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Abstract An optical method for the measurement of the

instantaneous topography of the interface between two

transparent fluids, named free-surface synthetic Schlieren

(FS-SS), is characterised. This method is based on the

analysis of the refracted image of a random dot pattern

visualized through the interface. The apparent displace-

ment field between the refracted image and a reference

image obtained when the surface is flat is determined using

a digital image correlation (DIC) algorithm. A numerical

integration of this displacement field, based on a least

square inversion of the gradient operator, is used for the

reconstruction of the instantaneous surface height, allowing

for an excellent spatial resolution with a low computational

cost. The main limitation of the method, namely the ray

crossing (caustics) due to strong curvature and/or large

surface-pattern distance, is discussed. Validation experi-

ments using a transparent solid model with a wavy surface

or plane waves at a water–air interface are presented, and

some additional time-resolved measurements of circular

waves generated by a water drop impact are discussed.

1 Introduction

1.1 Review of optical methods measuring surface

slopes

The measurement of the deformation of a liquid surface is

of fundamental and practical interest in numerous research

fields, from small scales (e.g. painting or coating industry)

to large scales (e.g. wind waves, ship wakes). Optical

methods, being non-intrusive and able to provide an

instantaneous two-dimensional measurement, are of much

practical interest. Among those methods, the measurement

of the surface slope based on light reflection or refraction

are the most promising. Those methods have been widely

used for one-point measurements of one or two compo-

nents of the surface slope using laser beam refraction

(Tober et al. 1973; Lange et al. 1982; Liu et al. 1993), with

possible extension to line measurement using a fast scan-

ning technique (Savalsberg et al. 2006).

Extensions of this approach for two-dimensional fields,

pioneered by Cox (1958) for only one slope component, are

based on the use of collimated light beam encoded with a

linearly increasing intensity, so that a one-to-one mapping

between light intensity and slope can be obtained. The

main advantage of using collimated light is that the mea-

sured gradient is insensitive to the surface height. Zhang

et al. have extended the method to the measurements of

the two components of the surface gradient, using a system

of color-encoded collimated beams, generated by a suit-

ably colored screen and a large lens, operating either in

refraction or reflection on the free surface (Zhang and Cox

1994; Zhang et al. 1996). A calibration of the color-slope

mapping is required, and can be performed using a glass

sphere. From those measurements, the surface elevation

could be obtained by integrating the gradient components
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in the Fourier domain (Zhang 1996). This method has been

succesfully used for the investigation of surface deforma-

tions induced by vortices in a shear layer flow (Dabiri and

Gharib 2001).

Roesgen et al. (1998) introduced a new approach, also

based on collimated light, using an array of microlenses of

200 lm in diameter placed above the free surface. The

surface deformation leads to a displacement of the light

spots in the focal plane of the microlens array that could be

measured using a digital image correlation (DIC) algo-

rithm. The surface height reconstruction was obtained by

these authors by a least-square inversion of the linear

system built from a finite-difference scheme expressed on

the hexagonal lattice of the microlens array. Here again,

the size of the microlens array, usually 2–3 cm, limits the

size of the imaged area, restricting this approach to small

fields.

Using scattered light instead of collimated light allows

for simplification of the optical setup, since no collimating

lens or mirror is needed, but the resulting measurement is a

combination of the surface slope and height. Keller and

Gotwols (1983), and later Jähne and Riemer (1990), used a

light source of varying intensity along one direction,

imaged through the free surface. This approach has been

recently combined with a direct measurement of the sur-

face height based on light absorbtion (Jähne et al. 2005).

Another image-encoding approach, first discussed by

Kurata et al. (1990), relies on the use of scattered light

emitted from a structered pattern, such as a grating or a set

of random dots, imaged through the interface. Here the

displacement field is obtained by comparing the refracted

images of the pattern obtained with flat and deformed

surfaces. A similar approach has been used for the mea-

surement of the contact angle of a drop on a solid substrate

(Andrieu et al. 1995).

Although originally introduced for surface slope mea-

surements, the approach of Kurata et al. (1990) has been

extensively applied to measurements in fluids with density

variations, in the so-called ‘‘synthetic Schlieren’’ (SS)

(Sutherland et al. 1999; Dalziel et al. 2000) and ‘‘Back-

ground-Oriented Schlieren’’ (BOS) methods (Meier 2002).

The name ‘‘synthetic Schlieren’’ has been more widely

used for stratification-induced density variations in the

geophysical fluid dynamics community, whereas the name

‘‘Background-Oriented Schlieren’’ has been mainly used

for compressible fluids in the aerodynamics community. In

all cases, the displacement field between a reference image

and a refracted image originates from the continuous var-

iation of the optical index induced by the density

variations, and is measured using a DIC algorithm. How-

ever, the displacement at one point being the result of the

index variation integrated along a light ray, the refraction

index field cannot be inferred in general from those

measurements. On the other hand, in the case of a free

surface, the step-like variation of the refraction index

makes possible a complete reconstruction of the surface

height, as noted by Dalziel et al. (2000). Elwell (2004)

successfully used this idea to obtain quantitative mea-

surements of the surface deformation induced by vortices

in a shallow water flow, using a cumulative sum scheme of

the measured gradient components for the surface height

reconstruction.

1.2 Outline and scope of the paper

This paper presents a detailed characterisation of the

method originally introduced by Kurata et al. (1990) and

quantitatively developed by Elwell (2004). We propose the

name free-surface synthetic Schlieren (FS-SS) for this

method, as it relies on the same physical principle as the

now standard synthetic Schlieren method for density-

varying fluids. This methods allows for an accurate and

low-cost measurement of the instantaneous topography of

the interface between two transparent fluids. We show that

a precision of 1 lm for a 10-cm field can be readily

achieved, making this method attractive for investigation

of small-scale waves dynamics or coating phenomena.

The FS-SS method consists in two steps:

1. measurement of the surface gradient from the dis-

placement field of the refracted image of a random

pattern using a DIC algorithm;

2. reconstruction of the surface height using a least-

square integration of the surface gradient.

Compared to the methods based on collimated light,

which require an elaborate optical setup and a delicate

calibration scheme, the present method, like the standard

synthetic Schlieren method, is simply based on a black-

and-white imaging system with simple optics. As a con-

sequence it may be easily reproduced for a large range of

applications using standard laboratory equipment. The

drawback of this simplified setup is that, since no colli-

mating optics is used, oblique light rays have to be

considered, yielding to a more delicate analysis of the ray

geometry in the general case. It is shown however that, to

first order in paraxial angles, in surface slopes, and in

relative deformations, the surface gradient is simply pro-

portionnal to the displacement field.

The computation of the displacement field from the

refracted images of the flat and deformed interface is based

on a standard DIC algorithm. Due to its wide use in solid

and fluid mechanics, DIC (or other pattern matching

technics, such as optical flow, Barron et al. 1994) have

received considerable interest in recent years, and several

commercial and open-source packages are now available.

