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The flow between two rotating disks (radius to heigh ratio of 20.9), enclosed by a
rotating cylinder, is investigated experimentally in the cases of both co- and counter-
rotation. This flow gives rise to a large gallery of instability patterns. A regime
diagram of these patterns is presented in the (Reb,Ret)-plane, where Reb,t is the
Reynolds number associated with each disk. The co-rotation case and the weak
counter-rotation case are very similar to the rotor–stator case, both for the basic flow
and the instability patterns: the basic flow consists of two boundary layers near each
disk and the instability patterns are the axisymmetric vortices and the positive spirals
described in the rotor–stator experiments of Gauthier, Gondret & Rabaud (1999),
Schouveiler, Le Gal & Chauve (2001), and the numerical study of Serre, Crespo del
Arco & Bontoux (2001). The counter-rotation case with higher rotation ratio is more
complex: above a given rotation ratio, the recirculation flow becomes organized into
a two-cell structure with the appearance of a stagnation circle on the slower disk. A
new kind of instability pattern is observed, called negative spirals. Measurements of
the main characteristics of this pattern are presented, including growth times, critical
modes and phase velocities.

1. Introduction
The flows above or between infinite rotating disks are known as generalized von

Kármán (1921) swirling flows. They have been the subject of many studies, both
fundamental and applied. The reasons for this interest are multiple. First, this is
a three-dimensional flow with an exact self-similar solution which gives rise to a
very rich class of instability patterns. Secondly, this is a model geometry for turbo-
machinery, hard disk drive and geophysical flows. Most of the studies deal with the
flow over a rotating disk, or between a stationary and a rotating disk (rotor–stator
configuration), and only few authors have studied the case when both disks rotate.
The first studies of the stability of the flow over an infinite rotating disk are those by
Gregory, Stuart & Walker (1955) and Faller & Kaylor (1966). They both deal with
the stability of the boundary layer over an infinite rotating disk. These authors report
two types of instabilities leading to spirals patterns. The first pattern, denoted class
A (or type II), is due to a viscous instability while the second one, denoted class B
(type I) comes from an inflectional instability.

The first studies of the two-disks problem are due to Batchelor (1951) and Stewart-
son (1953). In the case of a rotating and a fixed disk, Batchelor showed that the flow
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consists of two boundary layers separated by a core in solid-body rotation. For disks
in exact counter-rotation, Batchelor argued that the flow will be also constituted by
two boundary layers but the core will be separated into two parts rotating in opposite
directions separated by a transition layer. According to Stewartson, in both cases the
core remains at rest. In fact, as showed by Rogers & Lance (1960) and many others
later (see Zandbergen & Dijkstra (1987)), Batchelor and Stewartson flows are two
of several solutions that progressively appear as the Reynolds number is increased.
In the real case of disks of finite radius Brady & Durlofsky (1987) showed that
this degeneracy can be removed by the end condition. Dijkstra & van Heijst (1983)
showed numerically and experimentally the coexistence of a Stewartson type flow
and a Batchelor type flow for counter-rotating disks. The Stewartson type flow holds
near the centre while the Batchelor type flow is limited to the periphery of the disks.
This result was confirmed by Brady & Durlofsky (1987) and more recently by Lopez
(1998). The first study which deals with the stability of the counter-rotating flow is
due to Szeri et al. (1983). These authors present results for exact counter-rotation
at a fixed angular velocity Ω for an aspect ratio R/h > 10. The flow is described in
terms of the local Reynolds number (Rel = Ωr2/ν) since different structures appear
at different radial locations. They reported the existence of spirals and concentric
structures, respectively for Rel > 552 and Rel > 960. These instabilities are limited to
the boundary layers close to disks while the core remains stable. Recently, Lopez et al.
(2002) addressed, both experimentally and numerically, the issue of the stability and
the pattern formation in the flow between two counter-rotating disks, not limited to
exact counter-rotation. Their study is limited to one Reynolds number (here based on
the gap h between the disks Reh = Ωh2/ν = 250) and one aspect ratio (R/h = 2), with
a rotation ratio ranging from 0 to −1, and present extensive results of the stability
of the flow. They report new instabilities leading to an azimuthal modulation of
wavenumber 4 and 5 due to a supercritical Hopf bifurcation. Contrary to the struc-
tures observed by Szeri et al. (1983) this pattern is not limited to the disk boundary
layers but fills the whole cell. The successive bifurcations in the exact counter-rotation
case for an aspect ratio R/h = 1/2 have been recently investigated by Nore et al.
(2003). The study presented here, for a much higher aspect ratio (R/h = 20.9), extends
from counter-rotating to co-rotating configurations and explores both boundary layer
and shear instabilities.

The main goal of this paper is to investigate the onset and the nature of the flow
instabilities. The different patterns are presented in a so-called ‘regime diagram’, where
the two control parameters are the Reynolds number based on each disk rotation
rate. In § 2 we present the experimental set-up and the visualization technique. Then
§ 3 is devoted to the basic laminar flow, emphasizing the measurement methods of
the boundary layer thickness and the stagnation circle. Section 4 presents the regime
diagram of the flow between two rotating disks and a detailed study of the three
kinds of instability patterns.

