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piral galaxies, atmospheric or oceanic circulation, bathtub vor-

tices, or even stirring tea in a cup, are examples that illustrate
the ubiquity of swirling flows at all scales in nature. They are not
only fascinating, but also of great importance in a number of
industrial or practical applications.

Earth rotation provides the most spectacular illustrations of
rotating flows. At the end of the XIXth century, during the earlier
polar expeditions, the Norwegian oceanographer Nansen noticed
that the iceberg drift was not along the wind direction, as expect-
ed, but rather towards the right [1]. The Swedish physicist Walfrid
Ekman, who saw the influence of the Coriolis force in this prob-
lem, gave an explanation for this phenomenon in 1905. For an
observer in the Earth frame, a linear motion will appear as
curved, with a deviation to the right in the Northern Hemisphere.
Likewise, the upper layers of water, over a depth of about one hun-
dred meters, are dragged by the wind with a deviation towards the
right [2]. The large oceanic motions originate from this phenom-
enon, and the same goes for the iceberg trajectories!

Let us consider a simple experiment, perhaps closer to our
daily life. You have surely noticed that, when stirring tea, the tea
leaves or other small solid particles heavier than water were col-
lecting towards the centre of the
bottom of the cup. Perhaps you
would have expected the centrifu-

Einstein a ppease (] gal force to expel them outwards!
The friction at the bottom of the

A A i cup actually explains this seeming
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curiosity, wnich velocity, is weaker at the bottom,

h giving rise to a recirculation flow
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husband (see Figure 1). This inward recircu-
could not satisfy.

lation is wusually called the
Bodewadt layer (1940), after the
German fluid mechanician who
described the motion of a rotating
fluid over an infinite wall at rest.
However, Albert Einstein was the first to give an explanation of
this phenomenon in 1926 in the case of the teacup! [3] (It is said
that, with this explanation, Einstein appeased Mrs. Schrédinger’s
curiosity, which her husband could not satisfy).

The region of fluid slowed down by the wall friction is called a
boundary layer, and plays a key role in fluid mechanics. Its thick-
ness, , is given by the lengthscale where the imposed rotation Q
is diffused by viscosity in the intermediate fluid layers. In the ideal
case of a fluid rotating over an infinite wall, the balance between
centrifugal and viscous forces yields 8 = (v/Q)'2 (where v is the
kinematic viscosity of the fluid), which is a constant, indepen-
dent of the radius . Such a situation is said to be self-similar, i.e.
the velocity profile remains unchanged when distances are
rescaled. According to each situation, Q may be the fluid velocity,

4 Fig. 1: (a) Original Figure by Einstein (1926), from his paper
about the formation of meanders in the courses of rivers [31.The
rotation of the fluid is slowed down close to the bottom of the
teacup, on a boundary layer of thickness d. (b) The centrifugal
force in this layer is then much lower than in the rest of the fluid,
giving rise to a recirculation flow which brings together the tea
leaves in the centre of the cup.

the wall velocity or the relative velocity between the two. Within
this self-similar description, since 8 is the only lengthscale of the
problem, all the physical phenomena are expected to take place on
a scale of order d.

On the other hand, when the wall or the fluid extent is not infi-
nite, other length scales, such as the teacup radius or the tea depth,
may play a role too, and self-similar solutions are no longer of
any help. Let us consider for simplicity the situation where the
fluid is confined between two rotating disks—the upper one may
be the free surface of the tea. In the general case, two boundary
layers may be present, a centrifugal one over the faster disk and a
centripetal one over the slower disk. Actually, the equations of
motion without the self-similar hypothesis are so complex that no
exact solution are known for this simple problem, even in the sta-
tionary regime. This problem gave rise to a famous controversy in
the history of fluid mechanics: George Batchelor (1951) argued
that two boundary layers, separated by a solid body rotation
core, must take place in the fluid, whereas Keith Stewartson (1953)

A Fig. 2: Experimental set-up. The top disk is transparent, in order
to allow visualisation from above. It rotates together with the
cylindrical endwatt (blue). The bottom disk (orange) is distant
from the top disk by a few mm up to several cm.in this picture,
the bottom disk has been lowered for visibility.
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claimed that only one boundary layer should be present [4]. It has
actually been shown, many years later, that a large variety of solu-
tions may coexist in this flow, including the ones of Batchelor and
Stewartson.

