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Counter-rotation in an orbitally shaken glass of beer:
Supplementary Material

We present a theoretical model that describes the motion of a floating circular raft in the
orbital sloshing problem. In section A, we specify the orbital sloshing flow with free surface.
In B, we derive equations for the motion of the raft. In sections C and D, we calculate first
and second order approximations of the motion of the raft to describe its gyration and its
counter-rotation. In section E, we explain the counter-rotation of the raft as a result of the
interaction with the boundary layer.

A. Flows in an orbitally shaken cylinder. – A cylinder of radius R filled with
fluid up to height H is being orbitally displaced as rc = A(cos Ωt ex + cos Ωt ey). Here A
is the amplitude of the displacement and Ω its frequency. This orbital translation drives a
flow u(r, t) that we describe using cylindrical coordinates (r, θ, z) in the moving frame of
reference attached to the cylinder.

Potential flow theory provides a linear and inviscid approximation of the fluid flow [3,4].
For forcing frequencies Ω that are lower than the natural frequencies of the gravity waves,
we have

u(r, t) = ∇φ with φ = ΩR2 2χ

k2
1 − 1

J1(k1r/R)

J1(k1)

cosh(k1(z +H)/R)

cosh(k1H/R)
sin(θ − Ωt). (1)

Here k1 ' 1.841 and

χ =
ε

(ω1/Ω)2 − 1
, (2)

with ε = A/R and ω1 =
√
gk1 tanh(k1H/R) the gravity wave eigenfrequency. The surface

reaches a height z = η with

η = R
2χk1

k2
1 − 1

J1(k1r/R)

J1(k1)
tanh(k1H/R) cos(θ − Ωt). (3)

This solution only includes the dominant wave. The full solution is given in [3,4].
Near the boundaries of the cylinder the inviscid potential flow model needs to be corrected

in order to satisfy the no-slip boundary condition. We introduce an exponential boundary
layer correction to the flow so that

u(r, t) = ∇φ−∇φ|r=R e−(R−r)/δ . (4)

The boundary layer has thickness δ � R and δ will be a tunable parameter. This boundary
layer is a very crude approximation of the real boundary layer near the contact line, but it
is adequate to capture the essential physics that explains the counter-rotation.

Nonlinearities in the bulk and in the boundary layers create a weak O(χ2) correction to
the flow under the wave. A second order, more precise model of the flow in the bulk is

u(r, t) = ∇φ(r, t) + u(r) + u′(r, t). (5)

Next to the oscillatory potential wave, we find the steady streaming flow u(r) as the Eulerian
mean flow and some time dependent harmonics u′(r, t). The steady streaming flow was
measured in Ref. [4], but no analytical expression is available.
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B. Equations of motion for the raft. – We consider the motion of a set of N
identical particles of mass m submerged in a fluid moving at speed u(r, t). The position
ri(t) and speed vi(t) = dri/dt of a particle i satisfy a fundamental force balance

m

(
d2ri
dt2

+
d2rc
dt2

)
︸ ︷︷ ︸

inertia

= αi (u(ri, t)− vi)︸ ︷︷ ︸
drag force

+
∑
j 6=i

Tj→i︸ ︷︷ ︸
attraction

+ Bi ez︸ ︷︷ ︸
buoyancy

. (6)

We model the the fluid-particle interaction with a simple drag force with drag coefficients
αi. Neighboring particles j 6= i act on particle i by forces Tj→i that we suppose attractive
and aligned with ri − rj . Due to gravity, there is a buoyancy term Bi ez. The inertial term
will be neglected in all what follows.

