triggered. For instance, in Fig. 3�c�, the increasingly
dark blue and red shades for 0.9� t̃�1.15 mark an
acceleration of the counterflow of the two fluids until
transverse mixing by turbulence �green shade for

t̃�1.15� homogenizes the concentration. Similar bursts
of turbulence have been reported in Refs. 17 and 18 in
the case of turbidity currents.

B. Quantitative characterization of the flow regimes

As discussed above, the spatiotemporal diagrams of
Figs. 3�a�–3�f� demonstrate qualitatively the features of the
different flow regimes. A quantitative comparison is provided
by the time variations of the average �c�x,z of the concentra-
tion �Fig. 4�a�� and of the half difference �ũ�x

m= ��ũ�x
max

− �ũ�x
min� /2 between the positive and the negative extrema of

the velocity �Fig. 4�b��. Both figures correspond to the same
set of experiments as in Fig. 3. They are plotted as a function
of t̃− t̃i, where t̃i is the normalized time at which the displac-
ing fluid reaches the measurement window. Except in case f ,
t̃i is marked by a strong variation of the color shade in Fig. 3.

In the laminar regime �solid lines�, the mean concentra-
tion �c�t��x,z rises rapidly to a value of the order of 0.5 after
the arrival of the rising fluid in the measurement window for
t̃= t̃i, reflecting a symmetrical distribution of the two fluids.
�c�t��x,z remains then almost constant with few fluctuations
for t̃− t̃i�0.2. The characteristic velocity �ũ�x

m is also
nearly constant until the onset of backfilling by the displac-
ing fluid at both ends for t̃− t̃i�0.6. These two variations
suggest that an approximately stationary flow is reached for
t̃− t̃i� �0.2,0.6�.

In the turbulent regime �dotted lines�, the mean concen-
tration increases slowly and continuously after the displacing
fluid has reached the measurement window. This increase is
consistent with the diffusive spreading of the profile of the
mean concentration observed in previous experiments:14 ac-
cording to this latter work, the concentration �c�x,z should
increase here from 0 to 0.5, following an error function of
x / t1/2. The range of values of �c�x,z is, however, too small
here �typically 0–0.12� to identify precisely the law of varia-
tion. The characteristic velocity �ũ�x

m displays large fluctua-
tions but no drift of its mean value.

Finally, in the intermittent regime, the mean concentra-
tion increases faster toward 0.5 than in the turbulent one and
displays a stepwise variation reflecting a few large mixing
events �Fig. 4�a��. In the variation of �ũ�x

m �Fig. 4�b��, several
fluctuations of much larger amplitude than in the turbulent
case are observed.

The variations with time of the square of the concentra-
tion gradient along x, ���c /�x̃�2�x,z, provide a very sensitive
means of identifying the flow regimes from the concentration
fields. In Fig. 5, the gradient is estimated from the finite
difference of the local concentration over a distance of
2.5 mm along x. This choice represents a trade-off, allowing
one to reduce the harmful effect of noise in the images at the
cost of losing the influence of the smallest structures of the
mixtures.

In the laminar regime, the initial transit of the front in-
duces very large transient variations of the gradient, which
becomes very low thereafter. In the turbulent regime, the

0 0.5 1
0

0.5

1

Laminar

Intermittent

Turbulent

<c(t)>x,z

(a)

(b)

<u>x

0 1 2
0

1

2

3

Laminar

Intermittent

Turbulent

t - ti
~~

t - ti
~~

~ m

FIG. 4. Variation as a function of the dimensionless time t̃− t̃i of the aver-
ages over the measurement window of �a� the mean relative concentration
�c�x,z and �b� the half difference �ũ�x

m between the positive and the negative
velocity extrema. Solid line: case L2 �see Fig. 2�; dashed line: I3; and dotted
line: T3.
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gradient increases slowly with time after the transit of the
front and its value at long times is larger than in the laminar
case.

In the intermittent regime, large mixing events are
marked by large peaks of the gradient with amplitude close
to that of the initial transient. These peaks are not symmetri-
cal and display a steep rise as turbulence sets in the measure-
ment window followed by a slow relaxation. Such peaks are
not observed in the two other regimes and are a characteristic
of the intermittent flows �Fig. 5�. The minimum values are
very low, confirming the occurrence of transient laminar
flows.

In the following, we investigate the properties of the
velocity and concentration fields and the characteristics of
momentum transport in the mixing flows focusing on the
laminar and the turbulent regimes only. The stationarity of
these flows allows indeed for a joint analysis of the velocity
and concentration fields obtained for same values of � and At
but from distinct experiments.

IV. LAMINAR FLOW REGIME

A. Experimental mean velocity and density profiles

In this section, we investigate first the mean transverse
profiles of the density and of the velocity in the two laminar
cases L1 and L2: more precisely, we plot averages taken over
�t, �x and over the ensemble e of experiments correspond-
ing to these two sets of control parameters. The interval
�t= t2− t1 used for the time average is determined in the
following way: the lower boundary t1 is chosen so that the
perturbations due to the mixing zone right behind the front
have died out. The upper boundary t2 is such that the pertur-
bations of the flow after the fronts have reached the end of
the tube are not yet felt inside the measurement window.

Figure 6 displays the variation with the distance z̃ of the
normalized density contrast �
�̃��z̃�= ��̃��z̃�− ��̃��0�. In both
cases L1 and L2, these profiles have a three-layered struc-
ture. One observes a central layer of mixed fluid correspond-
ing to a value of 
�̃ decreasing slowly with z̃ from 0.1 to
�0.1; it is surrounded by two layers of the nearly pure initial
solutions with a density difference between them: �
�̃��0.5�
− �
�̃��−0.5�=−2��
c��0.5�− �
c��−0.5���−2. These latter

layers are broader at the largest tilt angle �case L2�, and the
transition from one layer to another is also much sharper.
This suggests that mixing in the layered part �due to velocity
and concentration fluctuations� and right behind the fronts is
less efficient in case L2 than in case L1. One also notes an
asymmetry between the parts of the curves corresponding to
z̃�0 and z̃�0: a perfect symmetry is indeed only expected
at the gate valve �x=0�.