2. Experimental set-up
The experimental set-up is the same as the one described in detail in Gauthier,

Gondret & Rabaud (1999). The cell, sketched in figure 1, consists of a cylinder of
small height h closed by a top disk and a bottom disk, both of radius R = 140 mm.
The upper disk is made of glass and rotates together with the cylindrical sidewall
which is made of PVC. The bottom disk is made of rectified brass, with a black
coating to improve visualization contrast. To allow differential rotation the radius
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Figure 1. Sketch of the experimental set-up.

of the bottom disk is slightly smaller (a tenth of millimetre) than the radius of the
shrouding cylinder. The thickness of the cell has been fixed at h = 6.7 mm for the
present study, corresponding to an aspect ratio R/h = 20.9. In situ measurements
show that the thickness h is constant within ±0.17 mm (i.e. 2.5%) when both disks are
rotating. Each disk rotation is controlled by a DC motor with a tachometric generator
and a regulation loop. After two speed reducers, angular velocities Ωi (i = b, t for
bottom and top disk) range from 0 to 10 rad s−1. Positive angular velocity is chosen
anticlockwise when seen from above and in all the figures presented hereafter, the top
disk has a positive angular velocity, whereas the bottom disk has either a positive
(co-rotation) or negative (counter-rotation) angular velocity.

Two visualization techniques are used to explore the flow structure. The first one
consists of a concentric circular light source and a CCD camera located along the
disk axis. In the second technique, the light source consists of a laser sheet located in
a plane containing the radial and the axial directions (meridian plane), and a camera
with a macro lens is located close to the upper disk, with an orientation of 45◦ to the
laser sheet. The resulting images thus have different horizontal and vertical scales. In
both cases the images are digitized on a 8 bit acquisition board and processed with the
freeware NIH Image†. More details about the set-up can be found in Gauthier (1998).

The cell is filled with a mixture of water, anisotropic flakes (3% of Kalliroscope‡)
and glycerol. The glycerol concentration was varied, so that the kinematic viscosity
lies in the range 1.0× 10−6 < ν < 8× 10−6 m2 s−1 at 20 ◦C. In both the visualization
techniques previously described, we observe the light reflected by the flakes. Infor-
mation such as the wavelength or phase velocity of the structures, or the boundary
layer thickness, can be extracted from the spatial variation of the reflected light.
On the other hand, such visualization techniques do not allow one to extract more
quantitative information about the velocity field. We have shown in a previous study
(Gauthier, Gondret & Rabaud 1998) that, in three-dimensional flows, the light inten-
sity is due to flakes rotating in a manner that depends on the local velocity gradient
tensor of the flow. However, in the particular case of the rotating disk flow, we have
also shown that the boundary layer appears as a bright line in the radial laser sheet
visualization. The global light intensity was shown to be proportional to the particle
concentration as long as interactions between flakes can be neglected. However, even

† Internet address: http://rsb.info.nih.gov/nih-image/download.html
‡ Kalliroscope Corporation, 264 Main Street, Box 60, Groton, MA 01450, USA.
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Figure 2. (a) Visualization of the merging radius rm from intensity contrast for Ret = 75,
Reb = −10.2. (b) Visualization of the stagnation radius rst by settled particles on the slower
(bottom) disk, for Ret = 50, Reb = −16.

though the proportionality between the light variation from the flow patterns and the
perturbed velocity field is not proved we will assume, as usual, such a relation.

In order to characterize the flow, one has to choose among several dimensionless
numbers constructed from the relevant parameters R, h, ν, Ωb and Ωt. In the case
of a single infinite disk rotating at Ω, the only lengthscale is the boundary layer
thickness δ0 = (ν/Ω)1/2 (Ekman 1905). In this case, the only dimensionless number
is the local Reynolds number defined as the ratio of the local radius r to the
thickness δ0 (Greenspan 1968). When both disks are rotating, we choose, like Dijkstra
& van Heijst (1983), two Reynolds numbers based on the thickness of the cell:
Rei = Ωih

2/ν. We also make use of another non-independent dimensionless number,
the rotation ratio s = Ωb/Ωt (with |s| 6 1 since all the results presented here
correspond to |Ωb| 6 Ωt); since the boundary layer thickness of each disk is found to
depend essentially on the faster-disk angular velocity, the set of parameters (Ret, s)
is sometimes more convenient than (Ret, Reb). We note that s > 0 for the co-rotation
case (both disks rotating anticlockwise) and s < 0 for the counter-rotation case, s = 0
corresponding to the rotor/stator case. Finally, the third dimensionless number is
the aspect ratio of the cell R/h. For the present study it has been kept constant,
R/h = 20.9.

3. Basic laminar flow
We first focus on the basic laminar flow, both in the co- and counter- rotation

cases, using visualizations from above and from meridian laser sheets. For small
rotation rates no time or azimuthal variation of the reflected light can be seen (see
figure 2a), so that the basic flow is axisymmetric and stationary. This basic flow
can be described in terms of its azimuthal (primary flow) and meridian components
(secondary recirculating flow).

3.1. Azimuthal flow

We first describe the basic laminar flow in terms of its azimuthal component. Each
disk tends to impose its rotation, leading to an essentially azimuthal velocity field.
This structure can be characterized from visualizations of the anisotropic flakes from
above and in the meridian plane. Laser sheet visualizations presented in figure 3 show
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Figure 3. Radial laser sheet visualizations of the laminar basic flow at Ret = 89 for increasing
rotation rate of the bottom disk, from counter- to co-rotation: (a) s = −0.2; (b) s = −0.1; (c) s = 0;
(d ) s = 0.11; (e) s = 0.3. The two mainly horizontal bright strips correspond to the faster- (upper)
and slower- (lower) disk boundary layers. In each picture, the faster-disk boundary layer does not
evolve while the slower-disk one becomes more horizontal as the rotation ratio is increased. The
pictures represent the whole gap of the cell (the top and bottom bounds of the figure correspond
to the top and bottom disks, h = 6.7 mm apart) but only a part of its radial extent. The centre is
on the left and the vertical black lines, drawn for measuring purposes, correspond respectively to
radial locations r ≈ 100 mm and r ≈ 115 mm.