We suppose that buoyancy is dominant so that all particles will remain in the immediate
vicinity of the surface. Different particles are similarly submerged in the fluid, so drag
coefficients should be the same for all particles: we denote αi = α. If the particles follow
the motion of the interface, we can write

ri = r̂i + ηi , vi = v̂i +
dηi
dt

(7)

with ηi = η(r̂i, t)ez the surface elevation and r̂i, v̂i the horizontal components of the parti-
cle’s position and speed (we use hats for horizontal field components). By writing this, we
ignore dynamic feedback of the particles on the wave. The horizontal motion is constrained
by

0 ' α (û(ri, t)− v̂i) +
∑
j 6=i

T̂j→i. (8)

In this balance, we suppose that the interaction forces
∑
j 6=i T̂j→i are dominant so that

distances ||r̂i − r̂j || remain nearly fixed just as in a weakly deformable two-dimensional
solid. We can decompose the particle speed as

v̂i '
d r̂g
dt

+ ω ez × (r̂i − r̂g)︸ ︷︷ ︸
dominant solid motion

+
d r̂′i
dt︸︷︷︸

weak elastic motion

(9)

separating the solid motion from a weak elastic motion. We introduce here d r̂g/dt, the
horizontal speed of the center of mass rg(t) =

∑
i ri/N and ω(t), the rotation speed of

the raft. Elastic motions d r̂′i/dt in the horizontal direction remain small whenever the raft
is weakly compressible in the horizontal direction. To better know what this means, we
estimate the order of magnitude of the elastic motion. With a fluid flow of order χΩR,
the drag force can reach a magnitude αχΩR. The drag force is balanced by an elastic
force that brings particles back to equilibrium positions for which

∑
j 6=i T̂j→i = 0. We can

estimate the elastic force as κ||r̂′i|| with κ = ||∇̂T̂j→i|| measuring the horizontal stiffness
of the raft. The force balance leads to ||r̂′i|| = αχΩR/κ as an order of magnitude for the
elastic deviations and to ||d r̂′i/dt|| ∼ αχΩ2R/κ for the elastic motion. Elastic motion can
be ignored with respect to solid motion of order ||dr̂g/dt|| ∼ χΩR whenever

αΩ

κ
� 1. (10)

The stiffer the raft in the horizontal direction (the higher κ ), the smaller the elastic motion.
We suppose that this condition is fulfilled and this allows us to ignore the weak elastic
motion in all what follows.
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Without elastic deviations, the motion of the raft is entirely determined by r̂g(t) and
ω(t) for which we can derive two simple equations. Summing (8) and (r̂i− r̂g)× (8) over all
N particles, we can identify that

d r̂g
dt

=
1

N

∑
i

û(r̂i + ηi, t) (11a)

ω =

∑
i[(r̂i − r̂g)× û(r̂i + ηi, t)] · ez∑

i ||r̂i − r̂g||2
. (11b)

Due to Newton’s third law (Tj→i + Ti→j = 0) and collinearity of Tj→i and ri − rj these
relations are independent of the precise nature of the interactive forces. In both (11a) and
(11b), we also note that it is necessary to evaluate the horizontal flow at the true particle
position ri = r̂i + ηi on the surface. This subtlety is crucial to find the slow co-rotation of
the raft.

We formulate a continuum limit for a circular raft of radius a, composed of many uni-
formly distributed particles. In the absence of flow, we suppose that the raft is centered on
the origin of the cylinder. We then have

d r̂g
dt

=
1

πa2

x

D(t)

û(r̂ + η, t) d2r̂ (12a)

ω =
2

πa4

x

D(t)

[(r̂− r̂g)× û(r̂ + η, t)] · ez d2r̂ (12b)

Here we denote D(t) is the domain where ||r̂− r̂g|| ≤ a. It is useful to rewrite the integrals
of (12) using a translated coordinate system, centered on the raft. There we have

d r̂g
dt

=
1

πa2

x

D

û(r̂ + r̂g + η̃, t) d2r̂ (13a)

ω =
2

πa4

x

D

[r̂× û(r̂ + r̂g + η̃, t)] · ez d2r̂ (13b)

Here we denote η̃(r̂, t) = η(r̂ + r̂g, t) and D is now a stationary circular domain where
||r̂|| ≤ a. Since the flow is small and of order O(χ), we know that r̂g,η = O(χ) too. This
allows us to use Taylor expansions, to derive explicit formula for rg and ω in different orders
of χ.

