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Wietze Herreman!>1, Basile Dhote!, Lucile Danion! and Frédéric Moisy1

Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France

(Received 28 December 2023; revised 3 May 2024; accepted 21 June 2024)

Elongated floaters drifting in propagating water waves slowly rotate towards a preferential
orientation with respect to the direction of incidence. In this paper we study this
phenomenon in the small floater limit kL, < 1, with k the wavenumber and L, the floater
length. Experiments show that short and heavy floaters tend to align longitudinally, along
the direction of wave propagation, whereas longer and lighter floaters align transversely,
parallel to the wave crests and troughs. We show that this preferential orientation can be
modelled using an inviscid Froude—Krylov model, ignoring diffraction effects. Asymptotic
theory, in the double limit of a small wave slope and small floater, suggests that preferential

orientation is essentially controlled by the non-dimensional number F = kL)% /h, with h
the equilibrium submersion depth. Theory predicts the longitudinal-transverse transition
for homogeneous parallelepipeds at the critical value F, = 60, in fair agreement with
the experiments that locate F, = 50 &= 15. Using a simplified model for a thin floater,
we elucidate the physical mechanisms that control the preferential orientation. The
longitudinal equilibrium for F < F, originates from a slight asymmetry between the
buoyancy torque induced by the wave crests, that favours the longitudinal orientation, and
that induced by the wave troughs, that favours the transverse orientation. The transverse
equilibrium for F' > F arises from the variation of the submersion depth along the long
axis of the floaters, which significantly increases the torque in the trough positions, when
the tips are more submersed.

Key words: wave-structure interactions

1. Introduction

The motion of a floating body in gravity waves is a classical problem in fluid mechanics
with evident applications in the domain of naval engineering (Faltinsen 1993; Newman
2018; Falnes & Kurniawan 2020). At first order in wave magnitude, waves cause harmonic
oscillations of the floating body in all six degrees of freedom, displacements (heave, surge,
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Figure 1. Experimental set-up and chronophotographies. (a) Side view. Waves are generated in a water channel
of length 3 m and filled at height H = 10 cm. (b) Top View. Floater of length L,, making an angle ¥ with
the direction of wave propagation. (c¢,d) Chronophotographies, obtained by superimposing images acquired
every wave period, for a wavelength 4 = 29 cm and wave slope € = ak = 0.16. The short floater (length L, =
60 mm) gradually aligns in the direction of wave propagation (c), while the long floater (L, = 100 mm) aligns
parallel to the wave crests (d).

sway) and orientation angles (pitch, roll, yaw). At second order, waves also cause a mean
drift force and yaw moment on the body that affect surge, sway and yaw angle on long
time scales. For small isotropic floaters, this mean motion reduces to the classical Stokes
drift in the direction of the wave propagation (Stokes 1847; van den Bremer & Breivik
2018; Calvert et al. 2021), a problem that received considerable interest for the modelling
of pollutant transport in the oceans (Suaria et al. 2021; Sutherland et al. 2023; Yang
et al. 2023). For larger floaters of arbitrary shape, such as ships and floating structures,
an angular drift can change the floater’s orientation with respect to the wave incidence
and this slow reorientation can in turn modify its linear drift. The combined linear
and angular drifts are key features in sea keeping and maneuvering (Skejic & Faltinsen
2008), and their modelling has been the subject of numerous works. The main methods
to analyse ship motion are summarized in the books of Faltinsen (1993) and Newman
(2018).

In this paper we are specifically interested in the slow, second-order yaw motion of
small elongated floaters drifting in gravity waves and how it creates a preferential state
of orientation with respect to the incident waves. To illustrate this phenomenon, we show
in figure 1 two chronophotographs from our laboratory experiments. Small homogeneous
parallelepipeds of centimetre scale are left adrift in a propagating wave in a 3m long
water tank, and pictures synchronized with the wave period are taken from above (details
are given in § 2). In just a few wave periods we observe that shorter floaters align with the
direction of wave propagation, whereas longer floaters clearly prefer to align parallel to
the wave crests. The main objective of this paper is to clarify what physically governs this
preferential orientation.

In naval engineering contexts, the slow angular motion of elongated floaters is well
known and is sometimes referred to as low-frequency yawing. More than a century ago,
Suyehiro (1921) reported how small boat models rotate towards a preferential state of
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orientation and proposed a mechanism based on gyrostatic moments. Newman disagreed
with this solid-mechanical explanation and proposed in 1967 his famous article that
rationalised how ocean waves cause a mean drift force and moment on floating structures
(Newman 1967). Starting from a global momentum and torque balance and using Green
function theory, Newman expresses the second-order drift force and yaw moment in terms
of Kochin functions. These functions relate to the far-field limit of the hydrodynamic
potential of the wave and, hence, to how the wave is diffracted or modified by the moving
floater. Using slender body theory, Newman was able to calculate these Kochin functions
and this lead him to propose an explicit formula for the mean yaw moment acting on
slender floaters. This theoretical mean yaw moment compared reasonably well with the
few experimental data points of Spens & Lalangas (1962) (reproduced in Newman 1967).
However, it also seems that some relevant physical effects are absent in this early theory:
according to Newman’s formula, slender floaters that are shorter than the wavelength
should always be stable in beam seas, i.e. they should align their long axis parallel to
the wave crests, in contradiction with figure 1.

The far-field approach of Newman triggered many subsequent theoretical works on the
topic of mean drift force and moment. Salvesen (1974) is a simplification of Newman’s
model in which the floater is considered as a weak scatterer of the incoming wave. In
Kashiwagi (1992) and Kashiwagi & Ohkusu (1993), Parseval’s theorem is used to evaluate
the mean drift force and yaw moment, instead of the method of stationary phase used
by Newman. An entirely different near-field approach of direct pressure integration was
proposed by Faltinsen (1980). Different theoretical methods are compared in Skejic &
Faltinsen (2008), and show consistent results. Chen (2007) proposed a third method, the
so-called middle-field formulation, to compute mean wave loads on structures. A boundary
element method is used to calculate the hydrodynamic potential and Kochin functions.
This method is also implemented in the software pack Hydrostar (Bureau-Veritas 2016)
that is specifically designed for naval engineering applications. Experiments on the
specific subject of slow yawing are not so common. In Le Boulluec, Forest & Mansuy
(2008) it is briefly mentioned that elongated, container-like floaters can drift either in
longitudinal positions (head seas) or transverse position (beam seas). Recently, Yasukawa
et al. (2019) compared the mean yaw moment obtained with a far-field theory to new
experimental measurements on a particular ship model, and according to the authors the
agreement is not so good.

Overall, few experimental studies were specifically dedicated to the topic of slow yawing
or preferential orientation and this was a first motivation to do this study. Secondly,
we also want to better understand the physics that controls this preferential orientation.
In this paper we propose a new experimental, numerical and theoretical study that is
fully dedicated to the subject of preferential orientation of small floaters. When floaters
are small with respect to the wavelength, diffraction is less important and preferential
orientation likely simpler to understand.

The paper is structured as follows. In § 2 we present a systematic series of experiments
investigating the preferential orientation of small floaters of varying length and density. In
§ 3 we define an idealised model for the motion of small floaters in propagating gravity
waves. We use the Froude—Krylov approximation that ignores diffraction and we show
that numerical solutions of this nonlinear model reproduce well the observed state of
preferential orientation in our experiments. In § 4 we propose an asymptotic solution to
this Froude—Krylov model in the double limit of small wave slope € = ka (with k the
wavenumber and a the wave amplitude) and small floater size. For elongated floaters
with height L,, width L, and length L, ordered as kL, < kL, < kL, < 1, this yields the
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idealised evolution equation for the average yaw angle v,

= 9 . = 3= F
Y —e“sinfpcos’ Yy (1 —— ). (L.1)
F.
This equation depends on the non-dimensional number F, defined as
kL2
=_= (1.2)
BL;

Here $ is the floater-to-water density ratio and we recognise & = BL, as the equilibrium
submersion depth or draft of our parallelepiped floaters. The idealised, dissipationless
evolution equation (1.1) certainly does not capture all the complexity of realistic slow
yawing, but it provides insight into the preferential state of orientation of small floaters.
It suggests that, for F' < F,, the longitudinal position v = 0° is stable and hence
preferred, whereas for F > F., the transverse position ¥ = 90° is stable. Our theory
predicts a transition at F. = 60, in fair agreement with the experimental value F, >~
50 £ 15. Relaxing the assumption kL, < kL, we obtain a more general theory that
suggests bistability in a narrow interval slightly below F., which may explain in part the
experimental uncertainty.

The technicity of this asymptotic theory obscures physical insight and, therefore, we
propose in § 5 a second derivation of (1.1) using a shorter procedure. This shows better
what physically controls the preferential orientation. The longitudinal equilibrium for
short floaters arises through a mechanism similar to that explaining the Stokes drift of
a material point. The buoyancy torque induced by wave crests rotates the floater in the
longitudinal orientation, while that induced by wave troughs rotates the floater in the
transverse orientation. Because of the slightly stronger buoyancy force on the crests than
on the troughs, this produces a mean, second-order torque that favours the longitudinal
orientation. Such a phase correlation between oscillating buoyancy force and oscillating
level arm is analogous to that of the classical Kapitza pendulum, a pendulum whose anchor
point is rapidly vibrated (Kapitza 1951; Landau & Lifschitz 1960; Butikov 2001), which
tends to align along the direction of vibration. The transverse state of orientation is on
the other hand due to the fact that long floaters have a variable submersion along their
length. This variable submersion significantly enhances the instantaneous yaw moment
in trough positions that always favours the transverse position. In § 6 we finally compare
our analytical formula for the mean yaw moment to previous results obtained by Newman
(1967) and Chen (2007), and show good agreement in the small floater limit kL, < 1.
We find that in Newman’s model, only the part of the mean yaw moment favouring the
transverse position is present and this explains why his model does not predict a transition
in preferential orientation.

2. Experiments

A series of laboratory experiments with centimetre-scale floaters of varying size and
density have been performed in a water flume. The experimental set-up, sketched in
figure 1(a,b), consists of a tank of length 3 m, width 0.38 m, filled with water at height
H = 0.1 m. Waves are generated by a wavemaker consisting in a paddle oscillating at
frequency w/2m between 1 and 4 Hz, and are absorbed at the other end of the channel by
a sloping plate.