The stability of rotating flows is of considerable practical inter-
est. Hard-disk drives are an important example: the instabilities of
the thin air layer over the rapidly rotating platters induce vibra-
tions of the read/write heads, that may damage the platters’
surface [5]. The general problem of the stability of rotating flows
is very complex, mainly because of two antagonistic effects: On
the one hand, rotation tends to stabilise the flow, by inhibiting the
perturbations about the rotation axis, eventually leading to a two-
dimensional state. On the other hand, the confinement generates
differential rotation (basically because of the wall friction), lead-
ing to centrifugal forces imbalance and possible instabilities. In
this context, there is no hope to obtain exact solutions, and only
experiments or numerical simulations are able to shed light on the
physical mechanisms responsible for the instabilities in rotating
flows.

A rotating disks experiment

In order to study the instabilities of the flow between two rotat-
ing disks, the experimental set-up shown in Figure 2 has been
built [6-8]. It consists of two coaxial disks, each of radius R=14 cm
and separated by a distance h, which can be varied between a few
mm up to several cm. The upper disk is the cover of a cylindrical
rotating tank filled with a solution of water and glycerine, in
which the lower disk can rotate independently. The upper disk is
transparent, allowing us to visualise the flow from above. Small
anisotropic flakes are seeding the working fluid, and their orien-
tation with the velocity field leads to variations of the reflected
light. For instance, the bright regions in the following pictures cor-
respond to mainly horizontal flakes, whereas dark regions are
associated with mainly vertical flakes.

Each disk rotates with its own angular velocity, €, and Qp. We
call co-rotation the situation where both disks rotate in the same
direction (€2; and Q2 are of the same sign); the instabilities of this
flow are first described. The much richer patterns arising in the
counter-rotating flow, when the two disks rotate in opposite direc-
tion, are analysed in a second part.

Boundary layer instabilities

Let us first consider the flow when only one disk, the upper one,
rotates: this is the rotor-stator configuration (Q;# 0 and €}, = 0).
When slowly increasing the disk velocity from 0, nothing appears:
the light reflected by the flakes remains homogeneous. The flow

4 Fig. 3: (a) Circles and positive spirals in the rotor-stator regime.
These patterns result from boundary layer instabilities. (b)
Negative spirals in the counter-rotation regime. This pattern
originates from a shear layer instability.
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4 Fig. 4: Regime diagram of the different instability patterns in
the small gap case (h=7 mm).The right part (Q,>0) corresponds
to the co-rotation case, and the left part (Qp<0) to the counter-
rotation case [7].

may be seen as doubly symmetric: it is invariant with respect to
any rotation (axisymmetric) as well as any time translation (sta-
tionary). Above a given disk velocity, a first instability pattern
appears in the form of annular vortices, simply called circles, prop-
agating towards the centre of the cell, as shown in Figure 3a. In
this case, the temporal symmetry is broken, but the axisymmetry
remains. If the angular velocity is further increased, another insta-
bility appears in the form of a spiral pattern. The axisymmetry of
the flow is now broken too. This second pattern received the name
of positive spirals, because they roll up to the centre in the direc-
tion of the rotating disk.

A careful inspection of the Figure 3a allows us to understand
the nature of the instability that gives rise to these patterns. One
can see the spiral arms do not extend over the whole flow, but
rather stop at a well-defined radial location, where the boundary “
layers of each disk merge. In other words, for > r, where the pos-
itive spirals can be seen, the boundary layers are separated,
whereas for r < ry the viscous effects dominate the flow over the
whole gap and no boundary layer can be defined. This observa-
tion suggests that positive spirals only exist within the boundary
layers, and that they are the result of boundary layer instability.
Additional observations, by means of visualisations in the vertical
plane normal to the disks, confirm this assumption.

What happens now if the lower disk rotates too? From the
frame rotating with the lower disk, this situation is similar to the
one where only the upper disk rotates with a relative angular
velocity AQ = Qi - Q. As a consequence, the instability thresh-
old should just get shifted upwards, of a quantity Q.
Unfortunately, this picture is rather naive: the dynamics in a rotat-
ing frame is very different from that in the laboratory frame. In
order to take into account the non-Galilean nature of the rotating
frame, one should consider the effect of the Coriolis force on the
instabilities.

