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Counter-rotation in an orbitally shaken glass of beer
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Abstract – Swirling a glass of wine induces a rotating gravity wave along with a mean flow
rotating in the direction of the applied swirl. Surprisingly, when the liquid is covered by a floating
cohesive material, for instance a thin layer of foam in a glass of beer, the mean rotation at the
surface can reverse. This intriguing counter-rotation can also be observed with coffee cream,
tea scum, cohesive powder, provided that the wave amplitude is small and the surface covering
fraction is large. Here we show that the mechanism for counter-rotation is a fluid analog of the
rolling without slipping motion of a planetary gear train: for sufficiently large density, the covered
surface behaves as a rigid raft transported by the rotating sloshing wave, and friction with the
near-wall low-velocity fluid produces a negative torque which can overcome the positive Stokes
drift rotation induced by the wave.

Copyright c© EPLA, 2018

Introduction. – The mean flow induced by a rotat-
ing sloshing wave in an orbitally shaken cylinder partially
filled with liquid consists in a global rotation in the di-
rection of the applied swirl, along with toroidal recircula-
tion vortices [1–5]. This mean flow, commonly observed
when swirling a glass of wine, is essential for mixing pro-
cesses such as in bioreactors for the cultivation of biologi-
cal cells [6,7]. Here we describe an intriguing and, to our
knowledge, unreported phenomenon: when gently swirling
a liquid covered by a floating raft of cohesive material, the
mean rotation at the surface can reverse. This intriguing
phenomenon is easily observed in a cup of espresso coffee
or a glass of beer covered by a thin layer of foam. It can
also be observed in a cup of tea, because of the thin scum
film composed of calcium and organic matter that forms
at the water surface [8].

Nontrivial surface flows in orbital shaking strikingly il-
lustrates the critical influence of surface contamination in
wave-induced flow generation [9–13]. We show here that
the reversal in the floating raft rotation results from a com-
plex interplay between transport by the rotating sloshing
wave, friction with the container wall, and internal stress
in the viscoelastic raft [14]. For a deformable raft of small
extent, the Stokes drift induced by the sloshing wave dom-
inates and the raft is in co-rotation. On the other hand,
when the raft is sufficiently large and rigid, the negative
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frictional torque induced by the low-velocity region near
the wall may overcome the Stokes drift contribution, pro-
ducing counter-rotation of the raft. This mechanism can
be seen as a fluid analog of the rolling without slipping mo-
tion of a planetary gear train, also observed in orbitally
shaken granular media [15].

Experiments. – Experiments with various liquids,
surface covering and cylinder size have been carried out.
The experimental set-up, sketched in fig. 1(a), is similar
to the one described in Bouvard et al. [4]. A cylinder
of radius R filled up to height H is orbitally shaken by
an eccentric motor along a circular trajectory given by
rc(t) = A(cos Ωt ex + sin Ωt ey). In the frame attached
to the cylinder, this motion induces a rotating centrifugal
force per unit mass of magnitude AΩ2, which excites a
rotating gravity wave of angular phase velocity prescribed
by the forcing frequency Ω. We measure the mean mo-
tion of the surface covering averaged over the wave period
with a camera located above the cylinder. In order to
filter out the large-amplitude wave motion and measure
only the second-order mean flow, the image acquisition
is synchronized with the forcing [4,12]. This stroboscopic
measurement is sensitive to the total (Lagrangian) mass
transport, which includes the (Eulerian) steady streaming
contribution and the Stokes drift contribution.