C. First order motion: gyration . – To obtain a first order approximation for r̂g
and ω, we approximate

û(r̂ + r̂g + η̃, t) = û(r̂, t) +O(χ2)

= ∇̂φ(r̂, t) +O(χ2) (14)

in the integrals of (13a) and (13b). Using the vector identify r̂ × ∇̂φ = −∇̂ × (r̂φ) and
integration theorems we can simplify the surfaces integrals to contour integrals.

d r̂g
dt

=
1

πa2

∫ 2π

0

aφ(a, θ, 0, t) er dθ +O(χ2) (15a)

ω =
2

πa4

∫ 2π

0

a2 φ(a, θ, 0, t) (er · eφ)︸ ︷︷ ︸
= 0

dθ +O(χ2) = O(χ2). (15b)

This shows that the raft cannot rotate at first order, we can only have a translational motion.
After some calculations, we find

r̂g = ρ (cos Ωt ex + sin Ωt ey) +O(χ2), (16)

p-3



F. Moisy et al.

0 0.2 0.4 0.6 0.8 1

a/R

0.8

0.9

1

1.1

1.2

1.3

1.4

C
(a

/R
)

0 0.2 0.4 0.6 0.8 1

a/R

1.6

1.8

2

2.2

2.4

2.6

2.8

3

K
(a

/R
)

Fig. 1: The gyration radius of the raft is ρ = χRC(a/R) and the rotation speed for the co-rotation
is ω = χ2ΩK(a/R). Here we show C(a/R) and K(a/R) as functions of the non-dimensional radius
a/R of the raft. We fix H/R = 2.17 as in the experiment.

with

ρ = χR
2R

a

1

(k2
1 − 1)

J1(k1a/R)

J1(k1)︸ ︷︷ ︸
C(a/R)

. (17)

We call this motion the gyration of the raft: the center of mass of the raft rotates with time,
along with the wave. We denote ρ the gyration radius that scales as ρ ∼ χR. The coefficient
of proportionality C(a/R) is shown in figure 1 as a function of a/R. It varies from 1.3 to
0.8 for a/R varying from 0 to 1.

D. Second order motion: co-rotation . – To describe the motion of the raft up to
second order, we approximate

û(r̂ + r̂g + η̃, t) = ∇̂φ (r̂, t) + [(r̂g + η) · ∇]∇̂φ(r̂, t) + û(r̂) + û′(r̂, t) +O(χ3) (18)

in (13a). In the right hand side, we see a first order Taylor expansion of the potential flow.
r̂g can be replaced with (16) and we can also simplify η̃(r̂, t) = η(r̂, t) +O(χ). The second

order flow correction û + û′ is also included. We focus on the stationary terms that can
induce a slow mean motion. Using bars to denote time-independent fields, we can find that

û(r̂ + r̂g + η̃, t) = û(r̂) + (η · ∇)∇̂φ (r̂) +O(χ3) (19)

= û(r̂) +
ΩR2

2 r

(
2χk1

(k2
1 − 1)2

J1(k1r/R)

J1(k1)
tanh(k1H/R)

)2

eθ +O(χ3).

Next to the steady streaming flow for which we have no analytical expression, we find a
Stokes drift correction that can be explicitly calculated. We admit that r̂g(t, τ) can have a
dependance on a slow time-scale τ = (χΩ)−1. We then find that

dr̂g
dτ

' 1

πa2

x

D

[
û(r̂) + (η · ∇)∇̂φ (r̂)

]
d2r̂ = 0 (20)

due to axisymetry. The gyration center of an initially centered raft will remain close to the
origin on timescales (χΩ)−1. For the stationary component ω of the rotation speed (13b)
we find up to second order

ω =
2

πa4

∫ a

0

∫ 2π

0

[
û(r̂) + (η · ∇)∇̂φ (r̂)

]
θ
r2 dr dθ. (21)
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The study of Bouvard et al. [4] suggested that the steady streaming flow has a weak
azimuthal component. If we ignore these contributions (uθ ≈ 0), we can calculate

ω ' Ωχ2 R
2

a2

4k2
1

(k2
1 − 1)2

tanh2(k1H/R)
J2

1 (k1a/R)− J0(k1a/R)J2(k1a/R)

J2
1 (k1)︸ ︷︷ ︸

K(a/R,H/R)

. (22)

As shown in figure 1, K varies from 2.97 to 1.67 for a/R varying from 0 to 1 in our set-up
with H/R = 2.17. A bigger raft rotates slower. The value 2.97 for very small rafts coincides
with Stokes drift rotation speed at the center. In the experiments we found K ' 2, which
is compatible with this result.