We determine the wave profile ¢ (x, ) by imaging the instantaneous contact line through
the lateral channel wall and using a line detection algorithm. The wave profile is well
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Material B Ly (mm) L, (mm) h (mm) BL; (mm)
PU foam 0.26 £0.02 104 £0.2 4.9+ 0.05 244+0.2 1.3+0.1
PVC foam 0.44 +0.02 10.4+£0.2 4.9 4+0.05 2.8+0.2 2.1+£0.1
PVC foam + rubber 0.73 £0.02 20.5+0.2 6.9 +0.05 5.34+0.2 5.0+0.1
ABS 0.90 + 0.02 10.2+£0.2 4.3 4+0.05 4.14+0.2 3.9+0.1

Table 1. Floater properties: density ratio B = p,;/p, width Ly, thickness L,, measured immersion depth 4,
predicted immersion depth without capillary effects SL,. The floater length L, (not shown) is between 20 and
140 mm for each material (i.e. polyurethane (PU), polyvinyl chloride (PVC), acrylonitrile butadiene styrene
(ABS)).

described by ¢ = a(¢) cos(kx + ¢(f)), from which we determine the wavenumber k and
the instantaneous amplitude a(¢) and phase ¢(#). Because of imperfect wave attenuation
at the sloping plate, the wave contains a small steady component, resulting in temporal
oscillations of the amplitude a(f) of the order of 5 %. From this fit, we determine the mean
wave amplitude, simply denoted a in the following. The measured wavenumber matches

the dispersion relation in the gravity regime, w® = gk tanh(kH), with wavelengths A in
the range 10—82 cm. Experiments for wavelengths of the order of the channel width are
discarded because resonant transverse sloshing modes are excited. We work in the weakly
nonlinear wave regime, for wave slopes € = ak between 0.02 and 0.23.

The floaters are homogeneous rectangular parallelepipeds of varying length L,, in
the range 20-140 mm, and fixed width L, and thickness L. They are cut from various
materials of floater-to-water density ratio 8 = p,/p between 0.26 and 0.90, as summarized
in table 1. Without capillary effects, the expected equilibrium immersion depth BL; is
in the range 1.3-5 mm, but because of the hydrophilic nature of the materials, capillary
forces tend to sink the floater slightly more. The immersion depth % for each floater has
been measured from the projection of a narrow laser sheet at a shallow incidence angle
of 10° onto the floater positioned at the surface of the water. The horizontal displacement
of the laser sheet’s intersection with both the water surface and the floater’s surface was
measured with accuracy £0.2 mm. The measured immersion depth 4, given in table 1,
consistently exceeds BL, by approximately 1 mm, in correct agreement with the expected
capillary correction 26? cos@/Ly, with £, = \/y/pg ~ 2.5 mm the capillary length, y the
surface tension and 6 the contact angle.

The equilibrium yaw angle of drifting floaters is determined as follows. For each run,
a floater is gently deposited at the surface of water at a distance xp >~ 0.8 m from the
wavemaker, with an initial yaw angle v of approximately 45° 4= 15° from the x axis
(controlling precisely v is difficult because the phase of the wave is not known at the
time the floater is released). The floaters are imaged by a camera located above the wave
tank. Using a tracking algorithm (library Tracker in Python), we measure the centre of
mass x.(¢) and the yaw angle 1 (¢) of the floater on each frame. For each run, the floater is
left adrift for about 1 m, and only trajectories staying approximately along the centreline
of the channel are retained to discard possible interaction with the side walls.

At first order, the floater motion is a combination of a back-and-forth oscillation of
its centre of mass, of amplitude given by the typical horizontal excursion of the fluid
particle trajectories (Ax = a/ tanh(kH) for waves in finite depth) and angular oscillations.
Superimposed to these fast oscillations are a slow drift of the centre of mass in the direction
of the wave propagation (Stokes drift) and a slow drift of the yaw angle, either towards the
longitudinal (y = 0°) or transverse ( = 90°) orientation. To filter out the fast oscillations
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Figure 2. (a) Yaw angle v, sampled at each wave period, as a function of the time normalized by the wave
period for floaters of various lengths L,. The time origin is chosen such that ¥ (0) = 45°. Wave frequency f =
2.3 Hz, wavelength A = 0.29 m, wave slope ak = 0.16, floater immersion depth 7 = 2.2 mm. (b) Normalized
angular velocity /o measured at y = 45° as a function of L.

and focus on the slow dynamics of i, we synchronize the image acquisition with the
wavemaker oscillation, as illustrated in the chronophotographies of figure 1(c,d).

We first consider a set of floaters with a density ratio 8 = pg/p = 0.44 cut from
expanded PVC foam boards of thickness L, = 4.9 mm, and investigate the influence of
the floater length L,, for a fixed wavelength 4 = 290 mm and wave amplitude a = 7.4 mm
(wave slope € = ka = 0.16). The time evolution of the yaw angle yr, sampled at the wave
period, is shown in figure 2(a). Because of the uncertainty on the initial angle vy, we
shift the time origin so that v is 45° at t = 0 for each run. The curves clearly separate in
two groups, with small floaters (L, < 60 mm) tending to ¥ = 0° (longitudinal) and long
floaters (L, > 80 mm) tending to ¥ = 90° (transverse). We note that while short floaters
precisely align in the longitudinal direction, with ¥ >~ 0 £ 5° at large time, long floaters
show larger variations around ¥ =~ 90 % 30°. We provide in § 4 a possible explanation for
this behaviour.

Figure 2(a) shows that the reorientation dynamics is faster for very short or very long
floaters: they reach their asymptotic orientation after approximately 5 wave periods only,
while the convergence is much slower (at least 20 wave periods) for intermediate lengths.
This convergence rate is illustrated in figure 2(b) for various floater lengths, showing the
angular velocity v measured at # = 0 normalized by the wave frequency w (this ratio
measures the fraction of complete turn performed by the floater during one wave period).
For this particular floater density and thickness, yr/w crosses zero for L, ~ 75 mm, which
defines the critical length L,. separating the longitudinal and transverse orientations.
Because of the slow dynamics at the crossover, the orientation is very sensitive to any
experimental uncertainty for L, close to L., such as the precise choice of the initial angle
Yo, inhomogeneities in the streaming flow or small defects in the wetting line.

We have systematically determined the asymptotic yaw angle for various floater
lengths L,, wavelengths A and amplitudes a. The preferential orientation of the floaters
is first summarized in the plan (L, 4) in figure 3(a). When the asymptotic angle is
¥ =~ 0 £ 10°, floaters are labelled as ‘longitudinal’ (red circles) and when i >~ 90 £ 30°,
they are labelled as ‘transverse’ (blue triangles). Floaters with a indistinct orientation
are marked with black squares. This diagram shows a clear separation between the
longitudinal and transverse orientations, with a transition line well described by a

square-root law, Ly, >~ +/£A, with £ >~ 16 &= 3 mm a fitting parameter.
999 A92-6
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Figure 3. (a) Asymptotic floater orientation as a function of L, and wavelength A, for floaters with density
B = 0.44, width L, = 10 mm and thickness L, = 5 mm. Red circles: longitudinal; blue triangles: transverse.
Black squares indicate indistinct states (erratic oscillations or non-reproducible experiments). The separation
line is L, = +/¢1, with £ ~ 16 £ 3 mm. (b) Same data in the plan (F, €), demonstrating the independence of
the orientation with the wave steepness €. The long dashed line shows the experimental transition at F, >~ 50
and the short dashed line the theoretical prediction at F. = 60.

m

This square-root law nicely conforms to the prediction of the asymptotic theory
presented in the next section, which demonstrates that the preferential orientation is
independent of the wave slope € = ka and governed by the non-dimensional number
F = kLJZC /BL;, with a longitudinal-transverse transition near F. = 60. To check these
predictions, we plot in figure 3(b) the same data in the (F, €) plane. We observe a clear
separation between the longitudinal and transverse orientations, delimited by the line
F ~ 50, in fair agreement with the theory.

To further test the theory, we have determined the floater orientation for the three other
materials listed in table 1, covering a range of densities 8 from 0.26 to 0.90. For each
wavelength A, we determine the critical floater length L,. separating the longitudinal and
transverse orientation, defined as the average between the largest longitudinal and smallest
transverse floaters. Figure 4 summarizes the values of the critical parameter F, = kL2./h at
the transition as a function of the wavelength, using either the predicted immersion depth
without capillary effects BL, (figure 4a) or the measured immersion depth & (figure 4b).
The uncertainty on Ly, is £5 mm, leading to an uncertainty in F,. of up to +20 % for
each floater. Both yield a constant value at the transition, F, >~ 50 4 15 in case (a) and
F. ~ 354 10 in case (b), with a slightly reduced scatter in case (b).

We conclude that the non-dimensional parameter F successfully discriminates between
the longitudinal and transverse orientations, in decent agreement with the theory, although
the transition occurs at a value slightly smaller than the theoretical prediction F, = 60. We
introduce in the following section the simplifying assumptions of our theory, and discuss
in the conclusion to what extent these assumptions could explain the discrepancy between
experiments and theory.

3. Inviscid Froude-Krylov model

The preferential state of orientation of small floaters can be explained using an idealised
Froude—Krylov model that ignores diffraction. We define the equations of motion and
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Critical values of F = kL% /h at the longitudinal-transverse transition as a function of the wavelength

for floaters of various densities (see table 1). (@) Here F is computed from the theoretical equilibrium immersion
depth h = BL,. The solid line shows the average value F ~ 50. (b) Here F is computed from the measured
immersion depth 7 that is also affected by capillarity. The solid line shows the average value F ~ 35. The
dashed line shows the theoretical prediction F,. = 60.

solve th

em numerically to reproduce the main experimental observations on preferential

orientation.

3.1. Simplifying assumptions

In the model, we suppose the following.

(1)

(i)

(iii)

(iv)

(v)

The incoming wave is a low amplitude, inviscid potential gravity wave in deep
water — in the experiments the maximum wave slope is € = ka = 0.23; the
deep-water assumption is not fully satisfied, with tanh(kH) >~ 0.65 for the largest
wavelength.

Viscosity is negligible — the viscous stress on the floater is of the order naw/ds,

where 8; = (v/w)'/? is the thickness of the Stokes boundary layer. This viscous
stress is much smaller than the pressure variations in the wave, p ~ paw?/k, for
vk? /o < 1, which is well satisfied in the experiments: vk?/w < 2 x 1074,
Capillarity is negligible — the capillary length, £, = \/pg/y =~ 2.5 mm, is smaller
than the characteristic floater size and wavelength in our experiments. We ignore
the change in equilibrium immersion depth 4 by the capillary forces.