DIC is mainly used in solid mechanics for the measurement
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of the strain field at the surface of a solid (Périe et al. 2002;

Hild and Roux 2006). In fluid mechanics, apart from syn-

thetic Schlieren applications, DIC algorithms are mostly

used in particle image velocimetry (PIV) applications,

where the velocity field is given by the displacement field

of tracer particles per unit of sampling time (Adrian 1991;

Raffel et al. 1998).

The second step of the method, the integration of the

gradient field, is based on a least-square inversion of the

gradient operator. This procedure, first used by Roesgen

et al. (1998) for an hexagonal lattice, is formulated here for

a Cartesian lattice. It relies therefore on a simpler numer-

ical scheme, here again available from standard linear

algebra packages.

The paper is organized as follows. The relation between

the surface gradient and the displacement field is derived in

Sect. 2. The experimental set-up and the numerical meth-

ods for the measurement of the displacement field and for

the reconstruction of the surface height are presented in

Sect. 3. Two validation experiments are described in Sect.

4: one using the deflection of a laser beam to validate

the displacement field measurement, and one using a

transparent solid model to validate the surface height

reconstruction. Section 5 discusses the maximum accept-

able distorsion for a reliable reconstruction of the surface

height. Additional time-resolved experiments of circular

waves generated by the impact of a water drop in water are

presented in Sect. 6. Finally, Sect. 7 discusses some pos-

sible applications of the method.

2 Relation between the surface gradient

and the displacement field

2.1 Optical configurations and approximations

We want to determine the optical displacement field dr

(x, y) induced by the refraction of the light scattered from a

pattern located at z = 0 through the interface z = h(x, y).

At each object point M of the pattern, we need to determine

the virtual objects M0 and M00 corresponding to the flat and

deformed interface, respectively, and to relate the dis-

placement M0M00 = dr with the surface gradient rh at the

same point.

The surface is assumed to be smooth enough, so that the

light rays reaching the camera cross the surface only once.

The pattern may be located either above or below the

surface. The refraction indices of the fluids on the camera

side and on the pattern side are noted n and n0, respectively.

This generic formulation encompasses the two following

configurations:

Configuration 1 Camera above and pattern below the

surface (the most common situation). A limitation of this

configuration is that the surface-pattern distance has to be

equal or larger than the liquid depth, which may cause ray

crossings and caustics for large surface curvature or large

depth (discussed in Sect. 2.5).

Configuration 2 Camera below and pattern above the

surface (assuming the container has a transparent bottom).

In this case, the surface-pattern distance is arbitrary, and

may be increased for better resolution, or set as close as

possible to the surface to avoid ray crossings when strong

curvature of the surface are present.

Configuration 1 is illustrated in Fig. 1 when the interface

is flat, and is used as a reference for the derivation of the

relation between h(x, y) and dr(x, y). In this configuration,
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Fig. 1 a Three-dimensional ray geometry for a horizontal interface

(reference case). b Two-dimensional view of the vertical incidence

plane COM. A ray coming from a point M located on the pattern

appears to come from the virtual object B0. In the pattern plane, it

appears to come from the point M0
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n0[ n, so that wave crests and troughs will act as magni-

fying (convex) and reducing (concave) lenses, respectively.

We will use a cartesian frame with the vertical optical axis z

crossing the origin O and the camera C, the plane z = 0

corresponding to the pattern plane. We note D the dia-

phragm diameter of the camera, and b the paraxial angle.

For the sake of simplicity, the pattern-surface distance hp is

chosen equal to the liquid depth h0, but optical corrections

for additional intermediate layers between the pattern and

the surface can be easily included.

In the following, three approximations are considered,

based on the three small parameters: the paraxial angle b,

the surface slope c and the relative surface deformation.

1. Paraxial approximation The pattern-camera distance

H is much larger than the field size L, yielding a

maximum paraxial angle bmax ’ L=ð
ffiffiffi

2
p

HÞ � 1 .

2. Weak slope approximation The angle c between the

unit vector normal to the interface n̂ and the vertical

vector ẑ is small. As a consequence, the surface slope h
measured in the incidence plane is also small.

3. Weak amplitude approximation Denoting h(x, y) =

hp ? g(x, y) the surface height, the amplitude |g| is

small compared to the mean height hp.

In the derivation of the relation between rh and dr,

linearisation with respect to those three parameters is

performed.

2.2 Refracted image through a horizontal interface

We first consider the refracted image of the pattern at

z = 0 through a flat interface at z = hp (Fig. 1). For each

point M, located in (xM, yM, 0), a vertical incidence plane

COM can be defined, crossing the pattern plane along the

radial unit vector r̂ ¼ OM=jOMj: The image of M is m in

the image plane (camera sensor), and the corresponding

virtual object B0 is located above the pattern, in (xM, yM,

ahp) with

a ¼ 1� n=n0: ð1Þ

In practice, the focus is made on this vertically shifted focal

plane at z = ahp. For convenience, since rays reaching the

image plane in m appear to come from a point M0 in the

pattern plane, in the following, the apparent displacements

are simply given in the plane z = 0.

The displacement from M to M0 is outward, in the radial

direction, and is given by

MM0 ¼ hpðtan i� tan i0Þr̂; ð2Þ

where the incidence and refracted angles are related by the

Snell-Descarte law, n sin i ¼ n0 sin i0: For the flat interface,

the incidence angle i is simply equal to the paraxial angle

b. Within the paraxial approximation and using Eq. 1, Eq. 2

simplifies to:

MM0 ¼ ahpir̂: ð3Þ

From the image of the pattern seen through the flat inter-

face, we can determine the location of any point M from

the position of its image M0 given hp, H and the location of

the optical center O.

2.3 Refracted image through a deformed interface

We consider now the refracted image of the pattern through

an arbitrary deformed interface, and we want to determine

the new virtual object M00 associated to the given object

point M (Fig. 2). This problem is more delicate, since now

the incidence plane is not vertical (except for axisymmetric

deformations), and does not contain the optical axis z. For a

given point M, the incidence plane is defined as the plane

containing M, the camera C, and the unit vector n̂ measured

at the point I where the light ray MIC intercepts the

interface, with

n̂ ¼ ẑ�rh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jrhj2
q : ð4Þ

Assuming weak slopes, jrhj2 � 1; Eq. 4 simply gives:

rh ¼ ẑ� n̂: ð5Þ
The displacement MM00 takes place along the direction s

(see the top view in Fig. 3), defined as the intersection of

the incidence plane and the horizontal plane z = 0,

yielding

s ¼ OM=H �rh:

The incident plane CAM, where A is the projection of the

origin O on the line MM00, is shown in Fig. 2b. For a

camera far above the surface ðH � LÞ; the plane CAM

tends to be vertical and s becomes aligned with the surface

gradient (except for very weak slopes jrhj � jOMj=H; for

which s remains essentially radial).