The differences between cases L1 and L2 are less pro-
nounced for the velocity. Figure 7 shows that the profiles of
the normalized longitudinal velocity ũ in cases L1 and L2
coincide within less than 10%. The velocity ũ varies linearly
with z̃ at the center part of the pipe �−0.3� z̃�0.3� and
displays a negative, steeper slope near the walls. This linear
variation is coherent with the nearly constant density near the
axis of the tube: in this region, one may expect indeed a pure
shear flow driven by the two side layers. There is also a
slight asymmetry between the parts of the curves corre-
sponding to z̃�0 and z̃�0 but significantly weaker than for
the density. The location z̃0 of the extrema of the velocity
from the axis is nearly the same for L1 and L2.

The transverse profiles of w̃ are also plotted with a ver-
tical magnification of 10: in both cases L1 and L2, this trans-
verse component is more than 100 times smaller than the
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FIG. 5. Time dependence of the averages over the LIF measurement win-
dow of the squared longitudinal concentration gradient for three individual
experiments in cases L2, I3, and T3. Time is counted after the displacement
front has first reached the measurement window. The line styles have the
same meaning as in Fig. 4.
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longitudinal one. This is within the range of experimental
errors, and w̃ may, therefore, be considered as negligible.
Although the third velocity component v cannot be mea-
sured, this suggests that the flow is parallel to the x axis.

B. Relationship between velocity and density
profiles

The above results demonstrate that in the laminar re-
gime, the flow can be considered as parallel far enough from
the front so that the perturbations it induces have relaxed.
Since no external pressure gradient is applied, the longitudi-
nal gradient is equal to the hydrostatic component corre-
sponding to the average density. Also, convective momentum
transport is negligible and viscous transport is the only rel-
evant mechanism. If, in addition, the flow is stationary, the
Navier–Stokes equation becomes

�
���y,z�g cos � = ���y2�u� + �z2�u�� �1�

or, using the dimensionless variables defined above,

�
�̃��ỹ, z̃�cos � = Ret
−1��ỹ2�ũ� + �z̃2�ũ�� . �2�

For a parallel laminar flow, the transverse pressure gradient
is only due to gravity and each flow section is in hydrostatic
equilibrium: isodensity lines in a section are therefore hori-
zontal, i.e., �
�̃��ỹ , z̃�= �
�̃��0, z̃�. In this case, Eq. �2� can be
rewritten as

���ũ� = Ret cos � �
�̃��0̃, z̃� , �3�

in which �� is the two-dimensional �2D� Laplacian operator
in the �y ,z� plane. Then, using the experimental profile
�
�̃��0, z̃�, a theoretical velocity field �ũ��ỹ , z̃� is computed
by numerically integrating Eq. �3� using no-slip boundary
conditions at the tube wall.

The velocity profiles �ũ��0, z̃� along the z axis obtained
in this way are displayed in Fig. 7 for �=45° and �=60°
�dotted and dashed-dotted lines�. A good agreement with the
experimental values �dashed and continuous lines� is ob-
tained. This shows that in this regime, determining the den-
sity �or concentration� profile in the measurement plane pro-
vides a good prediction of the velocity profile at the center
part of the flow section.

C. Relation between front velocity and velocity
profiles

In this section, our objective is to relate the velocity Vf

of the displacement fronts in the laminar regime to the pro-
files of the average velocity and density in the measurement
window far from the fronts. For this purpose, we use a sim-
plified model represented in Fig. 8 and reproducing approxi-
mately the concentration profiles of Fig. 6. The flow is di-
vided longitudinally into three regions.

�1� Two regions of length �xf including the upper �lower�
front and the mixing zone behind it. These regions
propagate in opposite directions, reaching a constant ve-
locity 
Vf after a short transient phase; they are as-
sumed to be stationary in the moving reference frame of
each front so that �xf is constant with time.

�2� A core region of length �xi�t� where the flow is assumed
to be laminar and parallel to x �v=w=0�. There, no
transverse mixing occurs and the transverse density pro-
file is independent of x and t. In the model, the variation
of the length �xi follows the motion of the fronts so that
d��xi� /dt=2Vf after the transient phase. In this latter
region, one has pure light and heavy solutions, respec-
tively, near the top and bottom of the section and mixed
fluid near the center �as shown in Fig. 6, the density
variations are generally not as sharp as in the schematic
view of Fig. 8�.

Figures 6 and 7 show that �
���y ,z� and �u��y ,z� are odd
functions of z; due to the lack of transverse mixing, they are
assumed, in addition, to be independent of x. Then, one can
write the equality between the mass flux through a section
x=cst �inside the interval �xi� and the variation per unit time
of the total mass of fluid above this section as

� �
S̃

�
�̃��z̃��ũ��z̃, ỹ�dz̃dỹ = − ṼfS̃
��̃

2
= −

�Ṽf

4
. �4�

Here, the dimensionless density difference ��̃ /2 corresponds

to the pure heavier fluid and is equal to 1 and S̃=S /d2

=� /4 is the normalized section of the tube. Of course, the
same relation might be obtained by computing the mass bal-
ance in the parts of the tube below the section x=cst.