Steady streaming flows are negligible — the steady streaming flow is a nonlinear,

Eulerian mean flow correction of order O(e2) that comes along with the wave.
This mean flow can affect reorientation, but only if it is inhomogenous at the scale
of the floater. Since steady streaming flows typically vary spatially on the scale
k—1, we expect a weak effect of streaming on the floater orientation for kL < 1.
Wave scattering and emission are negligible — floaters are moving obstacles
that scatter the incoming wave and that also emit waves. We ignore these flow
modifications in our model, an approximation that is known as the Froude—Krylov
approximation. This is only reasonable when the floater is small with respect to
the wavelength and when differential motion is weak, i.e.

|| — v]|
§=kL <1, < 1, (3.1a,b)
u
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Figure 5. (a) Sketch of the floater and notations: laboratory frame (O, x, y, z), moving floater frame (C, X, y, 7)
and Euler angles 6 (pitch), ¢ (rall) and ¢ (yaw). In the simulation we numerically calculate the pressure force
and moment on the submerged surface Sy, using rectangular meshes on each face and a mask function f that
indicates whether the point on the face is submerged or not. (b) Free vertical oscillations of z. at the bobbing
frequency +/1/B4; in a numerical test case without an incoming wave.

with u the fluid velocity and v the floater velocity. The Froude-Krylov
approximation is not without physical consequences. By not considering
diffraction, we filter out all radiative losses and added mass effects. One
consequence is that free ‘bobbing’ oscillations of the floater around its equilibrium
position are not damped in our model. Another consequence of the absence of
dissipation is that, as for an undamped pendulum, the equilibrium states must
be either unstable or marginally stable. Our model therefore predicts oscillations
around the stable fixed points, rather than a convergence towards them as in the
experiments.

3.2. Incoming wave
We define the incoming wave in the laboratory frame of reference (O, x,y, z), with
(ex, ey, e;) the basis vectors (figure 5). By convention, the origin O is on the equilibrium
fluid surface. The wave propagates along x and is y invariant. Up to first order in wave
magnitude, the potential wave solution on infinitely deep water is

u)(cl) = awek sin(kx — wi),
¢V = asin(kx — wi), ut? = —awe cos(kx — wi), (3.2a)
PV = po — pgz + pgaek sin(kx — wr),

with ¢ the surface elevation, u,, u;, p the velocity components and pressure, po the
atmospheric pressure and @ = +/gk. Since we are interested in second-order effects in the
floater motion, we also include second-order corrections in the incoming wave. At second
order in wave magnitude, we have Stokes wave corrections of the surface and pressure but
no extra flow,

2 2
k k
¢@ = —%cos(Z(kx —wr), p? = _%em’ u®=u®=0.  (3.2b)

The pressure is slightly reduced everywhere under the wave and the surface locally
steepens at wave crests and flattens at wave troughs.
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In the following, we non-dimensionalise space, time, velocity and pressure using the
scales

Fl=k"', = (™2 [ul=g"2k V2 [p)=pgk'. (3.3a—d)

In this unit system, the wave slope € = ka < 1 is the only remaining parameter that defines
the wave and (3.2) become

u)(cl) = eefsin(x — 1),

¢ = esin(x — 1), ugl) = —eefcos(x — 1), (3.4a)
p = py — 74 eefsin(x — 1),

2 2
é-(z) —_ _%Cos(z(x — [))’ p(z) = —%ezz, l/t/(rz) = MEZ) - 0 (34b)

3.3. Equations of motion for the floater

The floater is a rectangular parallelepiped with non-dimensional density S,
non-dimensional length, width and height (dy, éy, 8;) = (kLy, kLy, kL;). We describe the
instantaneous position of the centre of mass C of the floater relative to O. The position
vector is decomposed in the inertial, laboratory frame:

re(t) = OC(1) = xc(t)ex + )’c(t)ey + zc(De;. (3.5)

To describe the orientation of the floater, we introduce a second reference frame, the
non-inertial material frame (C, X, y, ), that is co-moving with the floater. By convention,
the unit vectors (ex(?), ey(t), e;(¢)) are aligned with the long, medium and short axes
(figure 5). We introduce the three Euler angles, roll ¢(¢), pitch 6(¢) and yaw v (¢) that
connect the laboratory frame to the moving floater frame. In our angle convention (see
supplementary material available at https://doi.org/10.1017/jfm.2024.718) this transform is

e, cyco  (cysesy — sycy CySoCy + Sy Sy ey
ey | = | syco (Sysasy + cycy Sy S6Cy — CyrSg ey |. (3.6a)
€; —S9 CoSp CoCy e;

RT

Here and further we denote in short ¢y = cos v, sy, = siny and similarly for the other
angles. This transform is easily inverted because R is an orthogonal matrix, R~! = R”.
Components of a vector 4 and the coordinates of the laboratory and floater frame are also
connected by this matrix,

Ay %x X — X X
Ay | =R"|A, |, |y—y|=R"|Y (3.6b)
A; A i—Zc z

Z

In the absence of waves, € =0, the floater is in an equilibrium position, meaning
perfectly levelled and with centre C that is §,/2 above the bottom face submerged at depth

h = B§.. Hence, we have
T, Yoo U arbitrary, 7, = (% _ ,B) 5, 6=¢=0 (3.7a~d)

at equilibrium. Here and further, we will use overbars to label quantities that do not vary
on the short time scale of the wave.
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In the presence of waves, the floater will be displaced and by definition, it moves as a
solid. An arbitrary point » of the floater has velocity

v=10c(1) + 2(0) x (r—re(0), (3.8)

with v.(f) = 7.(¢) the translation velocity of the centre of mass and §2 (¢) the instantaneous
rotation velocity. We decompose v.(¢) in the inertial, laboratory frame. The rotation
vector is decomposed in the non-inertial, floater frame: £2 (r) = QD (r) + f.?y (Dey (1) +
sz (t)e;(t). The components of this rotation vector are kinematically linked to the time
derivatives of the Euler angles (see supplementary material). We have

1 singtant cosgtanf ] rg
X

Xe Ve, x (0 .

. ' | _ 10 cos ¢ —sing ~

)Z/C - ll)}c,y ) 3 —_— Sin (p coSs 90 {gy . (39a,b)
‘ o cosf cos 6 ?

From Newton’s law and the angular momentum theorem, we have
d
moo =F, - (I-2)=K, (3.10a,b)

with m = $6,6,5, the non-dimensional mass of the floater and I the non-dimensional
inertia tensor. The principal moments of inertia of the rectangular parallelepiped are

.o om@E4+8H L m@E+8YH) . m2+82)
L = #’ Ly = (Z—x) I.= X (3.11a—c)
12 12 12
The floater is subject to its weight and to pressure forces and moments. In non-dimensional

form, we have

F = (p—po)dS —me;, K = (r—re) X (p—po)dsS, (3.12a,b)

Ssub Ssub

with dS' orientated towards the floater. In the Froude—Krylov approximation we use the
incoming wave pressure p and surface elevation defined in (3.4). Pressure and surface
corrections due to scattered and emitted waves are entirely ignored. The submerged surface
Ssub corresponds to the part of the floater surface that has z < ¢. We decompose Newton’s
law in the inertial laboratory frame and the angular momentum equation in the non-inertial
floater frame. Using the fact that the material frame rotates along with the floater, i.e. that

e;(t) = (1) x e;j(t), we obtain

mixe ] [F Lucl2: f< + Iy — 1) 2,92,
ml.)y,c = Fy . I Q = —‘I— (IZZ — XX)Q Q)C . (3.13a,b)
Mvz, ¢ F; j [} K, + (Ixx - yy).Q Q y

Equations (3.13a,b) combined with the kinematic relations (3.9a,b) define a first-order
system of 12 differential equations. If we provide an initial state for the floater position
and velocity, we can numerically integrate this system forward in time.

3.4. Numerical simulations

In our numerical code we use the standard Runge—Kutta fourth-order explicit numerical
scheme. The numerical calculation of the surface integrals (3.12a,b) that define the

999 A92-11


https://doi.org/10.1017/jfm.2024.718

https://doi.org/10.1017/jfm.2024.718 Published online by Cambridge University Press

W. Herreman, B. Dhote, L. Danion and F. Moisy

instantaneous F and K is non-trivial because the submerged surface Sy, varies in time. We
use the following procedure to compute these integrals (see sketch of figure 5a). On each
of the six faces of the floater surface, we define two-dimensional rectangular meshes that
contain X, y, z coordinates on those faces, with typically 100 x 100 points. To evaluate the
force components Fy, F), F; at a given time 7, we use a loop that visits all six faces. On each
face, we first calculate the lab-frame (x, y, z) coordinates of the points on that face, using
the coordinate transform (3.6) and the present position x.(t), y. (1), z¢(¢), ¢(2), 6 (1), ¥ (¢).
With these lab-frame coordinates, we can evaluate the pressure (p — pg) on that face
using (3.4), using either a first-order description p = p'" or a second-order description,
p =pV + p@ . To handle the fact that the faces can be totally, partially or not submerged,
we also calculate an indicator function f = (1 4 tanh((¢ (x, t) — z)/)/2, with [ a length
over which the interface is smoothed and ¢ as in (3.4), using again either a first-order
description { = ¢ or a second-order description, ¢ = ¢ 4+ @ This function f,equal
to 1 in the liquid and O in the air, is a smooth numerical approximation of the Heaviside
function. We then take the product (p — po)f that is only non-zero on the submerged
points of that face. Using a two-dimensional quadrature rule and the numerical values of
(p — po)f on the face, we can then compute the surface integral on that face. Each face
gives a local contribution to the force in the direction of the local inward normal dsS, so
after having visited all six faces, we obtain the components Fy, F' Vs F_ in the floater frame.
Using the transform (3.6) we obtain the force components Fy, F, F, in the lab frame. The

moments Ky, Ky, K, are calculated similarly.

We have done several static and dynamical tests in the absence of waves (¢ = 0). In the
static tests we validated the calculation of F and K on floaters that were submerged and
rotated to positions for which we could easily compute the force and moment analytically.
In the dynamical tests we used the code to reproduce free oscillations of the floaters.
When we release the floater slightly off its equilibrium position (3.7a—d), we expect free
‘bobbing’ oscillations in the vertical z. or angular 6, ¢ coordinates, of non-dimensional
frequencies (Falnes & Kurniawan 2020)

! 1 (82 +6B(B — 152 1 (824688 —1)52
Wy = [ Wp = [ , W = | —— .
B3 pé: 8)% + 5Z2 B3, 5y2 + 3%

(3.14a—c)

Figure 5(b) shows an example of the time series for free vertical oscillations in z., for a
floater with 8 = 0.5 released slightly above its equilibrium position z. = 0. As illustrated
in the figure, the oscillatory motion z. = A cos(w,t) is accurately reproduced by our code.