Since n̂; CM00 and ŝ ¼MM00=jMM00j are contained in

the incident plane CAM, n̂ can be written as

n̂ ¼ aŝþ b
CM00

jCM00j:

The coefficients a and b are determined from the following

geometrical relations (Fig. 2b),

n̂ � ŝ ¼ � sin h

n̂ � CM00

jCM00j ¼ � cos i

ŝ � CM00

jCM00j ¼ sinðiþ hÞ;
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where h is the angle measured in the incident plane

between the surface and the horizontal (i.e. the angle of the

intersection of the surface with the oblique incidence plane

CAM), yielding

n̂ ¼ sinðiþ hÞ cos i� sin h
cos2ðiþ hÞ ŝ

þ sinðiþ hÞ sin h� cos i

cos2ðiþ hÞ
CM00

jCM00j: ð6Þ

Within the weak slope and the paraxial approximations, to

first order in i and h, Eq. 6 reduces to

n̂ ¼ îs� CM00

jCM00j: ð7Þ

Writing CM00 = CO ? OM00 and taking |CM00| ^ H, Eqs.

5 and 7 give

rh ¼ OM00

H
� i

MM00

jMM00j: ð8Þ

Figure 2b shows that, in the oblique incidence plane

CAM, the apparent displacement is given by:

MM00 ¼ KM00 �KM ¼ IK½tanðhþ iÞ � tanðhþ i0Þ�̂s;
ð9Þ

where K is the projection of I on the line MM00. One has

IK = II0 cos h, with II0 along the normal vector n̂; and

II0 = h(I)/cos c, with c the angle between n̂ and the vertical

unit vector ẑ and IJ = h(I) the local height of the interface

at the vertical of point I, yielding

MM00 ¼ hðIÞcos h
cos c
½tanðhþ iÞ � tanðhþ i0Þ�̂s: ð10Þ

Considering again small angles, and assuming weak

deformations h(I) & hp, Eq. 10 becomes:

MM00 ¼ ahp îs; ð11Þ

which is similar to Eq. 3, except that now the displace-

ment is along ŝ instead of r̂ (see Fig. 3). Note that the

focal surface where lies the virtual object B00 associated to

M00 is now deformed according to the shape of the

interface (see Fig. 2), so that B00 cannot be exactly

focused. However, for weak deformations, this focal

surface remains close to the horizontal focal plane at

z = ahp determined for a flat interface (point B’ in

Fig. 1). In practice, since the characteristic size of the
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Fig. 2 a Three-dimensional ray geometry for an arbitrary deformed

interface. The incidence plane CAM is now defined by the object

point M, the camera C, and the unit normal vector n̂ at point I where

the light ray MIC intercepts the interface. This plane is not vertical in

general, and does not contain the optical axis OC. b Two-dimensional

view of the incidence plane CAM (only the principal ray is shown for

clarity). A ray coming from M appears to come from the virtual object

B00. In the pattern plane, it appears to come from the point M00
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Fig. 3 Top view of the pattern plane, showing the object point M and

its two virtual objects M0 and M00 for the flat and deformed interface,

respectively. The line AMM00 is the intersection of the incident plane

CAM with the pattern plane Oxy. J is the vertical projection of the

point I where the light ray MIC intercepts the interface. M0M00 = dr is

the displacement measured by digital image correlation
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dots on the pattern is larger than one pixel, this small out

of focus effect can be neglected.

From Eq. 11, one has îs ¼MM00=ahp; so that the surface

gradient (Eq. 8) becomes:

rh ¼ OM00

H
�MM00

ahp

: ð12Þ

Introducing OM00 = OM0 ? dr and MM00 = MM0 ? dr

(with dr = M0M00) into Eq. 12 yield

rh ¼ �dr
1

ahp

� 1

H

� �

þOM0

H
�MM0

ahp

:

Finally, recalling Eq. 3, the last two terms cancel (see

Fig. 1b), and a simple linear relation between rh and dr is

obtained,

rh ¼ �dr

h�
; with

1

h�
¼ 1

ahp

� 1

H
[ 0: ð13Þ

This demonstrates that, to first order in paraxial angle,

surface slope and relative surface deformation, the dis-

placement dr is simply proportional to the surface gradient

rh: In practice, with a camera far above the imaged sur-

face, H � ahp (with a ^ 0.24 for an air–water interface),

we can simply consider h* ^ ahp.

We recall here that the surface-pattern distance was

considered equal to the liquid depth, h0 = hp. In practical

situations, one or more intermediate materials of various

indices are also present between the lower fluid and the

pattern, and the distance hp should be replaced by an

effective distance. Consider, for instance, the common

situation depicted in Fig. 4, where a glass plate of thickness

hg and an air gap ha are inserted between the fluid and the

pattern. Assuming that the camera is far above the surface,

only vertical light rays can be considered, so that the total

displacement dx along the direction x̂ is the sum of the

elementary displacements, yielding

dx ¼ �h0 þ
n

n0
h0 þ

n

ng

hg þ
n

na

ha

� �

oh

ox
:

Finally, summing up the displacement components along

each direction x̂ and ŷ; the result can be written in the form

(13), where the effective surface-pattern distance hp is the

sum of the thickness of the layers weighted by the

refraction index ratio,

hp ¼ h0 þ
n0

ng

hg þ
n0

na

ha: ð14Þ

Note finally that, considering the finite aperture D

(see Fig. 1), the light beam selected by the diaphragm

will intercept the interface in a small ellipse of typical size

d & Dhp/H around the point I. It is implicitly assumed here

that the surface slope is nearly constant within this ellipse,

i.e. o2h=os2 � d�1: However, this assumption is not criti-

cal, since the the curvature o2h=os2 is also constrained by

the much restrictive invertibility condition (see Sect. 2.5) in

order to avoid ray crossings.

2.4 Parallax distorsion

If the camera is far above the surface, the points M, M0 and

M00 are very close, and the displacement dr measured at a

point M can be considered as originating from the gradient

rh at the vertical of M for simplicity. However, the finite

camera distance H introduces a parallax distorsion, since

the surface gradient is actually measured at the point I

(intersection of the light ray MIC with the interface) which

is not at the vertical of M.

The location of point J, defined as the vertical projection

of I in the horizontal plane (see Figs. 2a and 3), can be

expressed by remarking that the two triangles COM00 and

IJM00 are similar, so that JM00/OM00 = IJ/H. Accordingly,

assuming weak deformations (i.e. IJ = h(I) ^ hp), one has

OJ ¼ 1� hp=H
� �

OM00: ð15Þ

If a resolution better than hp/H is needed for the surface

height reconstruction, a remapping of the measured

gradient field onto the original reference frame of the

pattern, based on a suitable interpolation scheme, has to be

performed before the integration. An illustration of this

remapping procedure is given in Sect. 4.2.

2.5 Invertibility condition (IC)

In the previous sections, it was implicitly assumed that the

displacement field dr could be determined from the

refracted image of the pattern. However, this is not true if

crossings of light rays occur between the pattern and the

h
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Fig. 4 Apparent displacement dx when several intermediate materi-

als are inserted between the interface and the pattern, assuming that

the camera is located far above the surface ðH � ahpÞ:In this

example, two intermediate layers, denoted g and a (for glass and air)

are present, with na \ n0\ ng
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interface, which would result in the formation of caustics,

as explained in Fig. 5.