We show in Figure 4 a diagram that summarizes our observa-
tions when both disks are rotating. The vertical and horizontal
axes correspond to the angular velocities of the bottom and top
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disks. By convention, £ is always positive, while £, may be posi-
tive in the co-rotation case (right part of the diagram) or
negative in the counter-rotation case (left part). The two dashed
lines correspond to equal velocities: Q, = €4, (solid body rotation)
and Q, = - O (exact counter-rotation). The vertical line, Q, = 0,
corresponds to the rotor-stator case previously described.

As expected, the co-rotation of the lower disk shifts upwards
the instability thresholds: the borderlines that delimit the circle
pattern (yellow region) and the positive spirals pattern (pink
region) have a positive slope. However, these slopes are different,
which can be interpreted in terms of symmetry. The borderline of
the circle pattern appears to be parallel to the solid body rotation
line, , = Qp, indicating that the angular velocity difference
AQ = Q- Qy is the only control parameter for this instability, and
no influence of the global rotation occurs. In other words, the
instability responsible for the circle pattern, which does not
break the axisymmetry; is not affected by the additional rotation
of the frame, i.e., by the Coriolis force. By contrast, the borderline
for the positive spirals, which are responsible for the axisymmetry
breaking, has a larger slope than the solid body rotation line: in
this case, the relative angular velocity AQ = €; - €y, is not the only
control parameter, and an extra velocity of the upper disk is need-
ed for the positive spirals to arise. The global rotation has now
the expected stabilising effect mentioned in the introduction.

Shear flow instability

So far we have restricted our attention to the co-rotative (€2, > 0)
and weakly counter-rotating (about £y > - 0,5 rad/s for this gap)
regimes. The observed phenomena are rather different if we now
focus on a more intense counter-rotating regime, where a new
instability pattern arises, as shown in Figure 3b. Here again we
observe a spiral pattern, but it is by far very different from the
boundary layer instability patterns described up to now. First, the
spiral arms roll up the centre in the direction opposite to the faster
disk: for this reason we call them negative spirals (blue region in
the diagram of Figure 4).

Perhaps the most striking characteristic of the negative spirals
is their very large growth time: when the onset is carefully
approached from below, about
10 to 20 minutes are required

for the negative spirals to
Perha ps the most arise. Such very slow dynam-
ics strongly contrasts with the
Stri k! ng Cha racteristic circles and positive spirals,
which appear almost instan-

: ...t 1. taneousl when  their

Of the negatlve SPird ik thresholdyis reached. For this
. _ i reason, a precise determina-
is their ve ry la [0E tion of the negative spirals
threshold is a rather delicate
work, that needs a very stable
and controlled apparatus

growth time

and... alot a patience! Slight-
ly further from the threshold,
this growth time takes more reasonable values, of the order of one
minute or a few seconds. Actually; it can be shown that this growth
time diverges as one approaches the onset, a usual property for
critical systems near a bifurcation point.

What happens now if the gap between the disks is changed? We
can see that the morphology of the negative spirals strongly dif-
fers, from h=7 mm (Figure 3b) to =20 mm (Figure 5a). For this
new gap, the instability gives rise to a more complex structure
near the centre of the cell, in the form of a circular chain of vor-
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4 Fig. 5: (a) Example of a 5-armed negative spiral pattern,
observed for a large gap thickness (h=20 mm).This picture has to
be compared to the equivalent pattern for a small gap, in Figure
3b. (b) Corresponding velocity field, as measured from Particle
Image Velocimetry (PIV). Colors are coding the levels of vertical
vorticity, i.e., the 2D local rotation rate of fluid particles [8].

tices surrounded by spiral arms. Moreover, the number of spiral
arms is smaller in the large gap case: from 11 arms for the small
gap, down to 5 arms in the large gap case (values down to 2 arms
can be found for even higher values of 4). This variation can be
easily understood, if we imagine the spiral arms as vortex tubes,
whose diameter is of order of the gap thickness k.

More insight into the physical mechanism responsible for the
formation of this pattern may be obtained from the velocity field
of the bifurcated flow. In the case of the large gap, this velocity field
can be obtained by means of Particle Image Velocimetry (PTV).
This non-invasive technique consists in measuring the distance
swept by small particles seeding the flow between two successive
images. The particles are illuminated by a pulsed laser sheet syn-
chronised with a high-resolution video camera. In Figure 5b,
obtained for the same angular velocities as in Figure 5a, we can see
the circular chain of 5 vortices surrounded by the negative spiral
arms, similar to the pattern visualised using the flakes [8]. The
colours encode the levels of vorticity, i.e., of local rotation rate of
the fluid particles, from blue (counter-clockwise) to red (clock-
wise).