the structure of the flow in the meridian plane, for five rotation ratios from counter- to
co-rotation (from s = −0.2 to s = 0.3). On each picture, one can see two bright strips,
one close to the top disk and the other one close to the bottom disk. As shown in a
previous study (Gauthier et al. 1998), these bright strips correspond to boundary layers
that develop on each disk, providing a measurement of the boundary layer thickness.
(We note here that the boundary layer developing over the shrouding cylinder cannot
be visualized with our experimental set-up). The boundary layer attached to the
faster (top) disk is similar to the one observed over an infinite rotating disk. Its
thickness δt does not depend on r, and depends only on the top Reynolds number:
δt ≈ 2.2(ν/Ωt)

1/2, as in our rotor–stator study. On the other hand, the boundary layer
attached to the bottom (slower) disk is only observed for large enough radius, and
its thickness evolves with r and reaches the upper boundary layer at a given radius,
denoted rm (merging radius). Here again this observation agrees with our rotor–stator
experiment. This thickness δb, shown in figure 4 for Ret = 89, essentially depends on
the top Reynolds number. Moreover, the bottom-disk boundary layer becomes more
horizontal as the rotation ratio is increased from counter-rotation to co-rotation. In
the co-rotation case, these observations are in agreement with the recent numerical
simulations of Lopez (1998) with a similar set-up but with a smaller aspect ratio
R/h = 2 (see figure 3 of Lopez 1998).

The non-constant thickness of the bottom boundary layer has important conse-
quences for the global structure of the flow, as can be seen from visualization from
above (figure 2a). The light reflected by the anisotropic flakes is much brighter in the
outer ring than in the central region of the flow. The intensity jump, located here at
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Figure 4. Boundary layer thickness of the (slower) bottom disk as a function of the radial position
and for increasing rotation ratios for Ret = 89. N, s = −0.2; �, s = −0.1; �, s = 0; ©, s = 0.3;
4, s = 0.87.

r = 73 mm (r/R = 0.52), is rather sharp (confined to a width ' 0.02R), suggesting
that a strong change in the flow structure occurs at this location. The location of
this change is found to correspond to the radius of merging of the boundary layers
observed in figure 3. The intensity jump can be understood from the dynamics of
alignment of the anisotropic flakes. In the central part the flow (r < rm), the reflected
light is weak, suggesting that the flakes do not have a well-defined orientation. This
is in agreement with the torsional Couette flow described by Sirivat (1991), since for
a Couette flow the particles do not have a defined orientation (Savas 1985). On the
other hand, in the outer part of the flow (r > rm), the light intensity is much stronger,
indicating that the flakes have mainly reached a direction parallel to the disks. This
situation now corresponds to a separate boundary layer flow, in which the larger
axis of the flakes becomes approximately oriented along the direction of the positive
strain rate, as shown by Gauthier et al. (1998). Beyond this merging radius, separated
boundary layers appear on each disk with a core in quasi-solid-body rotation: the
flow is of Batchelor type (sketched in figure 5).

Measurements of the merging radius rm, from the light intensity change from above,
are shown in figure 6 as a function of the top Reynolds number Ret for different
bottom Reynolds numbers (Reb = −20, −15, −10 and −5). The Reb dependence of rm
is weak, since the bottom boundary layer thickness δb is essentially controlled by the
rotation of the top disk. As the top Reynolds number is increased, rm decreases and
the torsional Couette part of the flow is confined to a smaller radius. This decrease
can be recovered from the results of figure 4: since both boundary layer thicknesses
δb and δt scale as (ν/Ωt)

1/2 and δb decreases linearly with r, we can deduce that the

merging of the two boundary layers occurs at a radial location rm ' A − B Re1/2
t

(where A and B depend on Reb and on the details of the slower disk boundary layer
profile). This is indeed the case, as shown in figure 6. Note that the merging radius
also exists in rotor–stator and weak co-rotation, but the weakness of the intensity
contrast in the central part of the flow does not allow reliable measurements of rm in
this case (uncertainty is of order 0.1R).

As we will see, the transition in the azimuthal profile occurring at rm is found to
play an important role in the bifurcated flow, especially for the onset of the positive
spirals (discussed in § 4.2).
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Figure 5. Sketch of the flow structure in a meridian plane, and typical azimuthal velocity profiles
at two radial locations: δt and δb are respectively the thickness of the faster- (top) and slower-
(bottom) disk boundary layers; rst and rm denote the stagnation radius and the merging radius
respectively. The dashed lines represent the radial recirculating flow in the particular case where the
two-cell structure is present (for s < −0.2). t.C. denotes torsional Couette, and B.f. Batchelor flow.
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Figure 6. Merging radius rm as a function of Re
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t for: ©, Reb = −20; +, Reb = −15;

�, Reb = −10; N, Reb = −5. The experimental uncertainty is ' 0.02R, roughly of the size of
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3.2. Recirculating flow

Each rotation is associated with a meridian recirculating flow, which can be inward
or outward depending on the rotation ratio. For arbitrary positive or small negative
rotation ratio s, the radial recirculating flow is roughly the same as in the rotor–stator
case: it consists of an outward boundary layer close to the faster disk and an inward
boundary layer close to the slower disk. In the counter-rotating case, as the rotation
ratio s is decreased below −0.2, the radial recirculating flow appears to become
organized into a two-cell recirculating structure, as shown by Dijkstra & van Heijst
(1983). The centrifugal flow induced by the faster disk recirculates towards the centre
of the slower disk due to the lateral endwall. This inward recirculation flow meets the
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outward radial flow induced by the slower disk, leading to a stagnation circle where
the radial component of the velocity vanishes (figure 5).