A necessary condition to determine the displacement

field dr from the refracted image is that a given image m on

the camera should originate from a single object M of the

pattern. In the case of a pattern below the interface

(n0[ n), ray crossings may appear below the wave crests,

which act as magnifying lenses (Fig. 5). This invertibility

condition (IC) requires that the focal length associated to

the surface curvature is larger than the surface-pattern

distance everywhere in the imaged field. For example, in

the case of a sinusoidal plane wave of amplitude g0 and

wavelength k, h(x, y) = hp ? g0 cos(2px /k), and approxi-

mating the curvature as o2h=ox2; ray crossings are avoided

by chosing a surface-pattern distance smaller than the

critical distance hp,c,

hp\hp;c ¼
k2

4p2ag0

: ð16Þ

Consider, for instance, a wave amplitude of g0 = 0.5 mm

and wavelength k = 3 cm, with hp = 3 cm. The charac-

teristic displacement is given by jdrj ’ a2phpg0=k
’ 0:8 mm (see Eq. 13, assuming H � ahp ). In this sit-

uation, caustics would form well below the surface, at a

distance of hp,c = 18 cm, so that accurate measurements of

the displacement field can be readily achived when taking

hp = 3 cm.

The invertibility condition 16 may be more conveniently

formulated directly from the displacement field. Consider

‘0 and ‘00 the abscissa of the virtual objects M0 and M00 (for

the flat and deformed interfaces respectively) taken along

any arbitrary direction ‘̂. To avoid ray crossing, ‘00 has to

be a strictly increasing function of ‘0, i.e., o‘00=o‘0[ 0.

Denoting d‘ ¼ dr � ‘̂ ¼ ‘00 � ‘0 the displacement along ‘̂,

and introducing the strain r ¼ od‘=o‘0 along ‘̂ (one has

r[ 0 and \ 0 for magnified and reduced images

respectively), the condition for no ray crossing is r\ 1. In

terms of the magnification factor m ¼ o‘0=o‘00 ¼ 1=ð1� rÞ
along ‘̂; this condition simply writes m [ 0.

Satisfying the condition for no ray crossing for arbitrary

direction requires that the largest (extensional) strain

remains everywhere bounded by 1 (note that there is no

limitation in principle for the compressive strain when

n0[ n). Formally, denoting r1 \ r2 the two ordered prin-

cipal strains (these are the eigenvalues of the strain tensor

odri=oxj), the invertibility condition (IC) is

r2\1 ð17Þ

at each point of the field. For instance, a plane wave pro-

duces an oscillating (compressive and extensional) strain

along the direction of propagation and zero strain along the

perpendicular direction, so that r2 shows oscillations

clipped at 0.

Criterion 17 is clearly an a posteriori test, since the

computation of the principal strains requires the displace-

ment field to be determined, which is possible only if Eq. 17

is satisfied. However, the measurement of the principal

strains provides an interesting test of how far the light rays

are from crossing. An empirical criterion based upon the

largest absolute principal strain is discussed in Sect. 5.

3 Set-up and numerical methods

3.1 Experimental set-up

Experiments were carried out in a 60 cm 9 40 cm glass

tank, filled with tap water up to an height h0 of the order of

a few centimeters (Fig. 6). The water depth is measured by

a depth gauge with a 0.1 mm resolution.

Fh
p

E

1’ 2’3’4’ 5’

1 2 234 4 5

Fig. 5 Large curvature of the interface or large pattern-surface

distance induce ray crossings when the invertibility condition (IC) is

not satisfied, Eq. 16. Here the pattern-surface distance hp (taken equal

to the liquid depth h0) is larger than the focal length EF of the point of

maximum convex curvature, under the wave crest. The sequence of

points 203040 on the pattern will be seen as 432, with 20 and 40 having

multiple images

Dot pattern

Speaker

Camera

H

h
g

Plate

h
a

n’

n

Light plate

n

h
0

Fig. 6 Sketch of the experimental set-up (camera above, configura-

tion 1). Not at scale, h0=H� 1;000
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Two series of experiments were carried out: Validation

experiments, performed with a 2,048 9 2,048 camera at 8

frames per second (Sect. 4), and some time-resolved

experiments of drop impacts, with a 1,280 9 1,024 camera

at 100 frames per second (Sect. 6). For most experiments,

the camera is located above the water tank (configuration

1), at a distance H = 2.0 m from the pattern, and the

imaged area is a square of side L = 14 cm. The maximum

paraxial angle is bmax ¼ L=ð
ffiffiffi

2
p

HÞ ’ 2:8�: In this case, the

pattern is placed below the transparent bottom of the tank,

of thickness hg = 5 mm, and an additional air gap of

adjustable thickness ha may also be present between the

glass plate and the pattern. For experiments where the

camera is located below the water tank (configuration 2), a

45� standard glass-silvered mirror is placed below the tank,

and the total camera-pattern distance is H = 2.9 m.

The imaged pattern has been carefully designed to allow

for unambiguous reconstruction of the displacement field

by the DIC algorithm with a good spatial resolution. The

camera resolution and the expected displacement magni-

tude have to be taken into account to optimize the

characteristic size of the fine structure of the pattern. In

order to maximize the quantity of information and to

reduce fortuitous coincidences, a set of randomly distrib-

uted dots, partially overlaping, is used. In the example

shown in Fig. 7, dots of diameter 0.4 mm, made of con-

centric circles of increasing grayscale, with an overall

black-on-white density ratio of approximately 1:2, have

been numerically generated. The pattern is printed on an

overhead transparency using a standard 1,200-dpi Laserjet

printer, and is lighted using a uniform lighting plate. It

must be noted that, due to the halftoning rendering of the

printer, the actual resolution of the pattern is significantly

lower than the nominal 1,200 dpi, especially when over-

head transparencies are used. The resulting dot diameter in

Fig. 7, as imaged by the 2,0482 camera, is approximately 6

pixels.

3.2 Displacement field computation

A reference image of the pattern is taken when the air/

water interface is flat, and a second image or a movie is

taken during the experiment. The displacement field dr

between each image and the reference image is obtained by

the DIC algorithm available in the commercial software

DaVis.

Interrogation windows of size 16 9 16 pixels, with an

overlap of 8 pixels, are used for the computations of the

correlation functions. Although the dot diameter of 6 pixels

is larger than the optimal size of 2–3 pixels usually rec-

ommended for PIV applications (Raffel et al. 1998), the

high ‘‘seeding’’ density used here allows to satisfy the

criterion of approximately 5 dots per interrogation window

(see Fig. 7). The final displacement field is defined on a

256 9 256 grid, with a spatial resolution of order 0.5 mm

(the numbers given here correspond to the 2,048 9 2,048

camera). Classical postprocessing schemes are applied,

such as median filter to remove bad vectors. An example of

displacement field obtained for plane waves is shown in

Fig. 8.