The free oscillations in z., 8, ¢ are useful to test the code but do not reflect the
behaviour of the floaters in our experiment. Restricting to floaters much smaller than
the wavelength, § <« 1, implies that the bobbing frequencies (3.14a—c) are much larger
than the incoming wave frequency (w = 1 in non-dimensional units). Accordingly, such
fast bobbing oscillations are never resonant and are expected to be rapidly damped in the
experiments, either by viscous friction or radiation loss. Since no damping is included in
our model, we need to minimize these parasitic bobbing excitations. We use for this the
following strategy: at time ¢ = 0, we place the floater at its equilibrium position (3.7a—d)
and gradually ramp up the wave amplitude in time, by replacing € by €(1 — exp(—¢/T)) in
the definition of pressure and surface height (3.4). Practice shows that with 7 = 15 x 2,
we can keep the fast bobbing oscillations of the floater motion at low amplitude while
capturing the slow dynamics induced by the wave motion.
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Figure 6. Time series for yaw angle for numerically simulated floaters with 8 = 0.44, L, = 10 mm, L, =
5 mm and L, varying from 30 to 120 mm. The incoming wave has wavelength 4 = 0.29 m and € = ka = 0.16,
as in the experiments of figure 2. The transition from a longitudinal to a transverse preferential orientation
occurs near Ly, ~ 75 mm, in good agreement with the experiments.

We now consider numerical solutions for the floater motion in the presence of an
incoming wave. We focus on the yaw angle motion. In a first series of simulations, we
use the first-order pressure field and surface elevation: p = pl) and ¢ = ¢V In figure 6
we show the time series of the yaw angle v/ (¢) for the same experimental conditions used
in figure 2: floater size Ly = 10 mm, L; = 5 mm and L, varying from 30 to 120 mm,
density ratio B = 0.44, wavelength 4 = 0.29 m, wave steepness € = ka = 0.16 and initial
yaw angle g = 45°. After a transient of typically 15 wave periods given by the ramp
in the wave amplitude, the yaw angle ¢ shows fast oscillations (of period 2mw) that
correspond to the back-and-forth motion of the floaters, superimposed to slow oscillations
around either the longitudinal position ¢ = 0° for short floaters or the transverse position
¥ = 90° for long floaters. The fast oscillations were not visible in figure 2(a) where the
yaw angle measurement was synchronized at the wave frequency. The slow oscillations
reflect the marginal stability of the fixed points in this dissipationless model. Apart from
these differences, the numerical curves show a transition from longitudinal to transverse
preferential orientation, somewhere in between L, = 70 mm and 80 mm, in excellent
agreement with the experimental transition estimated at L,. = 75 mm for this set of
floaters.

We have done similar simulations with first-order pressure p = p and surface
elevation ¢ = ¢V for more than 500 floaters, with parameters varied in broad ranges 8 €
[0.03,0.97], 8, € [0.004, 5.43], 6, € [0.01, 0.36], §, € [0.007,0.29], € € [0.01, 0.24]. We
summarize the preferential floater orientation in figure 7 using the same representation
(F, €) as in the experiments (figure 3). The transition from longitudinal to transverse
orientation is located at F. = 60 with no dependence in €. Near the transition F,., we
observe some outlying data points. This is not entirely unexpected as a narrow interval
of bistability exists near the transition, as we show below. At high €, higher-order effects,
neglected in the theory, may also become important.

The slow rotation towards a preferential state of orientation is a second-order effect.
Hence, it is legitimate to ask whether we still get the same results when the second-order
correction of the Stokes wave is included, when p = p™" +p® and ¢ = ¢ +¢®@ in
the simulations. In figure 8 we compare the time series of i/ (f) with the first-order
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Figure 7. Preferential state of orientation in the (F, €) plane according to the numerical simulations. More than
500 numerical simulations have been performed for varying 8, 8y, 8y, &, €, showing an excellent agreement
with the theoretical prediction F. = 60.

(Cl) 1 1 (b) 1 2 1 2
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Figure 8. Time series for the yaw angle ¥ () of numerically simulated floaters with varying length L, (see
figure 6 for details of the floaters and the wave), with (a) first-order pressure p(l) and surface elevation ¢ M and
(b) second-order corrections ¢ and p® also included. Preferential orientation is not much influenced by the
second-order part of the Stokes wave.

approximation (a) and the second-order approximation (b) for the same parameters as
in figure 6. Both figures are nearly the same, a weak difference is only observable near
the transition. This indicates that second-order corrections p® and ¢® do not have a
dominant impact on preferential orientation and may in fact be ignored. This will also be
theoretically justified in the next section.

4. Asymptotic description of floater motion

In this section we use asymptotic theory to describe the motion of the floater in the limit
of a small wave slope € < 1 and for small floaters § < 1. In this theory we admit that
d; < 8y and 8, < Jy and we keep the aspect ratio 8, /8, arbitrary.
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4.1. Small € expansion and equations of motions

We expand the motion as a perturbative series in powers of € and denote

Xe = X(0) +X.() + 0(€?),  [o=0+¢ () + O(?),
Ye = Ve 0 =0+06'(1) + O(e?), (4.1a,b)
Ze = Ze + 2,(1) + O(€?), ¥ =9 () + 910 + 0.

At leading order O(1), we recognise the equilibrium positions (barred variables). We
admit that horizontal positions x.(t) and mean yaw angle ¥ (t) can vary slowly, on long
time scales t. The mean position y. cannot change in our Froude—Krylov model and
is of no further concern. At order O(¢), we perturb the mean position with first-order
deviations (primes) in position x.(7), z..(f) and angle ¥/'(¢), 6'(¢), ¢(r). These variables
carry the harmonic response of the floater to the incoming wave. The main objective is
to compute the second-order mean yaw moment that leads to the evolution equation (1.1)
for the slow motion of the yaw angle v/ (). We do not describe the second-order slow drift
of x.(7).

The roll and pitch angles ¢, 6 are small and this allows us to linearise all the
dependencies on these angles: sy ~ 0’ + 0(€3),co ~ 1 + 0(e?), Sp ~ ¢+ 0(ed), Cy R
1 + O(€?). The transform formula (3.6) reduces to

ex cy  —sy (cyb +sy0) ]| [ &
ey|=1sy cy (590 —cye)| ]2 | +0D, (4.2)
e; -0 ¢ 1 e

RT

and the inverse transform is defined with the transposed matrix R up to O(e?).

We write a preliminary version of the evolution equations to identify the force and
torque components that need to be calculated. The linearised evolution equations for the
first-order deviations x_., z.., ¢’, 6" are

X

L6 =K. (4.3a—d)

s y .y / T /
mx, =F, mi,=F, Ly =K y

Here, the forces F, F ; and moments IN(; i(; contain the O(¢), oscillatory part of the total

force and moment. In the evolution equation for the yaw angle v we keep O(€) and O(€?)
terms, since we describe both the rapld motion of v’ and the slow motion of . From
(3.9a,b) and (3.13a,b) and using Q. ~ ¢, [2 ~ 0 we get

Q=0 — ¢ 0+ 0, 1.2 =K + T —1,)¢'6' (4.4a.b)
up to order O(e?). Elimination of 2, gives
-~ d ,~ . ..
L =Kot 3 (L' 0') + Q= 1,90 (4.5)

We now remark the following simplification. From the transform (4.2) and using K, =
K[+ O(e?), K, = K}, + O(e?) and the evolution equations (4.3a—d), we get
K.~ —0'K,+ ¢'K, + K. + O(¢?)
~ =0T + ¢'Lyd’ + K, + O(e?). (4.6)
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We reorganise this equation to isolate the component K, and substitute this into (4.5):

7 7 d“o// 7 AT W T A 3
L,y =K, + E L¢'0 _Iyy(p9 + 10" 07 ) +0(€”). 4.7)

second-order harmonics~e®i2!

On the right-hand side we find K7, the vertical moment component in the laboratory frame,
next to aterm d/dz(. . .) that is a time derivative of 0(e?) products. This second-order term
has a vanishing time average, so it cannot affect 1/_f Hence, we can derive the equations
for both yaw angle variables ¥ and ¥’ from the simpler balance I,/ K. Separating the

yaw moment in a rapidly varying O(e) part K/ and a mean yaw moment K, of order 0(e?),
we obtain

I =K., IL.y=K. (4.8a.b)

il

as preliminary evolution equations for the yaw motion.

4.2. Theoretical calculation of force and moment components

To calculate the required force and moment components, we use an alternative formulation
of (3.12a,b) in terms of the flow field # and with volume integrals. We replace dS =
—dSey in (3.12a,b), so that the surface element of the submerged volume points towards
the fluid. Then using the divergence theorem on the interior of Sy, and Euler’s equation,
oiu+ (u-V)u+e, =—Vp, we get

F = / (Oru+ (u - V)u)dv + (/ dv — m) e, (4.9a)
Vsub Vsub

N

K= (r—r.) x (Qu—~+ (u-VyudvV + (r—re) x e dV (4.9b)

Vsub Vsub

in the Froude—Krylov approximation, with Vy,;, the submerged volume. We now inject the
flow velocity u = u!) 4+ O(€?) as defined by (3.4) and introduce two approximations of
the submerged volume:
VS(SI)): equilibrium submerged volume
V(0+1).

b - following the floater through its first-order motion, with surface at z = ¢,

We can integrate over both these volumes and also introduce the notation

L (adv = /V(OH)(...)dV— v<°>(' L) dv. (4.10)

sub sub sub

This isolates the part in the integrals that is entirely due to the wave or floater motion. At
leading order O(1), without flow, we have the Archimedes balance

/V«)) dV—-m =0, /(0) (r—re.) xe,dV=0. (4.11a,b)

sub sub
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These equations can be used to find the equilibrium state (3.7a—d). For the first-order
forces and moments, we have

F = / du'l av + / dVe,, (4.12a)
Vi Viab
K = (r—re) x ouV + (r—r.) x e;dV. (4.12b)
v v
sub sub

For the mean yaw moment, we need a second-order approximation. Using an overbar to
indicate the time average over the short time scale ¢, we have

K.=— (y=y) oV vV — [ (y=y) @V - V)V dv+ 0. 4.13)
V(0+1) V(O)

sub sub

=0

The advective term vanishes on average because @ . V)u)(cl) ~ sin2(x — t). We remark
that no second-order wave characteristics appear in this mean yaw moment formula. This
explains why second-order wave characteristics are not so important in the problem of
preferential orientation, as we have seen in figure 8.

The integrals in (4.12) and (4.13) cannot be exactly calculated, but we can obtain
asymptotic approximations in the small floater limit § < 1. The general idea is to use
the Taylor series to replace the flow field and surface elevation in the vicinity of the small
floater with polynomial approximations that are more easily integrated. We only present
the main methods, details are in the supplementary material.