Measurements of the stagnation circle radius rst have been performed following a
procedure similar to the one described by Dijkstra & van Heijst (1983): small Nylon
particles, 130 µm in diameter and slightly more dense than the fluid (ρp ' 1.06 kg m−3),
settle and accumulate on a stagnation circle on the slower (bottom) disk, as shown in
figure 2(b). This accumulation is mainly due to radial motion of particles that have
already settled on the bottom disk. So for the accumulation to be possible, the radial
component of the flow has to be strong enough at the height of the particle diameter
in order to counteract the wall friction. Particles of radius rp at rest experience a
Stokes drag force Fd = 6πρfνrpU (where ρf is the fluid density and U the fluid
velocity modulus) balanced by the static wall friction Ff = (4/3) πr3

p δρ gµs (where µs
is the static friction coefficient and δρ = ρp − ρf is the specific particle density). This
gives a fluid velocity threshold for the particle motion,

U > µs
2

9

gr2
p

ν

δρ

ρf
,

where the velocity modulus U has to be chosen at height z ' rp. Since our typical
boundary layer thickness δb ' (ν/Ωt)

1/2 is larger than the particle size, this velocity is
expected to be of order ΩtRrp/δb, leading to a threshold for the top Reynolds number
of order

Ret ' h2 (µsg δρ/ρf)
2/3

ν4/3
.

For a given kinematic viscosity ν, this procedure allows us to measure rst only down
to some threshold Ret ∼ ν−4/3 (typically Ret ' 10–20). So high viscosities are required
to obtain reliable measurements of low values of the stagnation radius; otherwise, the
measured radius overestimates the actual one. On the other hand, we also observe
that large velocities prevent the stability of the particle accumulation, so that low
viscosities are needed in order to measure the large values of rst. Finally, a given
viscosity allows reliable measurements of rst using the sedimentation method only for
a limited range of Reynolds numbers.

Figure 7 shows rst as a function of the rotation ratio −s for two top Reynolds
numbers. Each curve is a collection of measurements performed at different viscosities,
for the reason explained above. The stagnation radius rst is found to be smaller than
rm confirming the difference between the azimuthal and radial two-cell structures. For
larger |s|, the difference between rst and rm is found to decrease, in agreement with
the observation of Dijkstra & van Heijst (1983) that the radial recirculation cells
tend to coincide with the azimuthal cells in the limit s→ −1. Figure 7 suggests that
a critical value of s, around −0.2, has to be reached in order to obtain the two-cell
recirculation structure. The stagnation circle is not observed in the co-rotating case,
unlike the merging radius that exists both for s < 0 and s > 0. We note that reliable
measurements of rst are difficult to obtain for small rotation ratio (rst/R < 0.4),
because of the weakness of the recirculating radial flow attached to the slower disk
and of the possible screening effect due to the accumulation of particles at small
radius. Such a critical value of s has also been found by Dijkstra & van Heijst
(1983), and can be interpreted in terms of a balance between the inward and outward
flow over the slower disk. These results show that a given value of rst is obtained
essentially at a fixed rotation ratio s, regardless of the Reynolds number magnitude.
However, the five curves of equal rst/R plotted in the (−Reb, Ret)-plane of figure 8
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Figure 7. Stagnation radius rst (circles) and merging radius rm (squares) as a function of the
rotation ratio −s (counter-rotation), for Ret = 50 (open symbols) and Ret = 100 (filled symbols).
The range of measurements for rm is limited by the appearance of disorder at Reb < −18.
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Figure 8. Isovalues of the stagnation radius rst in the Reynolds number plane Ret,Reb. ©,
rst/R = 0.9; �, rst/R = 0.8; �, rst/R = 0.7; N, rst/R = 0.6; O, rst/R = 0.5. The grey zone
corresponds to the region of existence of the negative spirals (see § 4.3), and the dashed line to the
exact counter-rotation. Continuous lines are guides for the eye.

show significant departures from straight lines at high Reynolds number, i.e. similarity
does not hold on the whole range of Reynolds numbers covered here. Surprisingly
figure 8 shows that the stagnation circle is not only a property of the axisymmetric
basic flow, but remains visible even in the presence of structures such as negative
spirals (see § 4.3) or turbulence. From figure 7, it appears that rm and rst are never
observed simultaneously. However, this is due to difficulties in observing large values
of rm in the presence of instabilities (§ 4.3).
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4. Instability patterns
We now turn to the instability patterns of the flow between two rotating disks close

to each other (R/h = 20.9), in both co- and counter-rotating flows. A gallery of the
different patterns described below is shown on figure 9.

For s > 0 (rotor–stator or co-rotation) and Reb fixed, on increasing Ret, propaga-
ting circular structures (denoted C) are first observed (figure 9a). These axisymmetric
vortices appear close to the cylindrical wall, propagate towards the centre and dis-
appear before reaching the merging radius rm. Above a secondary threshold of Ret,
spiral structures appear at the periphery of the disks, and circles remain confined
between two critical radii (figure 9e). These spirals are called positive spirals (denoted
S+) since they roll up to the centre in the direction of the faster disk (here the top
one). Increasing Ret further, positive spirals progressively invade the whole cell. Still
increasing Ret, the flow becomes more and more disordered (denoted D, figure 9d ).