We first briefly recall the classical orbital sloshing flow in
the case of a free surface. According to the linear potential
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Fig. 1: (Colour online) (a) Experimental set-up. The cylinder
is orbitally shaken at a constant frequency Ω = dϕ/dt along
a circular trajectory of radius A, maintaining a fixed orienta-
tion with respect to an inertial frame of reference. The liquid
surface is covered with foam, powder or beads (see text), and
its mean rotation is visualized by a camera synchronized with
the forcing frequency. (b) Wave flow in the plane (x, z), from
the free-surface linear potential theory, shown at the phase
ϕ = π/2.

theory (recalled in sect. A of the Supplementary Mate-
rial Supplementarymaterial.pdf (SM)), for small forcing
amplitude ǫ = A/R ≪ 1, the rotating gravity wave can
be described as the superposition of two linear sloshing
waves at right angle with π/2 phase shift [3,16,17]. The
velocity field is sketched in fig. 1(b) and fig. 2 at a partic-
ular phase of the forcing (ϕ = π/2), such that the cylinder
velocity drc/dt is along −ex; each vector arrow describes
a circle, nearly horizontal at the center and nearly vertical
near the cylinder wall. The key non-dimensional number
in this problem is

χ =
ǫ

(ω1/Ω)2 − 1
, (1)

where

ω2
1 =

gk1

R
tanh(k1H/R)

is the fundamental resonance frequency of the cylinder,
and k1 ≃ 1.841 is the first zero of the derivative of J1,
the Bessel function of first kind and first order. In the
validity range of the potential theory (χ ≪ 1), the wave
flow is linear in χ: the wave velocity is u ≃ χΩR, and the
surface elevation of the fluid, which also sets the radius of
the particle orbits near the surface, is ρ ≃ χR. Nonlinear
interactions of this rotating gravity wave induce a mean
flow. In the weakly nonlinear regime, this mean flow is
expected to be quadratic in the wave amplitude [18–20]:
u ≃ χ2ΩR. The two scaling laws, u ≃ χΩR and u ≃
χ2ΩR, have been recently confirmed in experiments with
free surface over the range χ ≃ 10−2−10−1, in which both
ǫ and Ω/ω1 were varied [4].

Mean flows generated by propagating waves in contain-
ers include in general both an Eulerian steady streaming
contribution, driven by the oscillating boundary layers,
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Fig. 2: (Colour online) Motion of a circular raft (in yellow)
floating at the surface of the liquid in the reference frame
of the cylinder. The wave velocity at the surface, depicted
with blue arrows, describes closed orbits, approximately circu-
lar near the center of the cylinder, in the positive direction at
the forcing frequency Ω (the wave field is shown here at the
phase ϕ = π/2). The raft is transported by the wave, such
that its center of mass describes a circular orbit of radius ρ at
angular velocity Ω > 0. The upper edge of the raft (in red) lies
over the boundary layer near the wall (in green), inducing a
negative torque and hence a counter-rotation ω < 0 of the raft.

and a Lagrangian Stokes drift contribution [18–22]. In the
orbital sloshing problem, the mean flow consists in a ro-
bust central rotation at angular velocity ω0/Ω ≃ χ2, with
weak dependence on the fluid viscosity, and poloidal re-
circulations of weaker amplitude, mostly active near the
contact line [4]. The analysis suggests that the central
rotation is dominated by the Stokes drift induced by the
quasi-inviscid rotating wave, while the poloidal recircula-
tions are dominated by steady streaming. Importantly, in
the range of wave amplitude χ ≃ 10−2–10−1 explored here
and in ref. [4], in the case of a free surface, the mean central
rotation is always in the direction of the wave (ω0/Ω > 0).
Any counter-rotating motion of the surface must therefore
result from a modification of the mean flow by the surface
covering.

We illustrate now the effect of the surface covering on
the direction of the mean flow. A series of experiments us-
ing water with various surface coverage is shown in fig. 3:
(a) glass beads, 0.5mm in diameter; (b) cinnamon powder;
(c) pepper powder; (d) foam. For each surface coverage,
the forcing frequency is kept constant, while the surface
density is gradually increased by simply pouring addi-
tional material with a spoon (see Supplementary Movies
Movie1 glassbeads.avi, Movie2 cinnamonpowder.avi,
Movie3 pepperpowder.avi and Movie4 foam.avi (SV)).
These experiments are performed in a cylindrical con-
tainer, 37.5mm in radius, filled up to height H = 20mm
(resonance frequency ω1 = 182 rpm). The forcing am-
plitude is ǫ = A/R = 0.035 and the forcing frequency
Ω/ω1 = 0.77. The normalized wave amplitude, χ = 0.048,
lies in the weakly nonlinear range χ ≃ 10−2–10−1 for
which a co-rotating mean flow ω0/Ω ≃ χ2 > 0 is observed
in the absence of surface coverage.
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Fig. 3: (Colour online) Spatio-temporal diagrams of the surface
covering along the angular coordinate θ sampled along a circle
of radius r = 14 mm (red dashed circle), showing the direction
of rotation as the surface density is increased (see SV). The
blue lines indicate times at which the density is increased, by
pouring additional material on the surface. The red segments
show the angular velocity ω of the pattern, evolving from co-
rotation at small time (small density) to counter-rotation at
large time (except in the case (c), which remains in co-rotation
for all density).