We parametrise the submerged volume in floater frame coordinates:

Vo © X €[—8:/2.8,/2], 5 €[=8,/2.8,/2], Z€[—8./2.LG 5. D] (4.14a—c)

Here f(fc, y, 1) represents the height of the water surface in the 7 direction, as seen from
C. We implicitly suppose that the top face of the floater is never partially submerged (£ <

8./2) and that the bottom face is always totally submerged (Z > —8,/2). This is a sensible
approximation for low € and intermediate values of 8. To find a polynomial approximation

of g: , we write a Taylor expansion of ¢ (x, f) around x,:

(x —x¢) (x — xc)3 53

2
£0,0) = G+ (¥ =X + —— 9%c. + e Oale o (4.15)

The index . is used to express that the field is evaluated at the centre of the floater
C,eg {e=1{(xc, 1) =esin(xe — 1), 0xlc = 0x{|x=x, = € cOS(x, — 1), etc. We inject this
expansion in the equation z = ¢ (x, #) that defines the free surface and we replace both
2R ze + (—0'X + ¢’y +2) and x — x. X cyX — 5y + O(€), the leading-order parts of the
coordinate transform formula (4.2). Reorganising this into z = E(Fc, v, t) gives

E@E 5,0 = —Ze — 7+ o+ 0+ cydl)T + (—¢ — 5y :L0)F
~ ~\2 ~ -\ 3
+ % (cwx - swy) Bixgc + é (cwx - swy) 3)?xx§c + 0(62, 684). (4.16)

The free surface is indeed —z. above C at equilibrium. The wave causes O(¢) corrections
that here are separated in a local uniform elevation, linear inclination and quadratic and
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cubic corrections. The integral over the equilibrium submerged volume is defined as

8:/2  8y/2
(..)dvV= / / / (I = gy dxdydz. (4.17)
) 502 =82 J 5.2 G Ze, V)

sub

The notation |()—szc’¢) suggests that we need to replace x, = ¢, z2c = Z¢, ¥ = ¥ in the
integrand because we need to evaluate it at the equilibrium position. The integral over the
perturbed submerged volume VS(S;r D is more complex: we need to integrate up until the
surface deformed by the wave and we also need to evaluate the integrand at the first-order
perturbed floater position x. = X, + x.., z. = Z- + 2%, ¥ = ¥ + ¥'. We have

/V<o+1> (..)dv

sub
82 p8y/2 pLEID
R | P SR« R \ '

/SX/Z/S}/Z./(S/Q (XL+XL"Z‘+Z(:’¢+1//)

/5,(/2 fsy/z /C< 9 5
1+x-—+z—+¢—> Nz, dXdydz
8¢/2J=8y/2 5.2 “ox. ¢ Y EerZe: V)

equilibrium and deviation due to motion x,,z.., %’

82 8, /2 ,
/ / EG 5,0 +zc) gz gy dEdT +OED). (4.18)
5:/2 J—8,/2

deviation due to locally varying submersion

This formula is correct up to order O(¢) and requires some explanations. First of all, we
have split the z integral into two parts, one over the equilibrium submersion interval Z €
—6;/2, —Z¢] and one over the O(¢) deviation 7 € [—Z, E]. In the first part, we use a
Taylor expansion (1 + x.dy, + ...) to re-express everything at the equilibrium position
Xe = X¢» Ze = Ze» ¥ = . In the second part, we can simplify the integration over Z as the
integration interval has a size g: + 7 that is of order O(¢).
Our choice to parametrise the integrals in floater frame coordinates requires that we also
express the integrands in floater frame coordinates. We have r — r. = xe, + ye, + Ze; and
the coordinate transform (4.2). We use Taylor expansions around the floater centre r. and

replace all fields with polynomial approximations. Denoting in short @ = d;u‘" the local
fluid accceleration, we have

a=ac+ (x—x:)0a; + (2 — z.)0;a.
+ A = x)?0hac + 3(z — 2000240 + (x — x) (2 — 20)d%ac + O(e8).  (4.19)

We substitute the transform x — x. = cyX — sy y + (cy 0’ + sy ¢ )Z and z — z. = —0'X +
¢’y + Z, keeping the order O(¢) terms that are proportional to 6’ and ¢’. This produces a
lengthy expression detailed in the supplementary material that can be summarized as

a=a" +a? + 0. (4.20)

Next to the leading O(e) term aV there is a O(e?) deviation a® that is not related to
u® = 0, but rather due to the fact that angular oscillations 6, ¢’ cause the floater to feel
spatial variations of the flow speed.
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Having explained the main mathematical methods, we can now write explicit formula
for the first-order force and torque components

F. = / allav, (4.21a)
Vi
- (N
F.= /V 0@ AV /V W 4V, (4.21b)
sub sub

K = / (?agl) + syzall — Z(/J/) dv + / ydv, (4.21¢)

Vi Vi
K, = / o (—xagb +cyzal) — ze’) dv + / DAV, (4.21d)

Vsuh Vsub

~ ~\ (1

K =— /V o (syE+eyd)al av. (4.21¢)

sub

For the second-order, mean yaw moment, we have

= (1) = =\ 2
K, = —/(0) (Sw0/ _ CW/’/) zay ' dV — /V(O) (swx—i— cwy) ay” dv

sub sub

- /V o, (syE +eyy) ai’dv. (4.22)

sub

The calculation of these integrals is long but straightforward and in the supplementary
material we provide some details. One practical question that appears is: to which order
in non-dimensional floater size § do we need to push the Taylor series? Considering the
equations of motion (4.3a—d) and (4.8a,b), and the fact that m = 0(8%) and I = O(8°), we
have calculated

Fy, F. up to order 0(e8Y),
K. K|, K. up to order O(e5°), (4.23)
K. up to order 0(€%89).

This is necessary to access to the leading, O(¢) description of x., 7., ¢', 8, %', O(€?)
description of v/, but also to floater shape-related corrections of respective orders O(e8)
and O(€28). In the limit § < 1, these shape corrections seem much smaller but this is
without considering that these O(e§) and O0(€28) terms are actually taking the form of
0(653 /B3d;) and 0(625)% /B3d;) terms. For strongly elongated floaters, we can have

52
F=-—">1 (4.24)
B3

and in that case, the shape-related corrections become larger than the so-called
leading-order terms. This is precisely what happens when the floaters change their
preferential orientation. In practice, we really need to push the calculation to the orders
(4.23), but we find that this results in a very long formula. This motivated us to add one
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extra assumption. In the experiment, all the floaters are always thinner in the z direction
and this means that

8x, 8y > §; (4.25)
is a fair assumption. By exploiting this information in the calculation of the forces and
moments we can ignore (i) all O(§;) terms with respect to O(1) terms, (ii) all 0(53)

terms with respect to 0(8%, 83) terms. This greatly simplifies the resulting formula for
the forces and moments and produces a physically relevant result. We can in fact even
further simplify the model by taking into account that our floaters are also very elongated
dx > dy in our experiments, but this will be done at the end.

4.3. Results
We now present the result of the asymptotic calculation. With the first-order force
and moments F, F, I?;, IN(;, K calculated, we write the differential equations for the
first-order motion x., z.., ¢’, 8’, ¥’ and solve them. This yields the harmonic response

Xl & € cos(Xe — 1), (4.26a)

e (1 - L (5%,,5)% + 3%,,55)) sin(E, — 1), (4.26b)

¢~ —esy (1 ( W40 + 1p24)> cos(X, — 1), (4.26¢)
52

o'~ —ety (1 (55 0% 24)) cos(¥, — 1), (4.26d)
52 — 82

U~ e (52 - 52> Sy sin(Ee — 1). (4.26¢)

At leading O(€) order, we find in x. and z,. that the floater oscillates around its mean
position, just as a material particle on the wave surface would do. Although this is less
trivial to see, the leading O(¢) expressions for the angles ¢’, 8 are such that the floater
rotates so to align with the local wave slope (imagine the rotation of a surfboard on a long
wavelength wave that passes). The yaw angle ¥ oscillates more for elongated floaters
with 8, > §, and for v close to 45°. Next to the leading O(¢) terms, we also have some
smaller, shape-related corrections of order 0(65)%, 68y2) in the z.., ¢, 6’ variables. These

corrections may seem utterly small but in particular the O(e82) correction in . is essential
in the theory. Physically, these corrections are due to the fact that the water surface is
not perfectly flat at the scale of the floater. It is this waterline curvature that induces
a modification in the buoyancy force that ultimately causes long floaters to prefer the
transverse equilibrium. _

The calculation of the mean yaw moment K, is challenging but leads to the following
nonlinear equation of motion for y:

5 5.4
A+b)2 60 1+b YU a+pH2 " 60 145!

" 2- < |22
Y = €"Cyly Cy
4.27)
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Figure 9. (a) Effective potential (4.27) for a floater of aspect ratio 8,/8, = 0.2. For F = 40, the longitudinal
orientation ¥ = 0° is unconditionally stable and, for F =70, the transverse orientation ¥ = 90° is
unconditionally stable. The magnification in (b) highlights the unstable points ¥* (marked with a symbol
o) separating the two bistable solutions for intermediate values of F.

Here b = (3, /8:)% and F = 5)% /Bd;. We can rewrite this equation in conservative form,
¥ = —3V/dy, by introducing the effective potential

5 5,4

vy < Le |a [L 120 +F1_Zb L 1 +bF1_Zb
= —€ —_ _— ) _—_— _——
A YT 0502 60 140 Y1 a+bs1H2 7 60 145!

(4.28)

We verify that this potential is invariant under an exchange of §, and §, (i.e. b — b~ and
a rotation of the angle ¥ — ¥ + /2.

We first examine the stable equ111br1a for arbitrary aspect ratio 0 < b < 1. Since V)
is a linear combination of cos* ¥ and sin* ¥, it clearly admits ¥ = 0° and ¥ = 90° as
extrema, and we can see that, for FF — 0, the first one is a minimum and the second
one a maximum, and vice versa for F — oo. This confirms that short floaters (small F)
tend to align longitudinally and long floaters (large F) transversely, in agreement with the
experiments and the numerical simulations.