For s < 0 (counter-rotating case) the onset of the instability patterns depends on
the Reynolds numbers of both disks. For low bottom Reynolds number, −11 <
Reb < 0, on increasing the Reynolds number of the upper disk, the appearance of the
instability patterns is the same as in the rotor–stator or co-rotation case: axisymmetric
propagating vortices, positive spirals and disorder. But, for −18 < Reb < −11, spirals
of a new kind appear on increasing Ret. These spirals are said to be negative (and
denoted S−) since they now roll up to the centre in the direction of the slower counter-
rotating disk (figure 9c). Unlike circles and positive spirals, negative spirals extend
from the periphery to the centre. Increasing Ret further, positive spirals appear as
well at the periphery of the disk, as can be seen in figure 9( f ). Here negative
and positive spirals seem to coexist without strong interaction. Still increasing Ret,
negative spirals disappear and positive spirals alone remain (figure 9b). Increasing Ret
yet further, circles appear as in the co-rotation case. Still increasing Ret, the structures
become disorganized and the flow becomes turbulent. For Reb < −18 the negative
spirals described above become wavy, the flow is more and more disorganized and
continuously becomes turbulent without a well-defined threshold. Depending on the
Reynolds numbers, the disorder can be generated first at the periphery or in the
centre and then invades the entire cell.

The domains of existence of all these patterns are summarized in the regime
diagram (Reb, Ret) of figure 10. We see that the co-rotation flow (Reb > 0, right-hand
part of the diagram) is qualitatively the same as the rotor–stator flow (vertical line
Reb = 0); the thresholds of instabilities (circles C and positive spirals S+) are found
to increase just with the bottom Reynolds number. By contrast, the counter-rotating
case (Reb < 0, left-hand part) is much more rich. The following subsections describe
in more detail the three different patterns: axisymmetric propagating vortices § 4.1
and positive spirals § 4.2 (co- and weak counter-rotation), and negative spirals § 4.3
(stronger counter-rotation).

4.1. Axisymmetric propagating vortices

As mentioned in § 3.1, in the co-rotation and weak counter-rotation cases, the basic
flow is similar to the rotor–stator case, and the sequence of instability patterns is
found to be the same. We start with the first instability, the axisymmetric propagating
vortices, more simply called circles (C). These circular waves were observed for the
first time by Savas (1987) during the spin-down of a rotating cylinder. This author
reported that the axisymmetric propagating waves are of class A (Type II), i.e. due
to a viscous instability of the inward boundary layer. This result has been recently
confirmed theoretically by Fernadez-Feria (2000) for the self-similar flow over an
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Figure 9. Gallery of the different flow patterns: (a) propagating circular vortices C, (b) positive
spirals S+, (c) negative spirals S−, (d ) disordered flow D, (e) mixing of axisymmetric propagating
vortices and positive spirals and ( f ) mixing of positive and negative spirals. The direction of
rotation of the disks is the same for all patterns: the bottom slower disk rotates clockwise while the
top faster one rotates anticlockwise.
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Figure 10. Regime diagram of the rotating disk flow for the aspect ratio R/h = 20.9. The
dot-dashed lines correspond to the first and the second bisectors: Ret = Reb (solid-body rota-
tion) and Ret = −Reb (exact counter-rotation). The different domains are B (steady axisymmetric
basic flow), C (axisymmetric propagating vortices), S− (negative spirals), S+ (positive spirals) and
D (disorder). The continuous lines define the domain limits, while the dashed lines give a rough
estimate of the disorder transition.

infinite disk. Following these authors, the instability we observe should be of Class A,
although we are not able to provide any experimental evidence. Such axisymmetric
propagating vortices have been studied in detail for the rotor–stator configuration in
our previous study (Gauthier et al. 1999). As shown in figure 10, the threshold of this
instability increases linearly with the rotation of the bottom disk as

Ret,c ≈ 75 + Reb,

i.e. it depends only on the difference in rotation rates between the top and bottom
disks (the relative threshold remains constant in the rotating frame of the bottom
disk). This suggests that the relevant parameter of this instability is the shear rate
∼ Ωt − Ωb, and the additional global rotation Ωb just changes the threshold without
further stabilization of the flow.

We observe that this instability takes place in the inward boundary layer that
develops on the slower rotating disk (for r > rm), in agreement with our previous
results in the rotor–stator case. Since the same investigation method has been used,
it is only briefly described here. The inward boundary layer behaves as an open flow
and then acts as a noise amplifier whose natural frequency is the most amplified one.
In order to study such system, one may analyse the flow response to a perturbation
of controlled frequency and amplitude. In our set-up this is realized by analysing
the flow response to a periodic modulation of the rotation speed of the top disk,
which is now: Ωt(t) = Ωt,0 + ∆Ω cos(ωt). The results described hereafter correspond
to Ωt,0 = 4.0 rad s−1 (Ret = 175), Ωb = 1.47 rad s−1 (Reb = 66), ∆Ω/Ωt,0 = 6% and ω
in the range 13 to 17 rad s−1.
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Figure 11. Spatiotemporal image of the axisymmetric vortices for Ωt,0 = 4 rad s−1 (Ret = 175),
Ωb = 1.44 rad s, ω = 14.5 rad s−1 (Reb = 66).

For each imposed frequency modulation ω, we construct a spatiotemporal image
corresponding to the time evolution of the light intensity along a given radius
(figure 11). From this spatiotemporal image we extract the temporal power spectrum.
As we found that the system amplifies the imposed frequency ω, we use a filter centred
around the imposed frequency in order to remove the experimental noise. Then on
each spatial line (horizontal lines of constant t in figure 11) the light intensity is:
I(r, t) = I0(r) exp(kr(r)r−ωt). Computing an Hilbert transform (Croquette & Williams
1989) for each horizontal line of the spatiotemporal image gives the local wavenumber
kr(r) and the envelope of the light intensity I0(r). The light intensity increases from
the periphery to a given radius and then decreases towards the centre. The amplitude
of the structures and the location of the maximum amplitude both depend on the
imposed frequency. As in the rotor–stator case, the system acts as a large band noise
amplifier with the most amplified frequency equal to four times the rotation rate of
the faster disk. From the envelope I0(r), one can extract the spatial growth rate ki
using a WKBY approximation (Hinch 1991). Thus, renormalizing both the spatial
growth rate and the local wavenumber with the local thickness δb of the slower disk
boundary layer should collapse the data onto a single curve. Figure 12 shows the
non-dimensional spatial growth rate (kiδb) as a function of the non-dimensional local
wavenumber (krδb) for four different frequencies of modulation. As one can see, the
band width of the unstable wavenumbers (0 < krδb < 1) as well as the most unstable
wavenumber (krδb ≈ 0.6) are independent of the modulation frequency. The results
obtained here are comparable with that previously obtained in the rotor–stator case
(Gauthier 1999), where the bandwidth was 0 < krδb < 1.5 and the most unstable
wavenumber was krδb ≈ 0.5. In addition, in both studies, the natural frequency of
the circular waves is found to be four times the frequency of the faster disk, as also
found numerically by Serre et al. (2001) for the rotor–stator case.