We have used Eq. �4� to compute a theoretical front ve-
locity in cases L1 and L2. The velocity field �u��y ,z� is com-
puted like in Sec. IV B by numerically integrating Eq. �3�.
The resulting values of the front velocity Vf

th are listed in
Table I. These theoretical predictions may be compared to
the experimental values reported in Refs. 13 and 16 and also
listed in Table I. Without using any adjustable parameter, the
predicted values of Vf are lower than the experimental ones:
this discrepancy has the same sign as in the simpler case of
the counterflow of two fully separated fluids13,19 but is larger
�20%–30% instead of 16%�. This difference likely reflects
the crude description of the density profile used in the
present section.

z

g
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x

2c

-Vf

Vf

L/2

L/2

Δxi(
t)

Δxf

Δxf

ho
−Δρ/2

0

Δρ/2
mixing
zone

mixing
zone

FIG. 8. Schematic view of the flow structure in the laminar layered regime.
The scale in the z direction is expanded by a factor of 50 compared to the
scale along x.
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D. Thickness of the mixing layer in the laminar
regime

The objective of this section is now to predict theoreti-
cally the dependence of the density profile in the laminar
regime on � and Ret. Practically, we model the actual profile

by a central mixing layer of thickness h̃0, where 
�̃=0 be-
tween two layers of pure fluid with 
�̃= 
1 �Fig. 8�. In this
simplified representation, the profile depends only on the pa-

rameter h̃0. The corresponding variation of the dimensionless
density 
�̃�x ,z� is

�
�̃ = 1, − 1/2 � z̃ � − h̃0/2


�̃ = 0, − h̃0/2 � z̃ � h̃0/2


�̃ = − 1, h̃0/2 � z̃ � 1/2.

�5�

This description represents well the overall variation of 
�̃�z̃�
but does not reproduce the smooth boundaries between the
different layers �particularly at lower tilt angles such as
�=45° in Fig. 6�. This variation also does not take into ac-
count the asymmetries between the parts of the profiles cor-
responding to z̃�0 and z̃�0: they should be in opposite
directions for x�0 and x�0.

In the following, we develop first a procedure for com-

puting theoretically the front velocity Vf
th as a function of h̃0,

Ret, and � when the variation of 
�̃�z̃� corresponding to Eq.
�5� is assumed. Then, for the given sets of values of Ret and

�, we determine the thickness h̃0 such that the predicted

value of Ṽf is equal to the experimental one.
In the first step, we compute Vf

th by applying the same
procedures as in Secs. IV B and IV C to the density profile
given by Eq. �5�. This profile �and, therefore, the correspond-
ing velocity field� is antisymmetrical with respect to z̃ and

�̃=0 at the center part of the tube. The left hand side of Eq.
�4� may then be written as

� �
S̃

�
�̃��z̃� �ũ��z̃, ỹ� dz̃dỹ = − 2� �
S̃1

�ũ��z̃, ỹ� dz̃dỹ ,

in which S̃1 is the area of the region �h̃0 /2� z̃�1 /2� occu-
pied by the pure light fluid, i.e., where 
�̃=−1. Combining
this relation with Eq. �4� leads to

� �
S̃1

�ũ��z̃, ỹ� dz̃dỹ =
�Ṽf

8
. �6�

The special case h̃0=0 corresponds to a counterflow of the
two pure fluids with no intermediate layer: this particular
configuration is similar to the lock-exchange flow of
immiscible fluids. In this case, S1=S /2 and the mean veloc-

ity in S1 is equal to the front velocity; its value Ṽf
th�h̃0=0�

may be computed analytically19 and is equal to
Ret cos � �1 /16−1 /2�2�.

In the more general case h̃0�0, one has S̃1� S̃ /2=� /8

so that, from Eq. �6�, the mean velocity in S̃1 is larger than

Ṽf. The velocity field ũ�z̃ , ỹ� may be computed for any value

of h̃0 by numerically solving Eq. �3� like in Sec. IV B.
Velocity profiles ũ�z̃� in the plane y=0 obtained in this

way are plotted in the inset of Fig. 9 for different values of h̃0

in Eq. �5�. When h̃0 increases, the extrema of the velocities
move toward the walls and their amplitude decreases, while
a zone of low velocity gradient develops at the center: this
reflects the stronger localization near the walls of the buoy-
ancy forces and their smaller value.

The theoretical value Ṽf
th�h̃0� of the front velocity is then

obtained by applying Eq. �6�. Like Ṽf
th�0�, Ṽf

th�h̃0� is propor-

tional to Ret cos � for a constant h̃0: the specific influence of

h̃0 may then be characterized by the ratio

TABLE I. Characteristic parameters of the velocity and concentration fields
for the two experiments corresponding to the laminar regime. �ũ�m: half
difference between the positive and the negative extremal velocities in Fig.

7; z̃0: mean absolute distance of the velocity extrema from the axis; Ṽf
expt:

dimensionless front velocities from Ref. 13 for the same set of control

parameters; Ṽf
th: dimensionless theoretical front velocities determined from

Eq. �4�; and h̃0: dimensionless thickness of intermediate layer predicted
from Eq. �9�.

L1 L2

� 45° 60°

At 10−3 10−3

Ret 300 300

�ũ�m 2.9 3.3

z̃0 0.31 0.32

Ṽf
expt 0.72 0.74

Ṽf
th 0.57 0.55

h̃0
th 0.62 0.53

0 0.5 1ho
~

0

0.5

1

-4

-2

0

2

4

-0.5 0 0.5z~

~u

g(ho)
~

L1

L2

FIG. 9. Variation of the ratio g�h̃0�= Ṽf�h̃0� / Ṽf�0� for a three-layered system

as a function of the normalized thickness h̃0 of the middle layer. Dotted

lines: values of h̃0 and g�h̃0� corresponding to cases L1 and L2. Inset: pro-
files of the normalized longitudinal velocity ũ as a function of the transverse

distance z̃. Values of h̃0 corresponding to the different curves are, for de-
creasing amplitudes of the variations, 0, 1/3, 1/2, and 2/3.
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g�h̃0� =
Ṽf�h̃0�

Ṽf�0�
. �7�

The value of g�h̃0� has been computed numerically for dif-

ferent thicknesses h̃0 and the resulting variation is plotted in
Fig. 9.

Combining the analytical value of Ṽf
th�0� with the defi-

nition of g�h̃0� leads to the following theoretical expression
of the front velocity:

Ṽf
th�h̃0� = g�h̃0� Ret cos � 
 1

16
−

1

2�2� . �8�

Since g�h̃0� is a monotonous function of h̃0, this expression

provides a theoretical value of h̃0 when Ṽf
th is replaced by the

experimental front velocity Ṽf
expt for the values of Ret and �

of interest.