In the experiments and in the numerical simulations, the aspect ratio §,/d lies in the
range 0.08-0.3. We consider the representative intermediate value 8,/8, = 0.2 to illustrate
in figure 9(a) the potential for various values of F. The change of stability between
¥ = 0° and ¢ = 90° is clearly visible as F is increased, but their basins of attraction
are not identical: the curvature of the potential well is much more pronounced around
¥ = 0° than around ¥ = 90°, leading to “faster’ slow oscillations around the longltudlnal
than around the transverse equilibrium. In the experimental angle trackings shown in
figure 2(a), because of the dissipation (not accounted for in our inviscid diffractionless
model), these slow oscillations are rapidly damped and the floaters converge towards their
stable equilibrium. However, the rapid convergence towards vy = 0° for short floaters,
and the much slower dynamics with large erratic excursions around ¥ = 90° for longer
floaters, may be consequences of these different dynamics.
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Figure 10. Diagram of the equilibrium position for a floater of aspect ratio &y /8, = b'/2 and parameter F. The
red and blue areas denote the unconditionally stable equilibria ¢ = 0° (longitudinal) and ¥ = 90° (transverse).
The dashed lines in the intermediate bistable area show the unstable solution 1/* (values indicated in the boxes)
given by (4.29), separating the longitudinal and transverse basins of attraction. The horizontal arrow indicates
the range of aspect ratio considered in the experiments.

For an intermediate range of F, the potential admits a local maximum at y*,

5
1-b  F I=20b
(14+b)2 60 1+0b
5.7
1—p! +bF1_Zb
1+5s=1H2 60 145!
as illustrated in the magnification in figure 9(b). This local maximum separates the two
basins of attraction, indicating a bistability in the system: for an initial condition ¢ < ¥*,
the yaw angle is attracted to the longitudinal equilibrium v = 0°, whereas for ¥y > *,

it is attracted to the transverse equilibrium ¥ = 90°. The boundaries of this bistable range
are obtained by taking v* = 0° and ¥* = 90° in (4.29), yielding

1—b 1-b
Foy=600———%——. Fo=60——"7%— (forb<4/5.  (430)

¢ er)(é—1 —b) 1+b)(1A - Zb)

tan’ Y+ = (4.29)

In other words, the longitudinal equilibrium is unconditionally stable for F' < F.q, the
transverse equilibrium is unconditionally stable for F' > F, and both equilibria coexist in
the intermediate case F.1 < F < F2, depending on how the initial angle 1/}0 compares to
the separatrix y*. This is summarized in the regime diagram in figure 10, showing the
regions of unconditionally stable equilibria in red and blue, and the intermediate bistable
region in grey. The set of dotted lines show the separatrix between the longitudinal and
the transverse equilibrium for a given initial condition ¥,. We note that F, — oo and
F¢.1 — 0 in the limit » — 1: the bistable domain extends over all values of F for nearly
square floaters. This means that preferential orientation of a nearly square floater is entirely
governed by its initial angle vy and not by F.

Considering again the typical experimental value dy/6x = 0.2, the model predicts
bistability for F € [45.8, 58.3], with a separation between the two stable equilibria for
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Figure 11. Time evolution of the yaw angle v (¢) for F =56, §,/8, = 0.2 and € = 0.15, illustrating the

bistability of the longitudinal and transverse equilibria close to the transition. The separatrix here is U* = 64°
and floaters released with an initial yaw angle v < y* oscillate around the longitudinal equilibrium, while
those with 9 > ¥* oscillate around the transverse equilibrium.

an initial angle vy = 45° at F ~ 57.7. Although this is in overall qualitative agreement
with the experiments, in particular regarding the data labelled as ‘indistinct’ close to the
transition in the regime diagram in figure 3, the experimental uncertainties (£15° for v
and 20 % for F) make a systematic exploration of the bistable regime difficult. On the
other hand, the bistability can be tested numerically. Figure 11 shows the time evolutions
of ¥ (¢) for floaters with F = 56 released at various initial angles ¥ ranging from 0
to 90°. The curves clearly separate in two groups, with ¥ (#) oscillating around 0° for
Yo < 60° and around 90° otherwise, in excellent agreement with the predicted separatrix
at Y = 64°.

The limit of very thin floaters, §,/8, — 0, provides an interesting simplification of the
problem. In this limit, the boundaries (4.30) of the bistable domain are F,; — 48 and
F — 60. Although the bistability persists in principle in this limit, figure 10 shows that
the basin of attraction of the longitudinal orientation extends over all initial angles 0 <
Yo < 90°. As a consequence, the preferential orientation of a floater with very small b <
1 is entirely governed by F', with no influence of the initial angle v, except for the singular
initial condition ¢ = 90°. This clearly appears by letting b — 0 in (4.28), yielding the
simplified potential

V) = %ez (—1 + %) cos* ¥, (4.31)

and hence, the simplified equation of motion (1.1) mentioned in the introduction. In
the thin floater limit the longitudinal-transverse transition occurs at F, = 60 without
bistability.

5. Simplified model for very elongated floaters

The asymptotic approach of the previous section is technical and hides much of the
physics of the reorientation dynamics. In this section we introduce a simplified model
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for strongly elongated floaters that leads to the same evolution equation (1.1) and is more
easily interpreted.

5.1. A simpler formula for the yaw moment

We recall that both the rapid and slow motion of yaw angle ¢ are controlled by

K, =— (y —yo)acdV, (5.1

Vub

with a, = —ee® cos(x — t) the horizontal acceleration of the flow. We have seen at the end
of the previous section that the limit of strongly elongated floaters 6, >> §, > §, is adapted
to capture the preferential orientation phenomenon, so let us exploit this information
directly. If the floater is indeed thin (along z) and not wide (along y), we can ignore the y
and 7 variations in this moment integral and simplify it to

+8,/2 AN
K, ~ _/ (¥ — Ye)axdy ({ + 3) dx. (5.2)
—8¢/2
——
h(E,0)

For this formula to make sense, we must express (y — yc)ay in terms of floater frame
coordinates and ignore the ¥ and z variations. We also need to find the local submersion
depth A(%, 1) = ¢ + (8,/2) along the long ¥ axis of the floater. From (4.2) and ignoring all
dependencies along y and z, we find that

XRXeteyX, YRY+syX, zRze—0'% (5.3a—c)

along the long axis of the floater. The lever arm is then y — y. ~ sy, X. The dependence
of the field a, on X can be found by injecting this coordinate transform in the theoretical
expression. Then, making use of a Taylor expansion we get

—0'%

ay ~ —ee¥

~ —€ (1 4z — 0'%) (cos(xe — 1) — cyXsin(xe — 1)) + ... (5.4)

cos(xe + cyX — 1)

up to O(e?). To find the local submersion depth A(%, 1), we ignore the § dependencies in
the general definition of ¢ in (4.16). We also use the fact that —z. + (8,/2) = 88, = h is
the equilibrium submersion depth. In this way, we find that the local submersion depth
h(x, t) along the floater long axis is

h(%, 1) & h+ (=2, + € sin(x. — 1)) + (0" + €cy cos(x. — NF — gcfﬁc? sin(xe — 7).
(5.5)

The wave surface at the scale of the floater is here approximated by a second-order
polynomial and this is sufficient in this simplified model. In this expression, we need to
insert the first-order motion z,. and 6’. We already know the first-order motion from the
asymptotic theory, but let us show how we can alternatively find this motion using some
simpler physical arguments. In the pressure force and moment, the buoyancy terms are the
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largest ones, much larger than the dynamical pressure terms. Hence, the floater is moving
in such a way that it keeps its submerged volume nearly constant in time. This requires

+6x/2 - 1 +38,/2 - _
/ dv =~ Sy/ hx, ydx~m = — / h(x, 1) dx =~ h. (5.6)
Vi —5¢/2 8 J-s./2
Evaluating the integral using the expression (5.5), we get the result
52
z. A esin(xe — 1) (1 - ﬁc@) : (5.7)

This indeed corresponds to the expression of z.. that we have obtained from a more formal
treatment of the equations of motion, in the limit 8, >> §, (see (4.26b)). Interestingly, we
also recover the shape-related 0(683) correction that is quite crucial in the model. To
explain the angular motion 6’, we can use a similar argument. Due to buoyancy, the floater
will rotate so as to keep the Archimedes torque zero

+6x/2
r—r.) xedVx~0 = / h(x, 1) dx ~ 0 = 0’ ~ —ecy cos(x. — 1). (5.8)

Visub —3x/2

This approximation is sufficient, the extra 0(65)%) correction in 8’ of (4.26d) is not so
important. Replacing these expressions of z. and 6’ into (5.5), we find the following
approximation for the local shape of the waterline at the floater position:

B _ 32 ~2
R 1) ~ b+ ec?, (ﬁ - %) sinxe — 1). (5.9)

The waterline as seen from the floater centre always takes the shape of a parabola,
symmetrical around X = 0. Combining the elements together, we find a formula for the
yaw moment K:

+6x/2
K, ~— / Xsy (—E (1 + 7. — 09/56) (cos(xc — 1) — cyXsin(xe — t)))
—8¢/2 ——

local lever arm local force density fy
-, (8 X
X <h + €cy, <ﬁ — E) sin(x, — t)> 8y dx. (5.10)

local submersion &

This integral contains all the physics that explains the preferential orientation. The moment
K is the result of the local force density f, that varies along the floater’s long axis applied
on the local level arm. This force density is weighted by the local submersion depth h and
this effect is thus more important as the floater is longer.

5.2. Evolution equation for

We now evaluate the yaw moment (5.10) up to O(€?) and write the evolution equation
;¥ = K;. Using I, = m8§ /12 for our elongated floater, we find that

252
)

3085,

U~ —e(1 4 z0)sycy sin(xe — 1) — €8sy cos(x, — 1) + s¢c‘3p sin?(x, — 1). (5.11)
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We now inject in this equation the decomposition x. = X, + x.. and z. = Z. + z,.. In the
first, O(¢) term of (5.11), we use a Taylor expansion

—e(1+Zzc + 2)sycy sin(xe + x, — 1)

= —e(1 +Zo)sycy sin(xe — 1) — €zlsycy sin(Ee — 1) — ex.sycy cos(Xe — 1) + O(e).
(5.12)

As the floater is small and thin, we can approximate z. & 0. The second and third terms of
(5.11) are already of order O(€?), so there we can use sinz(xc —hH~ sinz()_cc — 1)+ O(¢)
and cos(x. — 1) &~ cos(x, — t) + O(¢). We then substitute the first-order deviations

X~ ecos(xe — 1), z.~esin(xc—1), 0 =—ecy cos(x.—10). (5.13a—c)

The expression of x/. can be found by integrating x. = u,|.—o, which just means that, at
lowest order, the floater translates as a fluid material particle on the surface. The correction
of order 0(663) in z,. (see (5.7)) is not needed here. After these reductions, we obtain

2

i} 8
U & —esycy sin(Ee — 1) + esycy (—1 - 30252@) sin? (¥, — 1) (5.14)

as the evolution equation for yr. We now inject the decomposition ¢ = ¥ + ' and use a
Taylor expansion to replace

sycy =5yty + ¥/ (@, —53) + 0(), (5.15)

yielding

U+~ —€iyly sin(E — 1)
32
— (@, — 5)¥ sin(X — 1) + €75y &y (—1 + 30252 5%#) sin? (X, — 1).
(5.16)

At order O(¢), we identify the equation for the fast yaw angle excursion ¥’ =
—€Sy Cy sin(x. — 1), which has the solution

V' A €5y Cy sin(x, — 1). (5.17)
This expression is identical to that of the asymptotic model (4.26¢) in the limit §, > J,.