4.2. Positive spirals

We now turn to the positive spirals (denoted S+ in figure 9b), present in both the
co- and counter-rotating cases. They have been studied extensively in the rotor–stator
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Figure 12. Dimensionless spatial growth rate kiδb of the propagating circles as a function of the
dimensionless wavenumber krδb for four frequencies of modulation: ω/Ω0,t = 3.2, 3.6, 4 and 4.2.

Figure 13. Laser sheet visualization of positive spirals for Ret = 120 and Reb = 12. The upper bright
line corresponds to the boundary layer of the top disk, and the two bright patches correspond to
sections of positive spirals C+. The axis of rotation is at the left, the left-hand edge is at r = 84 mm
and the right-edge r = 106 mm.

configuration by Schouveiler, Le Gal & Chauve (1998) and Schouveiler, Le Gal &
Chauve (2001). In particular these authors show that, in the rotor–stator configuration,
these spirals can appear alone (without circles) if the aspect ratio is large enough
(R/h > 40, see figure 3 of Schouveiler et al. 2001). They give evidence that these
positive spirals are due to an instability of the stationary-disk boundary layer. They
point out a connection with the study of Hoffman, Busse & Chen (1998), suggesting
that an inviscid inflectional instability is responsible for the onset of the positive
spirals. As for the axisymmetric propagating vortices, since the flow in co-rotation
and weak counter-rotation is qualitatively the same as for the rotor–stator case, we
expect the instability mechanism to be similar and thus of Class B (type I). Indeed,
our laser sheet visualizations show that the structures are localized in the inward
boundary layer attached to the slower disk (see figure 13), in agreement with the
findings of Schouveiler et al. (1998) in the rotor–stator case.

Positive spirals appear at the periphery and develop towards the centre down to
a critical radius. In the co- and weak counter-rotation cases, the critical radius is
limited by the existence of axisymmetric propagating vortices, while for stronger
counter-rotation this critical radius is found to be the merging radius rm, defined
in § 3.1. This observation suggests that positive spirals need a well-defined inward
boundary layer to develop, as they disappear at the radius rm where the inward layer
merges with the top-disk outward boundary layer. So positive spirals only exist in
the Batchelor-type flow, where a quasi-solid-body rotation takes place between two
separate boundary layers.



Flow between counter-rotating disks 15

0 10 20 30–30 –20 –10

30

25

20

45

40

35

m
θ

Reb

Figure 14. Azimuthal wavenumber mθ of the positive spirals along the onset curve between the C
and C + S+ domains (see figure 10) as a function of the bottom Reynolds number.

In the regime diagram of figure 10, we can see that the equation for the line
separating domains C and C + S+ is

Ret,c ≈ 135 + 1.7Reb

for −18 < Reb < 60. We can see that for Reb = 0 (rotor–stator case), our threshold
Ret,c = 135±8 is in good agreement with Schouveiler et al. (2001) who report a value
of Re = 143 ± 6 for the same aspect ratio. For increasing Reb, the increase of the
threshold Ret,c is linear but the slope is larger than one, unlike what was obtained
for the axisymmetric propagating vortices: now the mean shear rate ∼ Ωt −Ωb is not
the only parameter for this instability, and the additional global rotation Ωb shifts
upward the threshold, i.e. it stabilizes the flow.

A quantity of interest to characterize this instability pattern is the number of
spiral arms, or equivalently the azimuthal wavenumber mθ of its polar Fourier
representation. The wavenumber mθ appears to depend on both the top and bottom
Reynolds numbers, and we choose here to focus only on its value at onset along the
instability curve (Ret,c, Reb,c). It is important to note here that, unlike the negative
spirals where higher-order azimuthal wavenumbers may coexist simultaneously with
the fundamental mode (see § 4.3), we never observe here more than one mode at the
same time, even far from the onset. Figure 14 shows that mθ increases linearly along
the onset line, as the bottom Reynolds number is increased. This global evolution is
the same in the co- (Reb > 0) and counter- (Reb < 0) rotating cases, supporting our
assumption that the instability mechanism for this pattern is essentially the same in
the two configurations. With our aspect ratio (R/h = 20.9), mθ = 25 is the minimum
wavenumber that can be observed, for Reb,c ' −18. Due to experimental limitations,
we are not able to observe modes beyond mθ = 41, but we believe that the curve
extends further.

We now consider the phase velocity of the positive spirals. We define here the
azimuthal phase velocity ωφ in the laboratory frame, corresponding to the angular
velocity of the global rotation of the spiral pattern. The phase velocity of the onset
mode is plotted as a function of the bottom Reynolds number in figure 15. Here
again, the continuous evolution suggests that the weak counter-rotation flow behaves
like the co-rotation flow. The phase velocity is always positive (anticlockwise), i.e. the
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Figure 15. Azimuthal phase velocity ωφ of the fundamental mode of the positive spirals as a
function of the bottom angular velocity (upper axis) and the bottom Reynolds number (lower axis;
ν = 1.53× 10−6 m2 s−1).

positive spirals rotate in the direction of the faster (top) disk, regardless of motion
of the bottom one. The evolution is found to be linear, starting from ωφ = 0 for
Reb,c ' −18 (here Ωb,c = −0.62 rad s−1). The fact that the zero phase velocity coincides
with the lower bound of the stability curve seems to be fortuitous, since it is not
observed for other aspect ratios.