Such experimental values of Ṽf
expt for these laminar flows

are reported in Table I and Ref. 13. For Ret cos ��50, Ṽf

varies linearly with Ret cos �: this regime, in which Vf is
determined by viscous dissipation along the full length of the
flow, is observed for � values larger than here and is there-
fore not considered.

For Ret cos ��50, Ṽf
expt is nearly constant and will be

taken equal to 0.73 �average of the values of Table I�. Then,

g�h̃0�, Ret, and cos � must satisfy

g�h̃0�Ret cos � = 0.73
 16�2

�2 − 8
� � 61.5. �9�

Since g�h̃0��1, this equation may be solved for predicting

h̃0 from any set of values of Ret and � such that Ret cos �

�61.5: this is similar to the range of values over which Ṽf
expt

remains constant �Ret cos ��50�. Since g�h̃0� decreases

monotonously with h̃0, Eq. �9� implies that the thickness h̃0 is
larger at lower angles � and higher Ret.

Applying Eq. �9� to cases L1 and L2 �see Table I� gives

g�h̃0�=0.29 and g�h̃0�=0.41, respectively. From Fig. 9, the

corresponding values of h̃0 are h̃0
L1=0.62 and h̃0

L2=0.53. The
predicted boundaries of the intermediate layer corresponding

to these values of h̃0 are indicated by the arrows in Fig. 6.

The variation of h̃0 with � is correctly reproduced, but the
predicted values are 20%–30% too high �taking the inflexion
points of the profiles as the experimental boundaries�; this is
acceptable in view of the simple assumptions made here.

As the tilt angle � decreases, the boundaries between the
different layers become smoother, as can be seen in Fig. 6,
and the width of the layers of each pure fluid at the top and
bottom parts of the section becomes smaller. The validity of
the three-layered model becomes then questionable.

V. TURBULENT FLOW REGIME

A. Average variables and stationarity of the flow

We shall now discuss the cases of large At and low �
values in which continuous turbulent mixing is observed. In
this section, we characterize these flows by the average val-
ues of the local density and velocity components and by their
fluctuations. The influence of the tilt angle � and of the den-
sity contrast At is analyzed by comparing the results obtained
in the four sets Ti of experiments corresponding to the tur-
bulent regime �see Fig. 2�. The results are listed in Table II
and will be discussed below.

A major question is whether these flows can be consid-
ered as statistically stationary. The time dependence of the
characteristic velocity ũx

m and of the mean square concentra-
tion gradients displayed in Figs. 4�b� and 5 suggested quali-
tatively that the flow is statistically stationary. This key issue
will be investigated quantitatively below for the different
measured quantities.

1. Mean concentration profiles

Figure 10 displays the transverse profiles �
�̃��z̃� of the

TABLE II. Measured flow variables averaged over time ��t�, longitudinal
distance ��x�, and experiments �e� for the sets Ti of control parameters
corresponding to the turbulent regime. t1: beginning; t2: end of the averaging
interval �t �see Sec. II B�. The characteristic velocity �ũ�m and the distance
z̃0 are defined as in Table I.

T1 T2 T3 T4

� 15° 30° 15° 30°

At 4�10−3 4�10−3 10−2 10−2

Ret 560
10 560
10 1000
50 1000
50

�ũ�m 0.56 0.90 0.37 0.60

z̃0 0.36 0.37 0.38 0.39

Ṽf 0.24 0.33 0.16 0.24

�ũ�m / Ṽf 2.33 2.73 2.31 2.50

�ũ�2�max 0.11 0.16 0.069 0.077

�w̃�2�max 0.015 0.024 0.017 0.021

�ũ�2�max / �w̃�2�max 7.3 6.7 4.1 3.7

�w̃�2�max
1/2 / �u�max 0.22 0.17 0.35 0.24

��̃�t 0.39 0.66 0.22 0.38

�c�2�x,e
1/2 0.39 0.6 0.22 0.35

t̃1− t̃i 0.6 0.7 1.2 0.7

t̃2− t̃i 3.6 2.5 5.9 3.2
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FIG. 10. Profiles of the normalized mean density contrast �
�̃��z̃�= ��̃��z̃�
− ��̃��0� as a function of the transverse distance z̃ in the turbulent flow
regime. Continuous line: T3; dashed line: T2; and dashed-dotted lines:

slopes of the profiles at z̃=0. Inset: variations of �̃ with t̃ for the different
turbulent flows.
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average local density contrast for cases T2 and T3 in the
turbulent regime. As mentioned above, the average is taken
over a set e of different experiments as well as over �x and
�t. In this turbulent regime, the averaging interval
�t= t2− t1 must be such that the flow can be considered as
statistically stationary within it. Its boundaries t1 and t2 are
determined from the variations with time of a parameter of
the flow �averaged only over �x and e�: here, we selected the
dimensionless absolute slope of the density profiles at z̃=0,

�̃ = − � ��
�̃�x,e

� z̃
�

z=0

. �10�

The product �̃ cos � is indeed the normalized effective driv-
ing force of the flow and determines largely its properties
�see Eq. �11� in Sec. V B�. The global density difference
plays a significant role only in the initial phase of the inter-
penetration flow, while the influence of the local variations
across the tube section becomes dominant as soon as mixing
takes place.

For a stationary flow, �̃ should therefore remain constant
with time even though the mean concentration �and density�
varies: its variations are plotted in the inset of Fig. 10. For

experiments T1 and T3 at �=15°, �̃ varies by less than 10%:
the flow can therefore be considered as statistically quasista-
tionary after the initial phase. For �=30°, in the less turbu-

lent case T2, �̃ decreases by 40% in the later stages of the
flow �t̃�2� and also slightly in case T4: the flow is then only
quasistationary at earlier times. Practically, we select as the
lower boundary of the averaging interval �t the time t1 at
which the curve reaches its maximum which marks the end
of the initial phase. The upper boundary t2 is chosen as the
time corresponding to either 90% of this maximum or to the
end of the recording; this also ensures that the measurements
are not influenced by the backfilling front. The correspond-
ing normalized values t̃1− t̃i and t̃2− t̃i are listed in Table II;
they have been used to compute the averages in the main
graph of Fig. 10. For consistency, the same values of t̃1− t̃i

and t̃2− t̃i are then retained for computing the time averages
of other variables.