Injecting this expression of ¥ back into the equation and taking the average over the short
time-scale, we find the second order evolution equation for :

- . 82
{1/ —ezslpci 1- 6023 . (5.18)
z
F/F,

The simplified model reproduces exactly the more formal asymptotic theory.
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Figure 12. Position, orientation and force distribution on the floater in wave crests and troughs. Here 6, =
0.5,6,=0.01,=0.2,e =0.2and x, =0, 1/_f = 45°. (a,d) Side views on vertical x—z plane. The circle shows
the trajectory of the centre of mass. The inset figures suggest the instantaneous, parabolic shape of the waterline
near the floater. (b,c,e,f) Top views on x—y plane. The arrows show the instantaneous force distribution along
the floater that creates the instantaneous moment K. In (b,e), without considering the variable submersion

depth, using . In (¢, f), taking into account the variable submersion /.

5.3. Physical origin of preferential orientation

The simplified model allows a better understanding of the physics that causes
reorientation. Let us reconsider the moment K; in (5.10), expressed as the product of
the local force density f, by the local level arm weighted by the local submersion
depth h. Both quantities being rapidly oscillating in time, a non-zero product arises
from a phase correlation between them, that we illustrate in figure 12. Here, we show
the floater at two wave phases, t = /2 and t = 3w /2 (wave crest and trough), and
represent the force density f; as vector arrows; animations are available as supplementary
materials. The parameters are 8§ = 0.2, §, = 0.5, §; = 0.01 and € = 0.2, corresponding
to a non-dimensional number F = 5)% /B3, = 125, larger than the critical value F. = 60:
this floater will prefer the transverse position at late times. To illustrate the effect of the
variation in submersion, we show in the second column (figure 12b,¢) the force distribution
weighted by the equilibrium, spatially uniform submersion depth 4, whereas in the third
column (figure 12¢, f) it is weighted by the true, varying depth h.

We first consider the case where the depth variation is ignored (figure 12b,e), an
approximation acceptable for small floaters only. At the wave crest the yaw angle is slightly
larger than the mean value v/, whereas at the trough it is slightly smaller than v/. The lever
arm, X sin ¥, is therefore larger at the crest. We also see that the local force density f; is
slightly larger at the crest than at the trough. Both effects impact the instantaneous moment
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in the same way. At the crest, the floater will experience a negative (clockwise) moment
K, < 0 that is slightly larger than the positive (counterclockwise) moment K, > 0 in the
troughs, explaining why the part —% sin ¥f;/ in the integrand of K is slowly pushing the
floater towards the longitudinal position.

Figures 12(c,f) illustrates why including the varying submersion in the weighting of
the force distribution changes this conclusion in the case of long floaters. We immediately
see that there is a clear influence of the variable submersion at the tips of the floater:

the weighted force density fih is significantly changing in magnitude. As shown in
figure 12(a,d), at the wave crest, the extremities of the floater are less submerged, whereas
in the troughs they are more submerged. This locally changing submersion implies that the
instantaneous moment is significantly decreased at the tips of the floater when they are at
crest and increased at the tips when the floater is in a trough. The result for this floater with
F =125 > F, is that the positive (counterclockwise) moment K, > 0 acting on the floater
at the troughs is significantly larger than the negative moment at the crests, resulting in a
slow rotation towards the transverse position.

In the introduction we mentioned that the yaw angle motion of small floaters with F' <
F . is analogous to that of the Kapitza pendulum, a pendulum with an oscillating anchor
point (Kapitza 1951; Landau & Lifschitz 1960; Butikov 2001). For such small floaters, we
have seen that the variation of the immersion depth can be ignored and in that case (5.14)
reduces to

F &K F, : Y & —esycy sin(e — 1) — €2sycy sin® (X — 1). (5.19)

Using the fact that sy cy, = (1/2) sin2v and changing notation 2 = «, we can rewrite
this as

2
o+ —% +esin(x, —t) + 0(62) sina ~ 0. (5.20)
“;_j" g(1)

This is identical to the equation of motion for the angle « of a Kapitza pendulum, written
in the frame of reference attached to the anchor point. The Kapitza pendulum, analogue to
our floater, would be exposed to a weak O(e?) downward external gravity g and a larger
O(e) oscillatory acceleration g’ (¢) that is due to the motion of the anchor point. Using the
same multiple time-scale techniques as previously, we can find that this pendulum has two
equilibria. The lower position & = 0° is stable and the top position & = 180° is unstable.

Owing to the relation i = /2, this result is entirely equivalent to saying that short floaters

prefer longitudinal positions, ¢ = 0°, and avoid transverse positions, ¥ = 90°.

6. Mean yaw moment: comparison with the literature

In this section we compare the second-order yaw moment K, that we have calculated
using our Froude—Krylov model to some existing results. To allow comparison, let us start
by writing the dimensional yaw moment according to our small floater, diffractionless
theory. By multiplying the right-hand side of (1.1) with the dimensional moment of inertia
/S,OLfCLyLZ /12 and w? = gk, we obtain

2

7 Lo 23,3 KLY < s
K, = Epga k*LiLy (—,BLZ + 6_(; Sy €y - (6.1)

This formula only applies to parallelepiped floaters that are short with respect to
the wavelength. As explained before, part of the moment (contribution —BL; in the
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parentheses) favours a longitudinal floater position (head seas). This moment clearly

depends on how deep the floater is submerged as the draft of our floater is 4 = BL,. The
other part of the moment (contribution +kZ2/60 in the parentheses) favours a transverse
floater position (beam seas) and does not depend on the draft. Physically, this term relates
to the spatial variation of the submersion along the long axis of the floater.

Newman (1967) derived an analytical formula (see his (55)) for the mean yaw moment
on a slender parallelepiped. Written in our notations (wavenumber K — k, width B — L,,
length L — L,, angle of incidence 8 = —1), this mean yaw moment is

KNevman — 1o oka®L2Ly sin v jy (%kaéw)jz (%ka&//) , (6.2)

with j; and j» the spherical Bessel functions that relate to the sinc function and its
derivatives. These functions oscillate with an approximate period of 27 and they decay
for a large argument. Hence, as we increase kL, this mean yaw moment can change
multiple times in sign to gradually vanish in the limit of kL, — oo. In the limit of small
kL, where our theory applies, we can replace the spherical Bessel functions with their
small argument asymptotic expansions. From Abramowitz & Stegun (1948, (10.1.2)), we
have ji (x)ja (x) ~ x° /45 for small x (rather than X /3 as written in Newman 1967) and the
mean yaw moment (6.2) reduces to

_ _ 1 kL?
kLycosyr < 1 @ KNewman » Epgasz’Lchy (6_(;> E;/,i?,,- (6.3)

Interestingly, we find that Newman’s mean yaw moment formula contains exactly one
term of our formula (6.1), the one that favours the transverse position and relates to the

spatial variation of submersion. The other term, related to the draft h = BL.,is absent. This
missing term in Newman’s formula explains why he did not predict a stable longitudinal
position for short floaters.

The fact that our theory based on the Froude—Krylov assumption recovers the short
floater limit of Newman’s theory suggests that the diffracted/radiated wave correction
does not contribute at leading order to the mean yaw moment on small floaters. This is
not directly visible in a far-field theory like that of Newman, because the existence of a
diffracted/radiated wave is essential in that method: without a radiated wave no angular
moment is carried away. We found it intriguing that a diffractionless model (ours) can
produce the same result as a theory (Newman’s) where diffraction is essential. This
observation motivated us to investigate what a diffractionless approach produces as a
mean yaw moment, for longer floaters, with §, > 1. In the Appendix we extend the model
of §5 to the case of long floaters. Ignoring diffraction with long floaters is risky, but
nevertheless an interesting exercise as it turns out that one can calculate Newman’s mean
yaw moment formula (6.2) from a purely diffractionless, Froude—Krylov approach. This
suggests that diffractive corrections of the wave are as absent in Newman’s mean yaw
moment formula as they are absent in our Froude—Krylov theory. Explaining this result
requires a deeper investigation that is beyond this paper. It might be that the use of a
slender body approximation filters the diffractive corrections in the mean yaw moment
formula of Newman.

In Chen’s (2007) middle-field formulation he introduced a numerical approach to
calculate first-order motion and second-order load on quite general floating structures. The
potential field around the floating body is calculated using the boundary element method
and includes diffracted and radiated waves. In one numerical application, Chen considers
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Figure 13. (@) Dimensionless mean yaw moment as a function of kL, and (b) zoom at small kL,. Red squares:
data from the boundary element simulations of Chen (2007), computed for a 300 m long floating structure.
Blue line: present Froude—Krylov theory (6.1), valid in the limit kL, < 1, when diffraction and radiation is
negligible. The longitudinal-transverse transition, where K, = 0 (or F = F), is approximately the same for
both methods.

a very large floating platform, called a floating production storage offloading (FPSO) unit,
that is close to a parallelepiped with dimensions L, = 300 m by L, = 50 m and submerged
over h = BL, = 25 m — huge compared with our centimetre-scale parallelepiped floaters
— placed in waves with an angle of incidence ¥ = —165°. In common sea conditions,
wavelengths are usually shorter than 300 m, so we expect diffraction and wave radiation
corrections, ignored in our theory, to be important. In figure 13 we compare the mean
yaw moment calculated by Chen’s BEM approach (red squares) to our small floater
Froude—Krylov theory (6.1) (blue line) and to Newman’s (1967) formula (6.2) (orange
line). As kL, increases, the mean yaw moment calculated by Chen is first negative,
then changes sign and oscillates at larger kL, to saturate at a constant value in the
short wavelength limit kL, — 4-o0o. This saturation to a non-zero value is due to the
non-symmetrical shape of the FPSO. Newman’s formula captures the correct order of
magnitude but differs everywhere from Chen’s calculation. A comparison to our small
floater theory for rectangular parallelepipeds only makes sense in the kL, < 1 limit, here
emphasized by the zoom in figure 13(b). There we see that the —(kLy)* trend at small
kL, is very well reproduced by our theory, a trend that is absent in Newman’s formula. At
larger kL,, there is a strong departure of our formula from the simulation.