An important feature of this velocity field is the presence of an
intense shear layer (in red), where strong vorticity is concentrated.

4 Fig. 63 Schematic view of the shear layer instability between
counter-rotating disks. Each disk tends to impose a centrifugal
recirculation, dividing the bulk of the flow into two recirculation
cells (red and green). At the interface between these two cells a
shear layer takes place (in blue), that becomes unstable and
generates nearly vertical co-rotating vortices (yellow).
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A Fig. 6: Numerical simulation of the flow between counter-
rotating disks. Negative spirals with 9 spiral arms can be seen.
Data from O.Daube and P.Le Quéré [10].

This thin layer separates the outer part, rotating with the faster
(upper) disk, from the inner part, where much lower velocities are
found. The origin of this shear layer can be understood from the
Figure 6. In the counter-rotating regime, each disk tends to
impose its rotation to the fluid (full arrows), associated with a cen-
trifugal flow (dashed arrows). The centrifugal flow induced by the
faster disk, in red, recirculates towards the centre of the slower
disk due to the lateral end wall. This inward recirculation flow
meets the outward radial flow induced by the slower (bottom)
disk, in green, leading to the formation of two recirculation cells.
At the interface between these two cells a strong shear layer takes
place. Such layer is prone to an instability, which leads to an
azimuthal modulation and to the roll-up into individual co-rotat-
ing vortices [9]. This instability mechanism was first introduced
in the simpler case of a linear shear
layer by Lord Kelvin and Hermann
von Helmholtz at the end of the XIXth
...heav Y century,and was aiming to explain the
wave formation due to the wind stress

comp Utations ontheseasurface [2].

Our flow between rotating disks,

are now feasible although very simple, presents two
classes of instability patterns, associat-

ed with very different physical
thanks to n ew mechanisms: boundary layer instabil-
. ities (circles and positive spirals),
genera tion of which have been studied for a long
time in similar flow geometries, and
SUPErcompuUters shear layer instability (negative spi-
rals), which have been first observed
in our particular set-up between
counter-rotating disks. The complexity of the observed phenom-
ena is striking compared to the apparent simplicity of the flow
geometry. This is a generic situation for systems governed by non-
linear equations, among which the hydrodynamics systems play
a central role. The basic solutions, usually simple because associ-
ated with a high degree of symmetry, are replaced by much
richer patterns, that may coexist and interact together (see the
dashed regions in Figure 4). The flow between two coaxial cylin-
ders, of practical importance in rheology, is another example of
very simple flow with a large variety of instability patterns and
transitions towards turbulence.
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The new class of instability revealed in our experiment has
motivated a numerical study of the flow between counter-rotating
disks. Such simulations are very expensive in terms of computa-
tional time: because of the very large growth times, the full 3D
Navier-Stokes equations have to be simulated over a very long
time. This work has been carried out by Olivier Daube, of labora-
tory CEMIF (Evry, France), and Patrick Le Quéré, of laboratory
LIMSI (Orsay, France). Figure 7 is a visualization of the flow
between counter-rotating disks separated by the distance
h=20 mm, where the surfaces of iso-vertical velocity are shown
{10]. This quantity traces the rolling up of the streamlines in the
radial and azimuthal directions, and clearly exhibits a spiral pat-
tern in excellent agreement with the ones observed
experimentally.

Such heavy computations are now feasible thanks to new gen-
eration of supercomputers, and opens new and exciting
perspectives in the understanding of complex flow phenomena.
Among the situations of considerable practical interest are the
turbomachines used in power plants or aeronautics engineering,
This latter application involves huge rotations rates (more than 10
000 rpm), and accurate modelling of the turbulent phenomena
present at small scales are clearly needed for such numerical sim-
ulations. In this context, the excellent recent agreements between
experiments and numerical simulations are encouraging for the
understanding and modelling of turbulence under strong rota-
tion.

This article is based on an original version published in Bulletin de
la SFP (French Physical Society), 135, p.4, July 2002.
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