The uncertainty of the cross-correlation method is

already well documented, e.g., in the literature for PIV

(Raffel et al. 1998). Since the random dot pattern is gen-

erated to meet the requirements for an optimal cross-

correlation resolution, one may expect to reach the theo-

retical resolution of this method. Using interrogation

windows of decreasing size, with final size of 16 9 16

pixels, a resolution of 0.1 pixel (about 7 lm) can be

achieved using a classical subpixel interpolation scheme

for the maximum of the correlation function. For typical

Fig. 7 Magnifications at scales

1:1 (a) and 20:1 (b) of the

random dot pattern used in the

present experiments, as imaged

by the 2,0482 pixels camera on a

14 9 14 cm field. Dots of

diameter d = 0.4 mm were

numerically generated, with a

density of 50%, resulting in dots

of approximately 6 pixels in

the camera sensor. The

magnification (b) represents

32 9 32 pixels, and four

interrogation windows of size

16 9 16 pixels, used for the

digital image correlation, are

shown for reference
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displacement of order 5 pixels, and assuming moderate

strain so that the dots remain essentially circular, this rel-

ative uncertainty is about � = 2 9 10-2. Larger values

may however be expected when the refracted pattern is

significantly strained. Note also that decreasing the window

size would result in a better spatial resolution, but worse

displacement resolution.

3.3 Surface height reconstruction

The numerical integration of the surface height field h(x, y)

from the displacement field drðx; yÞ requires the compu-

tation of the inverse gradient operator, r�1: Denoting

n ¼ �dr=h� the measured surface gradient, see Eq. 13, we

have to compute

hðx; yÞ ¼ hp þr�1n: ð18Þ

This integration is performed by a numerical inversion of

the linear system built from the second-order centered

difference gradient operator. Since the gradient field

n ¼ nxx̂þ nyŷ is defined on a M 9 N grid, this linear

system has 2 MN equations and MN unknown. A solution

may however be defined for this over-determined linear

system: the resulting surface height h(x, y) is the ‘‘best’’

solution in the least-square sense, i.e., the solution mini-

mizing the residual jjrh� njj2: An example is shown

in Fig. 9 for an approximately plan wave. The details of

the numerical integration method are discussed in the

Appendix 1.

An alternative method for the inversion of the gradient

operator using Fourier transform has been proposed by

Zhang et al., but suffered from border effects and was

limited to rectangular domains (Zhang and Cox 1994;

Zhang et al. 1996; Zhang 1996). The least-square inversion

method proposed here is similar to the one introduced in

Roesgen et al. (1998), which was based on the hexagonal

lattice implied by the specific geometry of their microlens

array. Here the inversion is expressed in a simpler Carte-

sian lattice, which is easier to implement and suitable for

the processing of the surface gradient data obtained from

typical DIC algorithms.

Note that the displacement field dr being irrotational in

principle, this property may be used as a constrain to

improve the measurement of the maximum of the correla-

tion function. However, if a residual rotational component

is present in the displacement field dr, it will not contribute

to the integrated surface height, and a classical uncon-

strained DIC algorithm has been used here.

Being non-local, the least-square solution h(x, y) is robust

to localized bad vectors. This method is suitable for square

or rectangular areas, but may be delicate to implement for

more complex geometries (see Appendix 1). A strong lim-

itation of this method is its inability to detect changes of the

mean surface height, originating for example from waves of

characteristic length of the order or larger than the imaged

area. Another example is provided by a wavepacket entering

into the imaged area, producing an artificial change of the

mean height of the unperturbed surface.

It is worth noting that some vibrations in the optical

setup may have a strong influence on the reconstructed

surface height. In our experiments, vibrations in the camera

position due to the internal cooling fan were found to

 100  80  60  40  20  0 
x (mm) 

Fig. 8 Displacement field for an approximately plane wave, gener-

ated from a vibrated plate on the left. Color codes the displacement

norm

Fig. 9 Perspective view of the reconstructed surface height of an

approximately plane wave, propagating from right to left, showing a

slight transverse modulation
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produce an apparent circular translation of the image of

about 5 lm (about 0.1 pixel) when imaging at a distance of

2 m. Although very weak, the resulting uniform displace-

ment field, once integrated, produces a noticeable mean

slope which superimposes to the measured height field.

This uniform displacement can be readily substacted before

integration, but prevents from the measurement of slopes of

characteristic length of the order or larger than the imaged

area.

3.4 Resolution

The integration method for solving Eq. 18 being linear, the

relative uncertainty of the surface height reconstruction

is expected to depend linearly upon the uncertainty � of

the input displacement field. Based on numerical tests

(described in the Appendix 2), assuming a displacement

field perturbed with an additive, spatially uncorrelated,

Gaussian noise of relative magnitude �, the resolution of

the surface reconstruction is found to be

Dg
grms

’ 5
L

k
�

N
; ð19Þ

Taking L = 14 cm, k = 3 cm, N = 256 and � = 0.02

gives Dg ’ 10�3grms : a wave of amplitude 1 mm should

be measurable with a precision of 1 lm.

However, the estimate given by Eq. 19 should be con-

sidered as a lower bound for the true uncertainty. First, the

displacement field noise �may be larger than 2% when large

strains are present. Moreover, a noise with significant spatial

correlation is likely to be produced by the DIC algorithm:

patterns with fortuitous coincidence, or optical defects

(impureties, reflections) result in clustered bad vectors, and

strongly strained refracted patterns will produce bad vectors

correlated with regions where displacements or displace-

ment variations are large.

4 Validation experiments

4.1 Validation of the slope measurement

A first validation experiment has been carried out to

assess the accuracy of the displacement field measure-

ment, using the deflection of a reflected laser beam. Plane

waves were generated by oscillating a PVC plate attached

to a speaker. The plate length is equal to the tank width,

and generates nearly plane waves. A laser beam, making

an angle of / = 17� with the horizontal, is reflected at a

given point of the surface, and the reflected beam is

visualized on a vertical screen located 1 m from the

reflection point (Fig. 10). An angle of h of the liquid

surface results in an angle of / ? 2h of the reflected

beam. Plane waves have been generated with various

amplitudes, at a fixed frequency of 10 Hz. For each

amplitude, the peak-to-peak deviation of the reflected

beam is measured on the screen, and the displacement

field measured by synthetic Schlieren in a small area

around the reflecting point is determined independently.

The maximum slopes n ¼ tan h measured from the two

methods are compared in Fig. 11. The error bars result from

the non-strictly sinusoidal wave produced by the wave-

maker, producing higher frequency oscillations of the

reflected beam around the main oscillation. Although the

uncertainty of each data point is significant, a nearly perfect

correlation between the two methods is obtained. The

measurements have been restricted to n\ 0.1, for which

non-harmonic effects can be neglected. Larger slopes are

obviously measurable for the correlation algorithm, but they

could not be compared to the ones measured from the beam

deflection method because of the uncertainties due to the

higher order modes.