The rotation of the surface pattern for the four types
of covering is visualized in fig. 3 using spatio-temporal
diagrams: at each forcing period the pattern is sampled
along the angular coordinate θ of a centered circle of radius

r = 14mm (see the red dashed circle in fig. 3(a)). In
all cases, the pattern makes a complete rotation in typi-
cally 100 forcing periods, i.e., |ω|/Ω ≃ 0.01. All the cov-
erings show co-rotation at low surface density, but only
the cases (a), (b), (d) (glass beads, cinnamon powder and
foam) turn to counter-rotation at large density, while the
pepper (c) remains in co-rotation at all density. The key
difference between the coverings is that they all form a co-
hesive raft at the surface of the liquid except the pepper
powder (c). In the cases of glass beads (a) and foam (d),
cohesion of the raft is due to the attractive capillary forces,
an effect sometimes referred to as “Cheerios effect” [23].
In the case of the cinnamon powder (b), cohesion is due
to the release of a surfactant layer showing strong sur-
face elasticity. On the other hand, the surfactant layer
released by the pepper powder (c) turns out to induce a
strong repulsive force between the grains, which prevents
the cohesion of the raft. Note that the glass beads and
the cinnamon powder rafts remain approximately circular
and centered, whereas the raft of bubbles tends to migrate
and spread along the wall because of the strong attraction
of the meniscus.

These first experiments indicate that a necessary condi-
tion for counter-rotation is the formation of a coherent raft
of sufficient size and rigidity. Such raft behaves as a two-
dimensional elastic solid, able to transmit shear stresses
applied at its periphery through force chains [24]. This
suggests the following picture for the transition to counter-
rotation. At low surface density, the raft is small and is
simply transported by the rotating gravity wave: its center
is in translation along a circular orbit of radius ρ ≃ χR at
frequency Ω, with a slow second-order solid-body rotation
ω > 0. Far from the boundaries, this second-order ro-
tation is dominated by the Stokes drift contribution [4].
The steady streaming contribution, mostly active near
the contact line, mainly corresponds to poloidal recircu-
lation vortices: it moves the raft away or towards the
center of the cylinder, without changing significantly its
angular velocity. As the surface density is increased, the
raft becomes larger, so that the region of its edge that
is closer to the wall, where the wave is the highest, ex-
periences friction with the slower fluid (see fig. 2). This
slower fluid region may correspond to the Stokes bound-
ary layer, of typical thickness δ =

√
ν/Ω, in the cases (a)

and (b), or may be due to the presence of bubbles trapped
in the meniscus near the wall in the case (d). Because of
the raft rigidity, the resulting negative frictional torque is
transmitted to the entire raft (except for the pepper pow-
der), yielding a negative angular velocity: the raft “rolls”
along the cylinder wall, like a planetary gear train, ex-
cept that the counter-rotation rate here, |ω|/Ω ≃ 10−2, is
much smaller than that of a solid rolling without sliding,
|ω|/Ω = R/a ≃ O(1) (with a the disk radius).