4.3. Negative spirals

We finally turn to the last instability pattern: when the two disks rotate in opposite
directions the first instability leads to another kind of spiral pattern (figure 9c), that we
call negative spirals since they roll up to the centre in the direction of the slower disk.
These negative spirals seem to invade the whole radial extent of the cell, although the
light intensity at small radius may become too weak to be seen. Their axial extent can
be investigated from the laser sheet visualizations on a meridian plane, as shown in
figure 16. The picture reveals a zig-zag lattice of vortices between the upper and lower
disk: the negative spirals are not confined to a boundary layer, but rather fill the whole
gap between the two disks. In that sense they strongly differ from the axisymmetric
propagating vortices and positive spirals described above, which are limited to the
inward boundary layer of the slower disk. This observation is supported by the fact
that the merging radius rm, which is the inner bound of the inward boundary layer,
does not limit the radial extent of the negative spirals (see figure 9f ). The location
of the negative spirals is somewhat unexpected in view of the radial structure of
the basic axisymmetric laminar flow studied in § 3.2: As shown in figure 8, before
the onset of the negative spirals, the basic flow has a two-cell recirculating structure
with a stagnation circle on the (slower) bottom disk. Above the onset of the negative
spirals, the flow is no longer axisymmetric but we observe that the stagnation circle
remains, meaning that the radial component of the flow is not much affected by the
axisymmetry breaking: the negative spirals pattern invades the whole cell, in both
radial and axial directions, regardless of the position of the stagnation circle. The fact
that negative spirals exist in regions where the radial recirculating flow can be either
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Figure 16. Radial laser sheet visualization of negative spirals for Ret = 85 and Reb = −16.
The left-hand edge is at r ≈ 50 mm and the right-hand edge at r ≈ 90 mm.

0

0.5

1.0

1.5

2.0

10 12 14 16 18 20
|Reb|

(τ
/τ

∗ )
–1

Figure 17. Inverse of the growth time τ of negative spirals, normalized with the viscous diffusion
time τ∗ = h2/ν, as a function of the bottom Reynolds number Reb, for Ret = 54.

outward or inward is a hint that the instability mechanism is not of cross-flow type
(Class B).

Perhaps the most striking characteristic of the negative spirals is their very large
growth time: when the onset is carefully approached from below, this growth time
can exceed 15 minutes (using water as the working fluid), i.e. more than 30 turnover
times of the slower (bottom) disk. Such large growth time strongly contrasts with
the positive spirals and circles, which appear almost instantaneously compared to the
rotation timescale. Since in the vicinity of the threshold the growth time is expected
to diverge as |Reb − Reb,c|−1, plotting the inverse of the growth time 1/τ for a given
(faster) top Reynolds number as a function of Reb allows an accurate determination of
the threshold Reb,c. Figure 17 shows, for Ret = 54, the inverse of the non-dimensional
growth time τ/τ∗, where τ∗ = h2/ν denotes the viscous diffusion time, as a function
of Reb. Indeed, the evolution appears to be linear, and the extrapolation 1/τ → 0
allows the threshold to be determined. No hysteresis has been found in this transition,
giving evidence that the axisymmetry is broken via a supercritical Hopf bifurcation.
The threshold Reb,c, plotted as a function of Ret in figure 18, is found to evolve very
slightly with the top Reynolds number, defining the existence domain of negative
spirals in the ‘regime diagram’. As Ret is increased, the critical bottom Reynolds
number first slightly decreases down to a minimum (Reb,c ≈ 11 ± 0.5 for Ret ≈ 40)
and then increases up to 16, showing that the bifurcation is not only related to the
shear induced by the differential disks rotation.

As for the positive spirals, an important property of this spiral pattern is its
azimuthal wavenumber. However, it is worth pointing out that, unlike the positive
spirals, higher-order modes quickly superimpose on the fundamental one, even very
close above the onset. In this case, each mode rotates with its own azimuthal phase
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Figure 18. Critical bottom Reynolds number Reb,c (left axis) and azimuthal mode mθ at onset
(right axis) of the negative spirals as a function of the top Reynolds number.

velocity, leading to a slowly rotating modulation of the pure spiral pattern. Here
again, we will only focus on the fundamental (lower order) mode at onset, which can
be simply viewed as the number of spiral arms.

At threshold, after the appearance of the structures, we observe that the azimuthal
wavenumber evolves through a cascade of rearrangements to reach a stable mode. For
instance, for Ret = 50 and slowly increasing Reb up to its critical value Reb,c ≈ 11.5,
we first observe a transient mode mθ = 13, which decays within tens of minutes
down to its stable fundamental state mθ = 11. We note that the timescale for this
rearrangement is large, of the same order as the growth time of the initial mode. The
azimuthal wavenumber mθ of the fundamental mode (at onset) is plotted in figure 18
(right axis) as a function of the top Reynolds number (each point of this figure is
obtained after the decay of all transient modes). As the top (larger) Reynolds number
is increased, and keeping the bottom Reynolds number at its corresponding onset
value Reb,c, mθ is found to increase from 9 to 11. On the other hand, going above the
onset by keeping Ret constant and slightly increasing Reb, the situation is much more
complex: as soon as Reb is increased by 5% from Reb,c, a secondary mode appears.
This mode is clearly not an harmonic of the fundamental one (it ranges between
14 and 19), and the number of spiral arms is no longer defined. Increasing further
the bottom Reynolds number (|Reb| > 18), other higher-order modes appear, rapidly
leading to a disordered pattern.