E. Boundary layer effects: counter-rotation. – To describe the counterrotating
motion of large rafts, we must take into account that such large rafts reach into the boundary
layer region while they gyrate. We perform all calculations in the frame attached to the
cylinder. We approximate

û(r̂ + η, t) = ∇̂φ− ∇̂φ|r=R e−(R−r)/δ +O(χ2). (23)

in (12b). The effect of potential flow is already known up to second order and induces the
co-rotation ω. For large rafts, we need to correct the slow rotation speed as

ωtot = ω + ωBL, (24)

where ωBL contains the stationary counter-rotation caused by the boundary layer correction
alone. We can calculate

ωBL =
2

πa4

x

D(t)

[(r̂− r̂g)× (−∇̂φ|r=R e−(R−r)/δ)] · ez d2r̂ (25)

and the time-average of this yields ωBL. To evaluate this integral, we parametrize the time-
dependent region D(t) that is occupied by the raft . If the gyration radius is small compared
to the size of the raft (ρ� a), we can approximate

D(t) : r ∈ [0, a+ ρ cos(θ − Ωt)] , θ ∈ [0, 2π[ (26)

up to errors of O(ρ2/a2). Using the definition (16) of the gyration radius ρ, we then express
r̂− r̂g in cylindrical components to find

ωBL ' − 4ΩRχ

πa4(k2
1 − 1)

∫ 2π

0

∫ a+ρ cos(θ−Ωt)

0

(r − ρ cos(θ − Ωt)) cos(θ − Ωt) e(r−R)/δ r dr dθ. (27)

Due to the presence of the exponential factor, the integrandum rapidly decays away from
the boundary r = R, which allows some simplifications. We introduce a change of variables
s = (r−R)/δ and approximate the bound r = 0 by s = −R/δ → −∞. In the integrandum,
we also approximate all other occurrences of r ' R. Integration over s is then very simple,
giving

ωBL = − 4ΩR2δχ

πa4(k2
1 − 1)

e(a−R)/δ

∫ 2π−Ωt

0−Ωt

(
R− ρ cos θ̃

)
cos θ̃ e(ρ/δ) cos θ̃ dθ̃

with θ̃ = θ − Ωt. This integral can be evaluated analytically in terms of modified Bessel
functions Im as we have elementary integrals∫ 2π−β

0−β
eζ cos θ̃ dθ̃ = 2πI0(ζ) (28a)∫ 2π−β

0−β
cos θ̃ eζ cos θ̃ dθ̃ = 2πI1(ζ) (28b)∫ 2π−β

0−β
cos2 θ̃ eζ cos θ̃ dθ̃ = π(I0(ζ) + I2(ζ)) (28c)
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∀β ∈ R. The first relation is well known. The second and third relation can be obtained by
deriving the first relation with respect to ζ and using recurrence relations of modified Bessel
functions. With this, we obtain

ωBL = −χΩ
8δR3

a4

e(a−R)/δ

(k2
1 − 1)

{
I1

(ρ
δ

)
− ρ

2R

[
I0

(ρ
δ

)
+ I2

(ρ
δ

)]}
.

We notice that ωBL is time-independent and since we have ρ� R, the first term proportional
to I1(ρ/δ) > 0 dominates. Therefore, we can expect a counter-rotation. It is useful to
remember that this formula only makes sense when ρ, δ � R, ρ+a ≤ R and when the wave-
magnitude remains small. In the limit ρ � δ, we can use a Taylor expansion I1(z) ' z/2
and with ρ� R we can ignore the contributions from I0 and I2. This then yields

ωBL ' −χ2Ω
4R4

a4

e(a−R)/δ

(k2
1 − 1)

C(a/R),

with C(a/R) defined in (17). We notice that the counter-rotation is of order ∼ χ2 just as
the co-rotation.
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