7. Conclusion

In this paper we have studied the preferential orientation of elongated floaters in
propagating gravity waves, focusing on the case of small floaters that have kL, < 1.
Experiments in this regime indicate that short and deeply immersed floaters align
longitudinally, along with the direction of propagation, whereas long and weakly immersed
floaters prefer to align transversely, along with the wave crests and troughs.

We have shown that this preferential orientation can be modelled using a strongly
idealised diffractionless, Froude—Krylov approach that ignores finite depth effects, viscous
effects, capillary effects and steady streaming flows. Numerically integrating the resulting
equations of motion of this model, we have found preferential orientations that compare
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well to experimental observations. We then went on with this model and derived an
asymptotic description of motion, in the limit of a small wave slope € < 1 and for a
small floater size § <« 1. For strongly elongated floaters with height, width and length
ordered as §; < 8y < 8y < 1, we could compute the second-order mean yaw moment
that lead us to (1.2) for the slow motion of the yaw angle. Although this idealised,
dissipationless equation is not sufficient to model realistic yaw angle motion, it shows
that the preferential orientation of small elongated floaters is nearly independent of €
and mainly controlled by the non-dimensional number F = ij2€ /BL,. When F < F,, the
floater will favour a longitudinal orientation, when F > F., the floater will favour a
transverse orientation. In the theory we have found that the critical number F, = 60, while
experiments give F. = 50 % 15 or even lower F. ~ 35 % 10 if we use the experimentally
measured submersion depth (modified by capillarity).

Considering the simplifying assumptions of the theory, there are many effects that can
contribute to the slight difference between experiments and theory. First, the wave in the
experiments is not a perfect propagating wave in deep water, but has finite depth effects
and some wave reflection due to imperfect attenuation at the end of the channel. Second,
viscous forces are certainly acting on our small floater and they may alter the mean yaw
moment. Including viscosity can be done but requires a modelling of the Stokes boundary
layer under the floater. Third, we have seen that surface tension modifies the equilibrium
immersion depth, but it can also introduce additional horizontal forces when the floater
is moved by the wave. Fourth, we did not include the effect of a steady streaming flow.
Fifth, we did not include diffraction, which is questionable for kL, approaching O(1).
Sixth and finally, the prediction . = 60 holds only in the limit of very elongated floaters,
dy/8x K 1. Including finite width effects slightly lowers the transition value and introduces
a bistability in the equilibrium positions in the vicinity of the transition, which may
contribute to the experimental spread.

To gain deeper insight into the physics of the floater orientation, we have shown that
the evolution equation (1.2) for the slow motion of the yaw angle can also be found using
a simpler approach. A careful inspection of (5.10) and the subsequent analysis allows us
to separate the different contributions to the mean yaw moment and reveals a physical
meaning of the number F,

_ Mean yaw moment due to spatially varying submersion W=h-—h 1)

Mean yaw moment due to first-order displacement x.., 6’, z., ¥’

This is supported by the examination of the instantaneous force distribution along the
floater when the effect of the variable submersion is included or discarded in the
computation of the moment, as sketched in figure 12. Short floaters see little variation
in submersion depth along their long axis and experience a mean moment that favours
the longitudinal position. This mean moment arises from a phase correlation between the
oscillating buoyancy force and the oscillating lever arm, a feature shared with the classical
Kapitza pendulum. For longer floaters, the variation of the submersion along the floater
has a strong effect on the instantaneous moment, that is significantly decreased in crest
positions (the tips are less submerged) and increased in trough positions (the tips are more
submerged). Since in the trough position the instantaneous moment always pushes towards
the transverse position, long floaters prefer to take transverse positions.

Finally, we compared our mean yaw moment formula for small floaters to previously
published results. Compared with Newman’s theory, we have identified an additional

contribution to the mean yaw moment that varies linearly with the draft A. The
longitudinal-transverse transition for short floaters is due to this extra contribution.
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Newman’s prediction, that slender structures are stable in transverse orientation (‘beam
seas’), does not apply to floaters that are small with respect to the wavelength. Comparing
our theory to Chen’s boundary element calculations, we obtain excellent agreement in the
limit of floater length much smaller than the wavelength. Away from this limit, diffraction
and radiation are no longer negligible and our simplified theory breaks down.

The present study on the mean yaw moment can be continued in several directions.
Extending the model of § 5 to elongated floaters with non-symmetrically distributed mass
and a realistic hull is not difficult. It would be interesting to compare such a model to
results obtained using the methods of Chen (2007). Another interesting perspective relates
to our appendix: what is the precise contribution of diffractive correction to the mean yaw
moment? Finally, we can also draw some parallels between our work and recent studies in
relation to the problem of plastic waste transport by waves. The effect of shape on the mean
motion of non-spherical objects in wave flows has been investigated in several studies, but
limited to fully submerged, neutrally buoyant ellipsoids (DiBenedetto & Ouellette 2018;
DiBenedetto, Ouellette & Koseff 2018; DiBenedetto, Koseff & Ouellette 2019). A similar
preferential orientation phenomenon is observed there too and it would be interesting to
study whether the physical origin of the orientation is different or similar.

Supplementary material and movies.  Supplementary material and movies are available at
https://doi.org/10.1017/jfm.2024.718.
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Appendix. Calculating Newman’s mean yaw moment from a diffractionless model

Newman’s original formula for the mean yaw moment on slender floaters of arbitrary
length was given in (6.2). This formula is derived from a global angular momentum
balance and expresses the mean yaw moment on the floater as a function of the angular
momentum that radiates away from the floater in the far field. Using Green function theory
and a slender body approximation, Newman calculated the Kochin function that appears
in the mean yaw moment formula. This far-field method essentially relies on the existence
of a diffracted/radiated wave and certainly suggests that diffraction is taken into account.
As we show here this may well be different, Newman’s formula (6.2) can be derived from
a Froude—Krylov model that ignores diffraction.

To demonstrate this strange result, we return to the simplified theory of § 5, where we
calculated the yaw moment on an elongated floater using the integral

+8x/2 -
K~ — f (¥ = yo)axdyh(x, 1) dx. (AT)
—8:/2

In writing this formula we ignore diffraction and we also suppose that the floater is very
thin and not wide, §; < 8, < 1, to replace the integration over y and z with the factor

dy h(x, ). In § 5 we used Taylor expansions to replace the local fluid acceleration a, and
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local submersion depth A(%, ) with polynomials. It turns out that we can also calculate all
these integrals exactly, without making use of these polynomial approximations. Hence,
we can explore what our theory suggests in the case of

d; K8, K1, &y arbitrary. (A2a,b)

Ignoring diffraction is no longer advisable when the floater gets long, 8, > 1, as in
figure 14. Nevertheless, we have found it interesting to test what mean yaw moment a
diffractionless approach would produce in this case of longer floaters. The full calculation
is quite complex but there is one result that is really worth mentioning here. Newman’s
mean yaw moment formula (6.2) can be found as the part of the mean yaw moment that
relates to the spatial variation of submersion. More precisely, it is exactly equal to

. +8x/2
Ké\lewman,nd A~ / (y— yc)axfsyh’@ ) dx (A3)
)

in non-dimensional form. Here we denote #' (X, 1) = 71()?, f) —h = 0(¢) as the local
deviation from the equilibrium submersion. We explain the essential steps in the
calculation that lead to this result. We first use the simplified transform of (5.3a—c) and

the definition a, = —ee® cos(x — t) to replace
—(y —ye)ay = syXe et cos(xe — t+ cyX) (A4)

~1

in the integrand. The exponential factor can be simplified here to 1 because we only
need an O(¢) to evaluate (A3), considering that 4’ = O(¢). To find #'(X, r), we need to
calculate the local submersion A(%, f) along the axis of the long floater and this is done
using the same physical arguments as in § 5. We inject x ~ x, + cyXand z ~ z. — 0'X + 2
in the definition of the surface, z = € sin(x — t), and rewrite this as 7 = E (x, 1). This yields
E(fc, 1) ~ —zc + 0'X + € sin(xc — t + ¢y X). The local submersion depth is by definition
h = + 6./2, and replacing z. = Z. + Z.and h = —Z. + §,/2, we find that

h(x, 1) ~ h— 2z, +0'% + e sin(xc — t + ¢y ¥). (AS)

A Taylor expansion for small X gives (5.5). In this equation we still need to determine z,.
and 6’ and this is done in the same way as before. By imposing that the submerged volume
remains constant in time, we can fix zz.,

+8:/2
T o~ ~ / . Cz//sx .
dy hx,Hdx~m = z.=esinc|——|sin(x; —1). (A6)
_Sx/z 2
Here sinc(a) = (sina)/« is the sinc function, which also relates to the spherical Bessel
function jo(a) = sinc(e). A small argument expansion of this sinc function in z,. indeed
yields (5.7). Due to this sinc function, the vertical motion z,. decreases in magnitude in
an oscillating manner as 8, becomes large. To find ', we express that the instantaneous
Archimedes moment vanishes:

+6x/2 6 S
/ XhGE, Hdx~0= 0 ~ € sinc’ (Cw x) cos(x, — ). (A7)
) dx 2

Here sinc’ (o) = (a cos o — sina) /oc2 is the derivative of the sinc function. In the limit of
the small argument, we have sinc’(a) ~ —a/3 and this gives (5.8) for the small floaters.
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Figure 14. Long floater in a wave.

With these expressions of z.. and 6" we find the local submersion depth h or more precisely,
the deviation i’ = h — h as

(60 cxntne = et —sine ()|
I (X, 1) ~ € sin(xe — 1) | cos(cyX) — sinc —

6 8
+ ecos(x. — 1) [sin(cwi) + 8—€sinc/ (CI/’TX)] . (A8)

X

With (A4) and (AS8), we have all the necessary equations to calculate the integral of (A3),
252
_ 826, 1) 8 )
KzNewman’”d ~ S : Y5y sinc’ (sz x) [sinc <CIIITX> + 3sinc” (sz x>i| . (A9)

We may replace ¥ A  in this formula as we only need the O(¢?) moment. Using the
spherical Bessel function properties

sinc(a) = jo(a), sinc’(a) = —ji(@), sinc(a) + 3sinc”(a) = 2ja(@),  (AlOa—c)

we can rewrite this mean yaw moment as

292 P p=
- fodo) ) )
KZNewman,nd ~ € X ygwjl (CW x)jz (Clpz x) . (All)

2 2

and if we multiply this with the dimensional factor pg/k*, we exactly get Newman’s
formula (6.2) for the mean yaw moment on an elongated parallelepiped floater.
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