Regime diagram. – In order to describe quantita-
tively the transition from co- to counter-rotation, we have
performed a series of experiments with a well controlled
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surface covering. We use N polypropylene beads, of den-
sity ρs = 0.90 g/cm3 and diameter b = 2mm, floating

at the surface of silicon oil, of density ρ = 0.95 g/cm
3

and kinematic viscosity ν = 50mm2 s−1. Because of the
weak density contrast and of the good wetting of oil on
polypropylene, the beads float just below the surface, with
an almost flat meniscus inducing a weak attractive capil-
lary force, resulting in a relatively fragile raft. The raft
formed by the beads is approximately circular and cen-
tered, with some beads trapped in the meniscus (see the
insets in fig. 4(a)). For the sake of comparison, the pa-
rameters in this experiment are the same as in ref. [4]:
the cylinder, of radius R = 51.2mm, is filled up to height
H = 111mm (resonance frequency ω1 = 180 rpm), and
shaken with forcing amplitude ǫ = A/R = 0.057. The
forcing frequency Ω is varied between 80 and 145 rpm,
corresponding to a normalized wave amplitude χ in the
range 0.014–0.11. We define the bead surface density as

Φ = N

√
3

2π

(
b

R

)2

,

normalized such that Φ = 100% corresponds to the maxi-
mum circle packing density, obtained for N = 2380 beads.

Figure 4(a) shows the normalized angular velocity of
the raft of beads, ωbeads/Ω, as a function of χ for different
bead density Φ. The angular velocity ωbeads is determined
using stroboscopic particle image velocimetry (i.e., from
correlation of images separated by one forcing period), and
is defined as half the mean vorticity in a centered disk of
radius R/3, averaged over 200 forcing periods. At small
Φ, the bead raft is always in corotation, and follows es-
sentially the Stokes drift induced by the rotating gravity
wave: its angular velocity is well described by the law

ωSto

Ω
= Kχ2 (2)

(black line), with K ≃ 2.0 ± 0.2. As the bead density Φ
is increased, the angular velocity decreases and eventually
becomes negative for moderate wave amplitude χ. In this
counter-rotating regime, the normalized angular velocity
ωbeads/Ω shows a weak dependence with χ, followed by a
sharp transition to the Stokes drift co-rotation regime for
χ > 0.06.

The sign of ωbeads as a function of (χ,Φ) is summarized
in fig. 4(b). The co-rotating region (large χ and small Φ, in
red) and the counter-rotating region (small χ and large Φ,
in blue) are sepated by a mixed regime (in green), showing
both co-rotation near the center and counter-rotation near
the periphery. As χ is increased, in spite of the larger
friction area with the near-wall low-velocity region due to
the larger gyration radius ρ ≃ χR (see fig. 2), the bead
raft tends to rotate in the positive direction, suggesting
that the effect of the Stokes drift increases with χ more
rapidly than the near-wall friction. For χ > 0.1 (limit of
validity of the weakly nonlinear regime), we find a positive
rotation of the raft for all beads density Φ. This systematic

Fig. 4: (Colour online) (a) Normalized angular velocity of the
raft of beads near the center as a function of the normalized
wave amplitude χ for different surface coverage density Φ. At
small density the beads rotate according to the Stokes drift law
Kχ2, with K ≃ 2 (black line). (b) Regime diagram showing
the sign of the angular velocity in the plane (χ, Φ).

co-rotation may be explained by a loss of coherence of the
raft when transported by a too strong wave flow. The raft
remains coherent if the differential drag force induced by
the wave on the beads, of order ∆F ≃ ηb∆u (with b the
bead diameter and η the fluid viscosity) remains smaller
than the capillary force Fc between the beads. Taking
∆u ≃ b|∇u| ≃ bχΩ for the velocity difference between
two beads separated by a distance of order b, this suggests
that the cohesion of the raft is lost for Ωχ > Fc/(ηb2).
Beyond this limit, the beads are essentially independent
and locally follow the co-rotating Stokes drift induced by
the wave.