4.2 Validation of the surface height reconstruction

In order to test the full measurement procedure (slope mea-

surement, surface reconstruction and parallax distorsion),

Laser

Screen

Speaker

Camera

1 m

4θ

φ

Fig. 10 Setup for the validation of the slope measurement. The laser

beam deflection angle is twice the surface local slope
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Fig. 11 Comparison of the maximum slopes measured independently

by the laser beam method and by synthetic Schlieren
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a solid model of a wavy surface with a well controlled

geometry has been used. A sinusoidal plane wave of wave-

length 20 mm and amplitude 0.5 mm was carved on the

upper surface of a 23 mm thick parallelepiped plexyglass

plate of size 10 9 14 cm by a computer controlled milling

machine with a 1 mm diameter hemispherical tool. A similar

plexyglass plate with a flat upper surface was used for the

reference image.

Figure 12 shows the reconstructed profile of the plexi-

glass model as a function of x along the line y = 0. In order

to quantify the influence of the parallax, the plexiglass

model was placed at a location x = 20–120 mm off the

optical center, and the camera was located at a moderate

distance of H = 1.55 m from the dot pattern. The wavelength

measured from the raw profile (without the remapping

correction) is 20.30 ± 0.05 mm, which over-estimates the

expected value of about 1.5%. After application of the

remapping correction Eq. 15, the measured wavelength and

amplitude are 20.01 ± 0.05 mm and 1.03 ± 0.02 mm, in

remarkable agreement with the expected values.

5 Influence of the pattern-surface distance

An important feature of the FS-SS method is the maximum

acceptable strain for a reliable reconstruction of the surface

height. For a given free surface topography, the strain of

the refracted image is essentially controlled by the surface-

pattern distance hp. This parameter should be set as large as

possible to increase the resolution, but smaller than the

critical distance (Eq. 16) where ray crossings appear.

However, even for hp \ hp,c, although no ray crossing is

present, regions of large strain (either compression or

extension) may prevent from an accurate measurement of

the displacement field, and a looser criterion than Eq. 17 is

desirable to assess the measurement accuracy.

A systematic series of experiments has been carried out,

varying the air gap between the bottom glass plate and the

pattern, ha, in the range 0–300 mm, so that the pattern-

surface distance hp (corrected by the intermediate air and

glass layers, see Eq. 14) is varied between 30 and 430 mm.

Plane waves, of amplitude 0.15 mm and wavelength

22 mm, are generated in a 22-mm depth water layer. For

each value of ha a reference image with flat interface and a

series of images with the waves are taken.

Five examples are shown in Fig. 13. Only a 2 9 2 cm

square is shown, whose location is chosen to show similar

wave pattern for each hp. As hp is increased, the refracted

image of the pattern above the wave crests show increasingly

elongated patches. In this situation, the cross-correlation

algorithm is likely to produce wrong results, since the

location of an initial circular patch of the reference image

may be matched all along the ellipse of the refracted image.

Since in most situations curvatures of both sign are

equally present, a convenient indicator which gets rid of

the ordering of the principal strains is provided by the

largest absolute principal strain field,

r�ðx; yÞ ¼ maxðjr1ðx; yÞj; jr2ðx; yÞjÞ

Large values of r* indicate both regions of strong

compression (under troughs) or strong extension (under

crests). Since the integration method is non-local, one has

to check that the largest value of r* over the whole field

remains moderate. However, some bad vectors from the

cross-correlation may produce non-physical large r*,

preventing from using a simple criterion based on maxx,y

r*. It was found that, in a roughly homogeneous region, a

quite robust criterion may be built from the root-mean-

square of this quantity,

r�rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

NxNy

X

x;y

r�2ðx; yÞ
s

:

Reliable results were obtained when the rms principal

strain satisfies

r�rms\0:15: ð20Þ

This criterion corresponds here to an air gap of ha = 50 mm

(see picture 4 in Fig. 13), which shows a maximum strain

of 0.71 (magnification factor m = 1/(1 - r) ^ 3.5 under

the wave crests). Figure 14, where cuts of the surface

height along the x direction are shown for the different

values of ha, confirms that no change are detectable for ha

up to 50 mm. This criterion gives the maximal screen-

pattern distance for a reliable measurement of a given
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)
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Remapped profile

Fig. 12 Surface profile measured on a plexiglass model machined

with a sinusoidal plane wave of wavelength 20 mm and amplitude

0.5 mm. The opical axis is located at x = 0 mm, and the model is

placed off-axis continuous line represents raw profile, dotted line
represents remapped profile using Eq. 15, correcting for the parallax

distorsion.
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surface curvature or, equivalently, the largest curvature

measurable for a given distance. In practice, a safe choice

would be rrms
* ^ 0.05-0.10.

6 Circular wave generated by a water drop impact

Time-resolved visualizations of the circular wave pattern

generated by the impact of a water drop have been finally

carried out, aiming to demonstrate the ability of the FS-SS

method to investigate complex wave phenomena. A water

drop of 1 mm diameter is dropped one centimeter above a

4 cm water layer at time t = 0, and the surface height is

reconstructed on a 20 9 20 cm2 field at 100 Hz. The in-

vertibility condition was satisfied only 0.4 s after the

impact.

The two perspective views of the surface elevation in

Fig. 15 clearly shows the growing circular wavepacket.

The largest waves have amplitude of 100 lm and wave-

length of order of 30 mm, but much smaller waves, of

amplitude of 1 lm and wavelength around 10 mm, can

also be distinguished at the front of the wavepacket.

Shortly after the impact, the surface near the impact is

almost perfectly flat, showing only residual plane waves of

amplitude less than 1 lm originating from slight back-

ground vibrations from the lateral tank walls.

Phase and group velocities may be estimated from the

spatio-temporal diagrams shown in Fig. 16. In these dia-

grams the surface elevation along a radial line is

represented in color scale as a function of time. The phase

velocities (measured here as the slope following a given

wave crest) are 26 cm/s near the rear, for the largest

wavelengths, and 23 cm/s near the front, for the smallest

ones. The front velocity is found to be close to the

expected minimum phase velocity for capillary-gravity

waves in deep water, cmin = (4cg/q)1/4 ^ 23.1 cm/s for

kc = 2p(c/qg)1/2 ^ 17 mm (here c ^ 0.070 N/m is the

air–water surface tension, q the water density and g the

gravity). The measured rear velocity of the wavepacket is

18 cm/s, a value which compares well to the expected

minimum group velocity, cg,min ^ 17.7 cm/s. Since the

phase velocity is larger than the front velocity at the rear

edge, new wave crests appear at the rear and travel along

the wavepacket. On the other hand, the front edge
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 σ*
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=  0.14

       ha = 17 mm
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rms  
=  0.06
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Fig. 13 Snapshots of the refracted image for five values of the air gap

ha between the glass plate and the pattern. Only a 2 9 2 cm square is

shown (the whole field is 14 cm). Blurry elongated horizontal

segments appear under the wave crests at large ha
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Fig. 14 Surface height of the same waves, measured with different

air gap ha between the pattern and the glass bottom of the tank. The

profiles are shifted vertically
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velocity can be hardly determined from those diagrams,

because of capillary waves of very weak amplitude which

have their wavecrest line almost parallel to the wave-

packet border itself.