The slope of this average density profile at z̃=0 �dashed-
dotted lines in the main graph Fig. 10� is larger by a factor of
3 for T2 than for T3, while the domain of linear variation

with z̃ is narrower �d /3 instead of d /2�. This indicates that
turbulent mixing has a reduced efficiency for T2 and is more
localized at the center of the tube. Moreover �still for T2�,
the slope increases more strongly near the walls and
�
�̃��z̃� reaches higher absolute values. In cases T1 and T4,

the average slopes ��̃�t are intermediate between those for T2
and T3 �see Fig. 10 and Table II�. This shows that in the
present work, the variations of At and � have a similar influ-
ence on the concentration field.

This variation of ��̃�t with � has an important conse-
quence: increasing � reduces the gravity component g cos �
along the tube at the origin of the flow. However, the effec-
tive driving force is not determined solely by cos � but by

the product ��̃� cos � �using normalized variables�. Here, the

increase of �̃ with � due to less effective mixing is observed
to dominate the variation of g cos �, which leads to an in-
crease of the effective local driving force.

2. Concentration fluctuations

The stationarity of the concentration fluctuations is ana-
lyzed from Fig. 11, displaying the variation of the standard
deviation �c�2�x,e

1/2 as a function of the normalized time t̃ for
the different experiments �the standard deviation provides
here a correct characterization of these fluctuations because
they are found to be normally distributed�. All four curves
are strikingly similar to those corresponding to the same
case in the inset of Fig. 10: this suggests that the fluctuations

are slaved to the effective force term �̃. In cases T1 and T3
��=15°�, the value of �c�2�x,e

1/2�t̃� is nearly constant, which
confirms that stationarity is indeed satisfied in this case. This
contrasts with the strong decay observed for T2 and the
weaker one for T4.

The stationarity in cases T1 and T3 implies that the con-
centration gradients are continuously enhanced by the arrival
of fluids of different concentrations from both sides of the
tube section: this compensates for their attenuation by the
mixing effect of turbulence. The maximum value of �c�2�x,e

1/2

is three times lower for T3 than for T2 �see Table II�, which
confirms that the mixing efficiency is higher for T3.

3. Mean velocity profiles

In contrast to � and �c�2�1/2, the mean velocity profiles
can be considered as independent of time in all cases. This is
shown in the inset of Fig. 12 in which the characteristic
velocity �u�x,e

m , defined as in Sec. III A, is plotted as a func-
tion of the dimensionless time t̃. In all four cases Ti, �u�x,e

m

can be considered as constant within experimental error after
a transient initial variation. This difference may reflect a dif-
ferent nature of these quantities: � and �c�2�1/2 are defined
purely locally, while the mean velocity is determined by the
distribution of the two fluids all along the mixing zone.

Another difference with the density profiles of Fig. 10 is
that, although the extremal values are different, the profiles
ũ�z̃� displayed in the main graph of Fig. 12 for T2 and T3 are
very similar. In both cases, the variation of ũ with z̃ is linear
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0

0.04
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FIG. 11. Variation with the dimensionless time t̃ of the standard deviation
�c�2�1/2 of the local concentration �the same line patterns as in the inset of
Fig. 10�.
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in the range −0.3� z̃�0.3; all extrema of the velocity are at
similar distances from the axis, z̃0�0.36−0.39, and ũ de-
creases steeply near the walls.

The maximum velocity �ũ�max is larger for T2 than for

T3: together with the similar larger value of �̃, this confirms
that reducing mixing enhances the buoyancy forces and the
velocity of the flows which they induce. The relative concen-
tration near the walls reaches values that are closer to those
corresponding to pure fluids for which �ũ�max is highest �like
in cases L1 and L2�. Like for �, varying only either � or At
�cases T1 and T4� leads to comparable intermediate values,
indicating that their influence is of the same order �see Table
II�. For instance, when the angle � increases from 15° to 30°

at a constant density contrast, the driving force ��̃�cos � also
increases, as discussed in Sec. V A 2; as a result, the maxi-
mum velocity �ũ�max increases with �, instead of decreasing
if only the variation of the component g cos � of gravity was
relevant.

The transverse velocity component �w̃� �Fig. 12�b��
is larger than in the laminar regime but still 30–40
times smaller than ũ. Numerical simulations performed for
At=10−2 and �=15° have shown for case T3 that this trans-
verse flow corresponds to four recirculation cells of alternate
signs in the tube section,15,20 which contribute significantly
to momentum transport in the section. The magnitude of �w̃�
is similar for all turbulent cases investigated, implying that
recirculation is also present.

While these velocity measurements are achieved in the
vicinity of the gate valve, it is interesting to compare them to
the front velocity Vf. Table II lists values of the ratio
�ũ�max /Vf computed using values of �ũ�max from the present
work and values of Vf from Ref. 14: one obtains �ũ�max /Vf

=2.5
0.2 �the largest deviation corresponds to case T2 clos-
est to the transition with the intermittent regime�. This
shows that even if the fronts are far from the measurement

window, their velocity Vf is, like in the laminar regime,
closely related to the longitudinal velocities near the gate
valve. In order to achieve mass conservation, the large value
of the ratio �ũ�max /Vf requires that recirculation flows be
present in the vicinity of the front, as discussed by other
authors.7,21,22

4. Turbulent velocity fluctuations

The final important characteristics are the intensity and
anisotropy of the turbulence: they are characterized by the
normalized mean square components �w̃�2��z̃� and �ũ�2��z̃� of
the fluctuations u� and w� defined in Sec. II B. These are
plotted in Fig. 13�a� as a function of the distance z̃ for the
experiments T2 and T3. While the values and transverse pro-
files of �w̃�2� are similar, the magnitude of �ũ�2��z̃� and,
therefore, the anisotropy of the turbulent fluctuations are sig-
nificantly larger for T2 than for T3. This may be related to
the higher mean velocity for T2: the energy of the mean flow
is indeed preferentially first transferred to the component u�
of the velocity fluctuations;23–25 this hypothesis is supported
by the larger amplitude of the local maxima observed for
z̃�0.3, not far from those of the mean velocity.