Model. – We propose here a model for the transition
from co- to counter-rotation as the raft size is increased for
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small wave amplitude χ, assuming that the raft remains
cohesive. We model the raft as a set of N floating, at-
tractive and inertialess particles. The position vector of a
particle i is decomposed as ri = r̂i + ziez, where we use
hats for the horizontal components. We suppose that the
raft easily deforms in the vertical direction, so that the
presence of the raft does not significantly alter the wave
flow. The vertical position of the floating particles is then
fixed by zi ≃ η(r̂i, t) where η denotes the surface elevation
associated to the wave. We also suppose that the raft is
sufficiently stiff in the horizontal direction, which means
that the horizontal motion of the particles in the raft is
essentially solid. A particle i in the raft has horizontal
velocity

dr̂i

dt
≃ d r̂g

dt
+ ω ez × (r̂i − r̂g). (3)

The horizontal motion of the raft is entirely characterized
by its center of mass r̂g(t) =

∑
i r̂i/N and by its rotation

rate ω(t).
In sect. B of the SM, we derive equations for r̂g and

ω starting from the fundamental force balance on the N
particles. In the continuum limit, we model the raft as a
circular disk of radius a, and find

dr̂g

dt
=

1

πa2

∫∫

D(t)

û(r̂ + η, t)d2r̂, (4a)

ω =
2

πa4

∫∫

D(t)

[(r̂ − r̂g) × û(r̂ + η, t)] · ezd
2r̂, (4b)

where D(t) is the domain ||̂r − r̂g|| ≤ a, η = ηez and
û is the horizontal component of the fluid flow. These
equations can be used to calculate the gyration of the
raft (oscillatory motion of r̂g) and the transition from co-
rotation to counter-rotation. This is done analytically in
sects. C, D, E of the SM using perturbative expansions in
orders of χ.

The first-order calculation uses the potential wave flow
û ≃ ∇̂φ and simplifies û(r̂ + η, t) ≃ û(r̂, t) and r̂− r̂g ≃ r̂

in eqs. (4). For the translational motion, we find r̂g =
ρ(cos Ωtex + sin Ωtey), with gyration radius

ρ = χR
2

k2
1 − 1

R

a

J1(k1a/R)

J1(k1)︸ ︷︷ ︸
C(a/R)

. (5)

The function C slightly decreases with a/R, with C ≃ 1.32
for a/R ≪ 1 and C ≃ 0.84 for a/R = 1. Interestingly, for
such potential wave, we find ω = 0: the raft cannot rotate
at first order in χ. This can be seen in eq. (4b) when using

the identity r̂×∇̂φ = −∇̂× (r̂φ) and the Stokes theorem.
A raft rotation necessarily results from a higher-order ef-
fect, or from the presence of vorticity in the carrying
wave flow.

To find the slow co-rotation at next order in wave ampli-
tude χ, we need to consider that the wave flow is modified
by a steady streaming part (u = ∇φ+u) and also, that the
flow in the integrals (4) is to be expressed at the moving

interface. Using Taylor expansions, we express the inte-
granda in the vicinity of z = 0. This allows us to derive
the second-order formula for the time-averaged part ω of
the rotation speed:

ω =
2

πa4

∫ a

0

∫ 2π

0

[
û + (η · ∇)∇̂φ

]

θ
r2 dr dθ. (6)

Inside the brackets, we see two contributions, one due the
steady streaming and one that is a Stokes drift correc-
tion. The study of Bouvard et al. [3] suggested that the
steady streaming flow has a weak azimuthal component
(uθ ≃ 0). Keeping only the Stokes drift contribution, we
can calculate explicitly

ω

Ω
≃ χ2K(H/R, a/R). (7)

The coefficient K > 0, given in the SM, varies from 2.97
to 1.67 for a/R varying from 0 to 1 in our set-up. We
note that this interval includes the value of K ≃ 2.0 found
experimentally (fig. 4(a)).

Finally, to find the slow counter-rotation, we must take
into account that large rafts can penetrate the annular
boundary layer near the cylinder wall. The fluid is slowed
down there and exerts a negative torque on the rim of
the raft that can result in a counter-rotation. To model
this boundary effect, we modify the potential flow as u =
∇φ + uBL, introducing a boundary correction

uBL(r, t) = −∇φ(r, t)|r=R e−(R−r)/δ, (8)

with δ a boundary layer thickness, ensuring that u sat-
isfies a no-slip boundary condition. This is a very crude
model of the true boundary layer structure near the mov-
ing contact line that remains intractable. We think that
this simple correction is sufficient to capture the essential
physics of the counter-rotation, and consider the thickness
δ as an adjustable parameter.