We finally look to the phase velocity of the negative spirals. Figure 19 shows
the evolution of the azimuthal phase velocity ωφ of the fundamental mode in the
laboratory frame as a function of the top Reynolds number. We first observe that the
sign of ωφ changes, i.e. the rotation of the pattern is not simply related to the direction
of either disk. The mode mθ = 9 (Ret < 40) is associated with negative (clockwise)
phase velocity, while the mode mθ = 11 (Ret > 50) has positive (anticlockwise) phase
velocity. It means that, at small Ret, the pattern rotates in the direction of the slower
(bottom) disk, with the convex side of the spiral arms in the direction of motion, while
at higher Ret it moves with the top (faster) disk with the concave side ahead. This
situation contrasts with the positive spirals, for which the azimuthal phase velocity
is always of constant sign, corresponding to a motion of the spiral arms with the
concave side ahead. We note that this change of sign for negative spirals occurs at
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Figure 19. Azimuthal phase velocity ωφ of the negative spirals at threshold as a function of the
top Reynolds number Ret (bottom axis) and corresponding angular velocity Ωt (top axis).

the minimum of the domain boundary (Ret ≈ 50± 10, Reb ' −11). In the vicinity of
this minimum, we note that the phase velocity is found to be very small (typically 1%
of the faster disk rotation rate, with almost no variation with Ret), i.e. the pattern
seems to be almost at rest in the laboratory frame.

5. Discussion and conclusion
In this article, we have investigated experimentally the flow and its instabilities

between two parallel co- or counter-rotating disks with an enclosing cylinder attached
to the faster (top) disk, for an aspect ratio R/h = 20.9. Special attention has been
paid to the basic laminar flow, in order to obtain more insight into the onset of
the different instability patterns and their region of existence. Three different kinds
of patterns are reported and described in detail: axisymmetric propagating vortices,
positive spirals and negative spirals. The first two ones, which are both present in co-
and weak counter-rotating flows, have been previously investigated in the rotor–stator
configuration in our experimental set-up (Gauthier et al. 1999) as well as by other
authors (Schouveiler et al. 2001; Serre, Crespo de Arco & Bontoux 2001). By contrast,
the negative spirals are specific to the counter-rotating flow, and are described here
for the first time.

When the disks are co-rotating or when the counter-rotation is weak (−11 <
Reb < 0) the basic flow is found to be of Batchelor type (separated boundary layers)
above a given radius and of torsional Couette type below. No qualitative difference
is found when compared with the rotor–stator configuration, and the instabilities
encountered are the same: axisymmetric propagating vortices and positive spirals.
Azimuthal wavenumbers and phase velocities at onset have been measured for the
positive spirals, showing a continuous evolution from counter- to co-rotation. These
patterns occur in the slower-disk inward boundary layer, while the faster-disk bound-
ary layer as well as the core are found to remain stable in our range of Reynolds
numbers. For this reason, the radial extent of these patterns is limited by the merg-
ing radius rm. We have shown that the behaviour of the axisymmetric propagating
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vortices for s 6= 0 is the same as in the rotor–stator case studied previously (Gau-
thier et al. 1999). In particular, it is worth noting that the additional global rotation
for s 6= 0 only moves the instability threshold of the circles linearly, without further
stabilization of the flow. This situation is remarkable, since the basic flow is clearly
affected by additional global rotation. By contrast, the positive spirals are shown to
be stabilized by the global rotation, since their instability threshold is moved more as
the rotation is increased.

When the disks rotate in opposite directions a new instability pattern is reported,
called negative spirals. The instability leading to this new pattern corresponds to
a supercritical Hopf bifurcation. Negative spirals significantly differ from circles
and positive spirals in the sense that they extend over the whole cell in both the
radial and axial directions. Their apparent insensitivity to the merging radius rm is
evidence that they are not confined in one boundary layer, unlike the circles and
positive spirals, and that the instability mechanism is not of cross-flow type. We thus
believe that negative spirals arise from a shear instability in the bulk of the flow.
We further observed that negative spirals may coexist with positive spirals, but not
with propagating circles. This suggests that the instability leading to the propagating
circles can only take place in an axisymmetric region of the flow. We have measured
the azimuthal wavenumber and phase velocity of negative spirals, and showed that
the fundamental mode is essentially controlled by the larger Reynolds number. Going
slightly above the onset of negative spirales, disorder and turbulence quickly arise
after few secondary instabilities.

Recently Lopez et al. (2002) reported, from both experimental and numerical
investigations, azimuthal modulation of the counter-rotating flow for an aspect ratio
R/h = 2. Depending on the counter-rotation ratio, these authors report azimuthal
modes mθ = 4 and 5. These numbers should be compared to the modes mθ = 9,
10 and 11 that we observe for the negative spirals with R/h = 20.9. In spite of
the large aspect ratio difference, it raises the issue of a possible continuity between
their instability and our negative spirals. According to these authors (see also Lopez
1998), their instabilities arise from an inward jet-like shear layer. This free shear layer
originates from the separation of the inward boundary layer due to the stagnation
circle present at s < −0.2. However, we observe that negative spirals extend both
below and above the stagnation circle, and both in the separated boundary layers
region (r > rm) and in the torsional Couette region (r < rm). At this point, it is not
clear whether or not our observations support the instability mechanism proposed
by these authors, at least for the aspect ratio we investigate. More experiments, with
different aspect ratios, have to be performed in order to clarify this issue.

The authors wish to thank G. Michon and B. Truchot for experimental helps, and
O. Daube for fruitful discussions.
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