We have also compared the turbulent fluctuation rates,
which we characterize here by the ratio �w̃�2�max

1/2 / �u�max �see
Table II�. �w̃�2� has been selected rather than �ũ�2� because,
as mentioned above, it is less directly coupled to the mean
flow: therefore, it reflects better the local velocity fluctua-
tions resulting from the redistribution of the energy trans-
ferred into the fluctuations.

The order of magnitude of �w̃�2�max
1/2 / �u�max is compatible

with that reported in similar turbulent flows; its value for T3
is about twice that for T2, in agreement with expectations
from the qualitative properties of these flows. This ratio rep-
resents therefore a convenient measurement of the turbulence
level of these flows.
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FIG. 12. Transverse profiles of the longitudinal �a� and transverse �b� mean
normalized velocity components �ũ��z̃� and �w̃��z̃� as a function of the tur-
bulent flow regime for the same sets of experimental parameters T2 and T3
and using the same line patterns as in Fig. 10. Inset: time variation of the
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min across the tube diameter as a
function of the dimensionless time t̃ �the same line patterns as in the inset of
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longitudinal �top curves� and transverse �bottom curves� velocity compo-
nents for the same sets of experimental parameters T2 and T3 and using the
same line patterns as in Fig. 10. �b� Time variation of �w̃�2�x,e�z̃=0� �the
same line patterns as in the inset of Fig. 10�.
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The variations with time of the squared magnitude
�w̃�2�x,e�z̃=0� of the transverse velocity fluctuations are dis-
played in Fig. 13�b�: these variations are much more similar
to those of � and of the standard deviation of the concentra-
tion fluctuations �c�2�1/2 than to those of the maximum ve-
locity. The squared magnitude remains approximately con-
stant for T1 and T3, while it decreases significantly for T2
for t̃�1.5 and slower for T4. The reduced value of the pa-
rameter � characterizing the effective driving force of the
flow seems to lead therefore to weaker velocity and concen-
tration fluctuations.

B. Momentum transport in the turbulent regime

1. Viscous and turbulent transport

A key information on the mixing flow is the relative
magnitude of the laminar and turbulent momentum transport
terms. The global momentum balance of the flow is ex-
pressed by the x component of the normalized Reynolds
equation,26


�̃�z̃� cos � = − �w̃��z̃�ũ� − �ỹ�ũ�ṽ�� − �z̃�ũ�w̃��

+ Ret
−1 �z̃2�ũ� . �11�

This expression contains only terms shown to be large
enough to be relevant in case T3 by the numerical simula-
tions and experiments reported in Ref. 15. It is assumed that
these same terms are the meaningful ones in the other cases:
T1, T2, and T4.

The only viscous and turbulent terms of Eq. �11� mea-
surable experimentally are Ret

−1 �z̃2�ũ� and −�z̃�ũ�w̃��, re-
spectively. They represent the derivatives with respect to z
�actually a divergence� of the viscous and turbulent stress
components: Ret

−1 �z̃�ũ�and −�ũ�w̃��.
The term −�ỹ�ũ�ṽ�� corresponds to the out-of-plane tur-

bulent transport: in case T3, it was found numerically to vary
with z̃ like the in-plane one while being about 40% lower.
Finally, −�w̃��z̃�ũ� corresponds to transport by the mean
transverse velocity �w�; it also had a dependence on z̃ similar
to the in-plane turbulent term.

The variation of the turbulent stress −�ũ�w̃�� with z̃ will
therefore be considered as representative of that of the other
nonmeasurable convective terms. It is compared in Fig. 14 to

the variation of the viscous stress: Ret
−1 �z̃�ũ� in cases T2 and

T3. Also, the values of these two terms at z̃=0 are compared
in Table III for all turbulent cases Ti.

In the core of the flow, the turbulent stress is always
larger than the viscous one: however, their ratio �turbulent/
viscous� is larger for T3��12� than for T2��4�. This stron-
ger influence of the viscosity for T2 is confirmed by the
narrower domain over which the turbulent term is dominant
�−0.3� z̃�0.3 for T2 against −0.4� z̃�0.4 for T3�.

In both cases, the turbulent term reaches its maximum on
the tube axis but its variations near the walls differ. For T3, it
decreases monotonously with �z̃� and is nearly zero for
�z̃��0.45. For T2, it displays a negative overshoot beyond
�z̃��0.32: this corresponds to a local turbulent momentum
transfer component oriented toward the walls in addition to
the viscous one. Also, the turbulent term is of the same order
as the mean square �w̃�2�t of the transverse fluctuations but
significantly smaller than �ũ�2�t.

2. Turbulent transport characterization by the mixing
length model

In an attempt to quantitatively characterize the relation
between the momentum flux −�ũ�w̃�� and the streamwise ve-
locity field �u�, we computed a dimensionless mixing length

l̃m by

− �ũ�w̃�� = l̃m
2 �z̃��z̃�ũ���z̃�ũ�� . �12�

This approach was selected because lm was found to be con-
stant in several types of free shear flows26 including stratified
flows similar in several respects to ours.1 This definition of

l̃m is only meaningful if −�ũ�w̃�� and �z̃�ũ� have the same
sign, which is satisfied in the turbulent core.

The experimental variations of the normalized mixing

length l̃m as a function of z̃ for the sets of experiments Ti are
plotted in Fig. 15; all data correspond to the core of the flow
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FIG. 14. Turbulent �top curves� and viscous �bottom curves� in-plane nor-
malized stress components for the cases T2 and T3. The line patterns are the
same as in Fig. 10. The vertical dashed-dotted lines mark the location of the
extrema of the mean velocity.