7 Conclusion

The FS-SS method presented in this paper relies on the

same ground as the synthetic Schlieren (or equivalently

Background-oriented Schlieren) method, namely the

quantitative analysis of the refracted image of a random dot

pattern when viewed through a deformed interface, fol-

lowing the works of Kurata et al. (1990) and Elwell (2004).

To first order in paraxial angle, surface slope and the

relative surface deformation, we have shown that the dis-

placement field is simply proportional to the surface

gradient (Eq. 13). Compared to the classical synthetic

Schlieren method, which is applied in situations where the

refraction index varies continuously, here the step-like

variation of the index at the interface allows for a complete

reconstruction of the topography of the interface from the

measured surface gradient. This low-cost and versatile

optical method gives quantitative measurement with a

vertical resolution of order of 2% of the maximum defor-

mation amplitude. The numerical reconstruction of the

surface height, being based on a least square inversion of

the gradient operator, is very robust and has a low com-

putational cost. When used with a high speed imaging

system, this method allows for time-resolved investigation

of complex wave phenomena.

The main limitations of the FS-SS method are:

1. Being based on the measurement of the surface

gradient, it is not able to detect uniform changes of

the surface height.

2. It is extremely sensitive to slight vibrations (including

vibrations generated by the internal fan of a cooled

camera).

3. It is unable to determine the displacement field for

strong curvature and/or large surface-pattern distance.

4. It applies only for weak deformations, weak slopes and

weak paraxial angle.

Limitation no. 2 can be circumvented by substracting

the mean displacement field before numerical integration.

Fig. 15 Perspective view of the circular waves created by the impact

of a drop, at times t = 0.7 and t = 0.9 s after the impact
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Fig. 16 Spatio-temporal diagram of the surface height profile taken

along a radius of the circular wave shown in Fig. 15. Only the color

scale is changed between (a) and (b). The long dashed line shows the

phase velocity of a wave crest, and the short dashed line shows the

rear front velocity of the wavepacket (approximate group velocity)
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However, this substraction prevents from measuring mean

surface slopes of characteristic scale of the order or larger

than the imaged area. Applications where the measurement

of a constant slope is needed would require an extremely

stable optical setup.

For the limitation no. 3, an empirical criterion has been

proposed, based on the rms strain, namely rrms
* \ 0.15, Eq.

20, where r* is the largest absolute principal strain. Note

however that this constrain is partly due to the use of a DIC

algorithm for the measurement of the displacement field,

which produces wrong results for strongly strained images.

Other approaches, such as the Optical Flow (Barron et al.

1994), may behave better than DIC in this situation, and

may allow to work closer to the theoretical invertibility

condition (IC) given by r2 = 1, where r2 is the largest

principal strain.

Finally, the limitation no. 4 is probably the most

restrictive for this method. Best accuracy can be actually

achieved by maximizing the distance H between the

camera and the pattern, so that nearly vertical refracted

rays enter the camera. However, even for vanishing par-

axial angles, a fully consistent formulation of the problem

beyond a first-order approximation with respect to the

surface slope and relative amplitude is a very delicate task,

which is left for future investigation.

A possible application of FS-SS is the measurement of

the contact angle and the dynamics of the wetting of a drop

on a substrate (Moisy et al. 2008). Although a slope dis-

continuity is present at the contact line, the surface

curvature along a radius (second derivative) is large but

positive, so no ray crossing occurs and the method should

apply. However, in order to minimize the relative surface-

pattern height changes, a gap between the (transparent)

substrate and the pattern should be used.

Finally, wave turbulence is another application where

FS-SS may be useful. Here the major limitation is certainly

the formation of caustics under the largest curvature at

small scales, even if the configuration 2 (camera below and

pattern above the surface) is chosen. If applicable, this

method should be able to provide the true spatial spectrum

of the wave fields, instead of the temporal spectrum usually

obtained from classical one-point measurements.
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Appendix 1: Numerical integration of the inverse

gradient operator

We seek the solution h(x, y) given the two local slope

components nx and ny measured at each point. We first note

that a naive integration along one single arbitrary path

joining a reference point (0, 0) and a given point (x, y), e.g.

gðx; yÞ ¼ gð0; 0Þ þ
Z x

0

nxðx0; 0Þdx0 þ
Z y

0

nyðx; y0Þdy0;

would suffer from an important noise accumulation

effect: a wrong measurement of the slope nx or ny at a

given point would propagate along the whole path.

Consider, for instance, a one-dimensional signal g(x),

from which a perturbed local slope ~n ¼ og=oxþ �nrmsa is

measured on a discrete set of points, with a is a Gaussian

noise of zero mean and unit variance. Computing the

perturbed signal ~gðxÞ from a cumulative sum introduces a

drift, as ð~g� gÞrms ¼ �nrms

ffiffiffi

n
p

; where n is the number of

grid steps.

For the 2D problem, this drift problem may be partially

overcome by averaging over all possible paths joining the

reference point (0, 0) to any desired point (x, y). Summing

nx from 0 to x averaged over each horizontal stripe for each

y, and vice-versa for ny, would lead to a relative uncertainty

for g equals to that for n:

A more efficient and accurate approach consists in

writing the gradient operator using linear algebra. Noting H

the vector of length MN representing the height field h(x, y)

sampled on a M 9 N grid, the two vectors of length MN

representing each component of the gradient field can be

written

GxH ¼ Nx;

GyH ¼ Ny

ð21Þ

where Gx and Gy are two sparse matrices, of size MN

9 MN, defining the linear combinations of the elements of

H to produce each gradient. Gx and Gy may be defined to

produce second-order centered differences, with suitable

treatment of the border elements. These two systems (21)

may be merged into a single linear system,

GH ¼ N; ð22Þ

where now G ¼ ðGx;GyÞT is a rectangular sparse matrix of

size 2MN 9 MN, and N = (Nx, Ny)
T is a vector of length

2MN. This system thus gives 2MN equations with MN

unknowns. It is over-determined, so a direct inversion is

not possible. However, an estimate of H may be obtained,

by minimizing the residual

jjGH� Njj2 ð23Þ
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This method produces a solution of the over-determined

linear system (22) in a least squares sense. Using Matlab, a

convenient and efficient implementation of this algorithm of

least-square solution for over-determined linear systems is

available with the ‘‘\’’ (backslash) operator. A complete solu-

tion based on Matlab for inverting a 2D gradient using second-

order centered differences is available using intgrad2

(D’Errico, http://www.mathworks.com/matlabcentral/).