We finally determine ωBL, the counter-rotation induced
by the boundary layer correction, by injecting eq. (8) in
eq. (4b). For small wave amplitude and in the limit ρ ≪
δ, a negative angular velocity is found as (see sect. E of
the SM)

ωBL

Ω
= −χ2 4

k2
1 − 1

(
R

a

)4

C(a/R) e−(R−a)/δ. (9)

Interestingly, this boundary layer contribution is of or-
der χ2 too, because the frictional torque originates from a
O(χ) velocity defect acting on a O(χ) raft displacement.
Adding the Stokes drift co-rotation (7) and the boundary-
layer counter-rotation (9) finally yields the total angular
velocity

ωtot

Ω
= χ2

[
K(a/R) − 4

k2
1 − 1

(
R

a

)4

C(a/R) e−(R−a)/δ

]
.

(10)
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Fig. 5: (Colour online) Normalized angular velocity of the
raft as a function of the bead density Φ, for wave amplitudes
χ = 0.034–0.073. The solid line shows the model (10), using
a boundary layer thickness δ/R = 0.09 and a surface density
Φ = 0.74(a/R)2.

Since K(a/R) and C(a/R) are slowly varying functions of
order unity, we can see that the term in brackets actu-
ally changes sign for sufficiently large raft, when R − a is
of order of δ, in agreement with the qualitative scenario
proposed in the previous section.

To provide comparison between the model (10) and the
measured angular velocity of the bead raft, we introduce
a raft compacity factor c ≤ 1, such that the bead sur-
face density is Φ = c(a/R)2 (c = 1 corresponds to a
raft of densily packed beads). Figure 5 shows that a cor-
rect agreement is obtained, for a range of wave amplitude
χ ≃ 0.034–0.073. The model here is plotted for a com-
pacity factor c ≃ 0.74 and a boundary layer thickness
δ/R ≃ 0.09, a value of the order of the Stokes boundary
layer thickness for this range of forcing frequency. For
larger wave amplitude, cohesion of the raft is lost, and the
measured angular velocity is larger than predicted. This
confirms that the rotation rate of the raft, at least in the
case of a cohesive raft, can be modeled as a balance be-
tween the positive Stokes drift induced by the rotating
wave and the negative frictional torque induced by the
boundary layer.

Conclusion. – The counter-rotation of a cohesive raft
floating at the surface of a liquid in orbital shaking motion
is a subtle phenomenon resulting from the complex inter-
play between wave transport, friction, and internal stress
in the raft. In this paper, we show that the transition
from co- to counter-rotation can be captured by a simple
model, assuming a light and slightly deformable raft that
does not alter the dynamics of the rotating gravity wave.
Since the model assumes a cohesive raft, it can describe
only the transition from co- to counter-rotation as the raft
size is increased at moderate wave amplitude χ. On the
other hand, the transition from counter- to co-rototation

at larger χ, which relies on the loss of cohesion of the raft
strained by a wave of large amplitude, cannot be captured
by the present model. Note that, although the O(χ) wave
flow remains essentially unaffected by the presence of the
raft, the O(χ2) mean flow in the bulk, which is driven by
the mean velocity of the raft at the surface, is expected to
show sign reversal too.

Using a surface covering with macroscopic material
(foam, powder, beads) makes the transition to counter-
rotation easy to observe with a classical laboratory orbital
shaker, or even by carefully swirling the liquid by hand. As
the surface covering becomes thicker, however, the feed-
back of the raft on the wave motion cannot be neglected.
This limitation is illustrated by swirling a glass of beer
with more than a few layers of bubbles: the strong dissi-
pation induced by the foam [25] usually prevents the onset
of counter-rotation, resulting in an over-damped rotating
gravity wave with no noticeable mean rotation. Inversely,
the counter-rotation effect may be present even for surface
contamination at the microscopic scale, hardly visible to
the naked eye, for example by nanolayers of soluble or-
ganic matter such as proteins or lipids, which could lead
to unexpected results when working with a supposedly free
surface.
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