TABLE III. Flow and momentum transport parameters in the wall and core
regions for the four turbulent flow cases.

T1 T2 T3 T4

� 15° 30° 15° 30°

At 4�10−3 4�10−3 10−2 10−2

Ret 560
10 560
10 1000
50 1000
50

Boundary between wall and core regions

�
�̃��z̃0� 0.16 0.27 0.11 0.14

ũexpt
m 0.56 0.90 0.37 0.60

ũest
m 1.0 1.5 0.85 0.8

Core region

−�ũ�w̃���0� 0.014 0.021 0.012 0.016

1 /Ret �z̃�ũ��0� 3.3�10−3 5.0�10−3 1.3�10−3 1.6�10−3

l̃m�0� 0.062 0.051 0.094 0.071

� cos � z̃0
2 /2 0.0245 0.039 0.015 0.025

Buoyancy term

Transport terms 1.41 1.50 1.15 1.42
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where turbulent transport is dominant. The length l̃m is of the
order of 1/10 of the width of the shear layer, which is the
same order of magnitude as for free shear flows. However, in

contrast to Ref. 1, l̃m may only be considered as approxi-
mately constant with z̃ in the strong mixing case T3. In all

other cases, the variations of l̃m with z̃ are better fitted by a

quadratic dependence and the value of l̃m at a given point
depends both on At and �. In contrast to the conclusions of
Ref. 1, the mixing length description does not approach well
most of the turbulent mixing flows investigated here, perhaps
due to the larger influence of the channel walls.

C. Momentum balance in the different regions
of the turbulent flow

1. Characteristics of the different regions of the flow

As shown in the previous parts, flow in the turbulent
regime can be modeled approximately as a turbulent mixing
zone at the center surrounded by two channels with more
concentrated solutions near each wall. The size of the chan-
nels and the absolute values of �
�� are larger at lower At
and higher angles �. In these three regions, the flux of mo-
mentum �equal and opposite to the stress� reflects different
dominant mechanisms and is oriented differently.

�a� At the center part, turbulent momentum transport is
dominant and takes place internally between the upper
and the lower halves of the core region. Positive mo-
mentum produced by buoyancy forces in the upper half
of the section and negative momentum produced in the
lower one are transported in opposite directions
through the plane z=0.

�b� In the near-wall regions, the global flux is oriented to-
ward the walls and is dominantly viscous; in case T2,
the negative overshoot of the turbulent stress tensor in
the regions of the walls represents an additional turbu-
lent momentum flux component adding up to the vis-
cous one.

The boundaries between these two types of regions
should correspond to the point at which the sum of the tur-
bulent and viscous momentum flux goes to zero. The corre-
sponding distances to the axis in cases T2 and T3 are �z̃�

�0.35 �T2� and �z̃��0.4 �T3�: they turn out to be close to the
location z0 of the velocity extrema. A more precise evalua-
tion would require a determination of the other momentum
transport terms.

2. Momentum balance and velocity profiles
in the wall regions

In these wall regions that, as discussed above, corre-
spond to z̃0� �z̃��1 /2, momentum transport may be as-
sumed to be purely viscous. In order to check whether this
assumption is compatible with the measured values of 
�̃�z̃0�
and ũ�z̃0�, it is assumed, for simplicity, that the flow is locally
two dimensional without momentum transfer along y. One
also assumes that the density contrast 
�̃ retains the same
value as for z̃= z̃0. The equation of motion reduces then to

�
�̃��z̃0� cos � = Ret
−1 �z̃2�ũ� . �13�

Since the velocity gradient �ũ /�z is zero for z̃= 
 z̃0 and the
velocity is zero at the wall �z̃= 
1 /2�, the resulting
parabolic profile ũ�z̃� is the same as for the gravity driven
flow of a viscous liquid film of density �
�̃��z̃� and thickness
�1 /2− z̃0� on a tilted wall. Integrating Eq. �13� with these
boundary conditions leads to an estimate of the maximum
velocity equal in this case to the characteristic velocity �ũ�m

defined in Sec. III A,

�ũ�est
m = − �
�̃��z̃0�

Ret cos �

2

z̃0 −

1

2
�2

. �14�

The corresponding values are listed in Table III and are, on
the average, 70% higher than the experimental ones: this
may reflect the influence of the remaining turbulent fluctua-
tions in this zone and of velocity gradients along y due to the
curvature of the wall.

3. Turbulent core region

Like in the wall region, we use a simplified version of
Eq. �11�,


�̃�z̃� cos � = − �z̃�ũ�w̃�� + Ret
−1 �z̃2�ũ� . �15�

Both terms −�w̃��z̃�ũ� and −�ỹ�ũ�ṽ�� representing, respec-
tively, momentum transport by the mean transverse velocity
�w� and by the out-of plane velocity fluctuations v� have
been neglected.

Unlike in the viscous case, however, the relation be-
tween the turbulent stress and the velocity gradients is not
straightforward: the discussion of Sec. V B 2 has shown in-
deed that the mixing length lm depends not only on the set of
parameters Ti investigated but also on the transverse distance
z̃. Therefore, rather than attempting to predict the local ve-
locity profile, we shall investigate the global momentum bal-
ance of the flow: this allows one both to check the consis-
tency of the density and velocity measurements and also to
estimate the relative influence of the 3D transport terms. In-
tegrating Eq. �15� between 0 and z̃0 �i.e., over the turbulent
core�, after approximating 
�̃�z̃� by −�z̃ leads to

0 0.50

0.05

0. 1

0.15

lm

z~-0.5

~

T3

T2

T4T1

FIG. 15. Variation of the dimensionless mixing length l̃m from Eq. �12� as a
function of z̃ for four different turbulent cases �see labels�. Continuous lines:
experimental data; dashed lines: fit by a quadratic variation �shown as a

guide to the eye�. The values of l̃m for z̃=0 are listed in Table III.
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� cos �
z0

2

2
= − �ũ�w̃���0� + Ret

−1 �z̃�ũ��0� �16�

since the sum of the momentum fluxes cancels out at z̃= z̃0.
This represents, under the above assumptions, the global mo-
mentum balance in a thin slice of fluid centered on the plane
y=0 and extending from z=0 to z=z0.