Although this approach is most easily implemented for

rectangular domains, more complex geometries can also be

considered. For domains of arbitrary shapes, a rectangular

2Q	 Q (where Q is the number of points of the domain)

matrixG , whose elements produce the finite differences

over each point of the domain, has to be constructed. From

this matrixG, the estimate for H is obtained by minimizing

Eq. 23 as before.

Appendix 2: Resolution of the numerical integration

From the measurement of local slope n at each grid point,

with a relative uncertainty given by that of the displace-

ment �, we estimate here the uncertainty Dg arising from

the numerical integration of Eq. 18.

An empirical estimate for Dg has been obtained from a

series of numerical tests. A sinusoidal wave g(x, y), of

wavelength k = 2 p/|k| and amplitude g0, is considered in a

square domain of size [0, L]2 discretized to N2 collocation

points. The discrete gradient n is computed from a second

order finite different scheme, and a Gaussian noise a is

added,

~n ¼ nþ �nrmsa;

where ax and ay are of zero mean and unit variance. We

further assume that a and n are uncorrelated, and that a has

no spatial correlation. Computing the surface height ~g from

the numerical integration of the perturbed gradient ~n yields

~g ¼ gþ �nrmsr�1a: From this, the rms of the difference

height is computed, Dgrms ¼ ð~g� gÞrms ¼ �nrmsðr�1aÞrms:

The following parameters have been systematically

varied: the relative noise � from 1 to 8%, the number of

points N from 32 to 256, the wavelength k from 0.1 L to L

and the amplitude g0 from 0.01 L to 0.1 L. For each set of

parameters, the results are averaged from 10 realizations

with random orientation of the wavevector k. The fol-

lowing empirical law is obtained,

Dg
grms

¼ ð5:0
 0:2ÞL
k
�

N
;

where grms ¼ g0=
ffiffiffi

2
p

is taken for a sinusoidal wave.

References

Adrian RJ (1991) Particle-image techniques for experimental fluid

mechanics. Annu Rev Fluid Mech 23:261–304

Andrieu C, Chatenay D, Sykes C (1995) Measuring dynamic contact

angles. C R Acad Sci Paris 320:351–357

Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical

flow techniques. Int J Comput Vis 12(1):43–77

Cox CS (1958) Measurement of slopes of high frequency wind waves.

J Mar Res 16: 199–225

Dabiri D, Gharib M (2001) Simultaneous free-surface deformation

and near-surface velocity measurements. Exp Fluids 30:381

Dalziel SB, Hughes GO, Sutherland BR (2000) Whole-field density

measurements by ‘‘synthetic Schlieren’’. Exp Fluids 28:322–335

DaVis, by LaVision GmbH, Anna-Vandenhoeck-Ring 19, 37081

Goettingen, Germany, complemented with the PIVMat toolbox

for Matlab. http://www.fast.u-psud.fr/pivmat

D’Errico J, ‘‘Inverse (integrated) gradient‘‘ for Matlab. http://www.

mathworks.com/matlabcentral/. File 9734

Elwell FC (2004) Flushing of embayments. PhD thesis, University of

Cambridge

Hild F, Roux S (2006) Digital image correlation: from displacement

measurement to identification of elastic properties—a review.

Strain 42:69–80

Jähne B, Riemer KS (1990) Two-dimensional wave number spectra

of small-scale water surface waves. J Geophys Res 95:11531–

11546

Jähne B, Schmidt M, Rocholz R (2005) Combined optical slope/

height measurements of short wind waves: principle and

calibration. Meas Sci Technol 16:1937–1944

Keller WC, Gotwols BL (1983) Two-dimensional optical measure-

ment of wave slope. Appl Opt 22:3476–3478

Kurata J, Grattan KTV, Uchiyama H, Tanaka T (1990) Water surface

mesurement in a shallow channel using the transmitted image of

a grating. Rev Sci Instrum 61(2):736

Lange PA, Jähne B, Tschiersch J, Ilmberger I (1982) Comparison

between an amplitude-measuring wire and a slope-measuring

laser water wave gauge. Rev Sci Instrum 53:651

Liu J, Paul JD, Gollub JP (1993) Measurements of the primary

instabilities of film flows. J Fluid Mech 250:69–101

Meier GEA (2002) Computerized background-oriented Schlieren.

Exp Fluids 33:181

Moisy F, Rabaud M, Pinsolle E (2008) Measurement by digital image

correlation of the topography of a liquid interface, ISFV13—

13th international symposium on flow visualization, and FLU-

VISU12—12th French congress on visualization in fluid

mechanics, paper 326, 1–4 July 2008, Nice

Périe JN, Calloch S, Cluzel C, Hild F (2002) Analysis of a multiaxial

test on a C/C composite by using digital image correlation and a

damage model. Exp Mech 42:318–328

Raffel M, Willert CE, Kompenhans J (1998) Particle image veloc-

imetry: a practical guide. Springer, Heidelberg

Roesgen T, Lang A, Gharib M (1998) Fluid surface imaging using

microlens arrays. Exp Fluids 25:126

Savalsberg R, Holten A, van de Water W (2006) Measurement of the

gradient field of a turbulent free surface. Exp Fluids 41:629–640

Sutherland BR, Dalziel SB, Hughes GO, Linden PF (1999) Visualiza-

tion and measurement of internal waves by ‘synthetic Schlieren’.

Part 1. Vertically oscillating cylinder. J Fluid Mech 390:

93–126

Tober G, Anderson RC, Shemdin OH (1973) Laser instrument for

detecting water ripple slopes. Appl Opt 12(4):788–794

Exp Fluids (2009) 46:1021–1036 1035

123

http://www.mathworks.com/matlabcentral/
http://www.fast.u-psud.fr/pivmat
http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/matlabcentral/


Zhang X (1996) An algorithm for calculating water surface elevations

from surface gradient image data. Exp Fluids 21:43–48

Zhang X, Cox CS (1994) Measuring the two-dimensional structure of

a wavy water surface optically: a surface gradient detector. Exp

Fluids 17:225–237

Zhang X, Dabiri D, Gharib M (1996) Optical mapping of fluid density

interfaces: concepts and implementations. Rev Sci Instrum

67(5):1858–1868

1036 Exp Fluids (2009) 46:1021–1036

123


	A synthetic Schlieren method for the measurement �of the topography of a liquid interface
	Abstract
	Introduction
	Review of optical methods measuring surface slopes
	Outline and scope of the paper

	Relation between the surface gradient �and the displacement field
	Optical configurations and approximations
	Refracted image through a horizontal interface
	Refracted image through a deformed interface
	Parallax distorsion
	Invertibility condition (IC)

	Set-up and numerical methods
	Experimental set-up
	Displacement field computation
	Surface height reconstruction
	Resolution

	Validation experiments
	Validation of the slope measurement
	Validation of the surface height reconstruction

	Influence of the pattern-surface distance
	Circular wave generated by a water drop impact
	Conclusion
	Acknowledgments
	Appendix 1: Numerical integration of the inverse gradient operator
	Appendix 2: Resolution of the numerical integration
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