The ratio of the buoyancy term at the left and of the sum
of the transport terms at the right is given in Table III. This
ratio varies from 1.15 in case T3 to 1.5 in case T2. This
confirms that the description of the flow in the core as a 2D
turbulent shear flow is more valid in the more strongly tur-
bulent case T3; in the others, the additional terms represent-
ing transport by the transverse mean velocity and by the
out-of-plane fluctuations play a significant part in the global
momentum balance.

VI. DISCUSSION AND CONCLUSION

It is apparent from the present work that the characteris-
tics of viscous/turbulent momentum and mass transport in
these mixing flows differ strongly from those of pressure
driven flows27 in similar channels. Here, the streamwise
pressure gradient is purely hydrostatic and flow is driven by
buoyancy forces due to the transverse gradients of the fluid
density. The observed flow regimes depend on the relative
influence of mixing by shear driven instabilities and of seg-
regation by the transverse gravity. More precisely, as the At-
wood number �At� increases and the tilt angle � is reduced, a
transition from laminar quasibidimensional flow to intermit-
tent destabilizations and, finally, to developed turbulence is
observed.

While these flow regimes are easily identified qualita-
tively, their influence on the different parameters and statis-
tical moments characterizing the velocity and concentration
fields may be variable. For instance, the shape of the mean
velocity profile remains qualitatively the same in the laminar
and turbulent regimes �linear variation at the center with two
off-axis extrema�, while the normalized maximum velocity
varies. The variation of the transverse flux of momentum
with z̃ is also qualitatively similar in the laminar and turbu-
lent regimes: it is highest on the tube axis and becomes zero
near the extrema of the velocity. Also, in both regimes, in the
core region between the two extrema ��z̃�� z̃0�, momentum is
exchanged internally between the two halves of the flow sec-
tion �either by viscous diffusion or by turbulent fluctuations
when present�. In the wall region �z̃0� �z̃��d /2�, viscous
momentum transfer is dominant in all regimes and is ori-
ented toward the walls. These features are very different
from those of a flow driven by a pressure gradient: in this
case, momentum flux is oriented toward the walls in the
whole fluid volume.

The profile of the density contrast �
�� changes more
strongly than that of the velocity from a stepwise variation
with z̃ �laminar regime� to a slow linear one �highly turbulent
regime�. Mass transfer �like the density profile� also depends
very much on the flow regime. For laminar flows, transverse
mass exchange of fluid in the stable layered region between
the fronts is negligible: this is due to the weak mixing effi-

ciency of molecular diffusion and of the residual velocity
fluctuations. As a result, the velocity Vf of the displacement
front �i.e., far from the measurement window� can be related
from mass conservation considerations to the thickness h0 of
the middle layer. As � increases �or At decreases�, h0 de-
creases until one observes a counterflow of the two pure
fluids without an intermediate layer.

In the turbulent regime, there is an efficient transverse
turbulent mixing between the ascending and the descending
parts of the flow, particularly at low � and high At: as a
result, the transverse gradient of the mean density over the
tube section is small and nearly constant. As shown in Ref.
14, this transverse exchange determines, for a large part, the
macroscopic diffusion coefficient characterizing the longitu-
dinal spreading of the mean concentration profile. Unlike for
the laminar regime, there is no obvious theoretical relation
between the front velocity Vf and the velocity field u�y ,z� in
flow sections located in the middle part of the tube. How-
ever, the experimental data indicate that the two quantities
are correlated: the ratio Vf /um is nearly constant in the four
experimental cases Ti, although 50% lower than for the lami-
nar flows.

Another important characteristic of these flows is their
stationarity. In the laminar regime, aside from a few fluctua-
tions, the concentration and velocity profiles can be consid-
ered as stationary. In the turbulent regime, there is a quasis-
tationary phase during which the mean velocity profiles can
be considered as constant even though the average concen-
tration in the measurement windows drifts with time, due to
the spreading of the mean concentration profile. The varia-
tions with time of the transverse concentration gradient driv-
ing the flow and of the fluctuations of the velocity and con-
centration are similar but depend on Ti: for �=15° �T1 and
T3�, they display a quasistationary phase, while for �=30°
�T2 and T4�, they slowly decay. The better stationarity of the
mean velocity may indicate that it reflects an equilibrium of
forces along the full mixing zone, while the other quantities
are more local.

At � and At values intermediate between those corre-
sponding to the laminar and developed turbulent regimes,
intermittent flows are observed: laminar counterflows of the
two fluids accelerate until a turbulent burst is triggered, re-
sulting in strong, transient, transverse mixing. The determi-
nation of the stability criteria for the layered flows encoun-
tered in the laminar regimes will be necessary in order to
predict these effects.

The information obtained in the present work is based on
measurements of the concentration and of the velocity com-
ponents u and w in the vertical diametral plane y=0: this
raises the issue of the influence of the 3D features of the flow
and of the extension of the present results to other parts of
the flow volume. For laminar flows �high � and low At�,
transverse gravity has a strong influence, which may keep
the density variation independent of ỹ �i.e., 2D�: in this re-
gime, this assumption provides good predictions of the ve-
locity field without requiring additional parameters. In the
most developed turbulent case �At=10−2 and �=15°�, assum-
ing a dominant in-plane turbulent momentum flux provides a
good picture of the global momentum balance in the core
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region inside the measurement plane. At higher � and/or
lower At values, the relative influence of viscous and 3D
out-of-plane transport terms becomes important.

For a better understanding of these buoyancy driven
mixing processes, quantitative measurements of the trans-
verse mass exchange will be needed: simultaneous PIV and
LIF measurements will be necessary in order to measure the
correlations between velocity and concentration fluctuations,
which determines the transverse turbulent mass flux.
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