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A cylindrical container partially filled with a liquid in an orbital shaking motion, i.e.,
in circular translation with fixed orientation with respect to an inertial frame of reference,
generates, along with a rotating sloshing wave, a mean flow rotating in the same direction as
the wave. Here we investigate experimentally the structure and the scaling of the wave flow
and the Lagrangian mean flow in the weakly nonlinear regime, for small forcing amplitude
and for forcing frequency far from the resonance, using conventional and stroboscopic
particle image velocimetry. The Lagrangian mean flow is composed of a strong global
rotation near the center and a nontrivial pattern of poloidal recirculation vortices of weaker
amplitude, mostly active near the contact line. The global rotation near the center is robust
with respect to changes in viscosity and forcing frequency, and its amplitude compares
well with the predicted Stokes drift for an inviscid rotating sloshing wave. On the other
hand, the spatial structure of the poloidal vortices shows strong variation with viscosity
and forcing frequency, suggesting that it results from nonlinear streaming driven by the
oscillatory boundary layers near the contact line.
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I. INTRODUCTION

It is common knowledge that prescribing an orbital motion to a glass of wine generates a rotating
gravity wave that comes along with a swirling mean flow [1]. This mean flow rotates in the direction
of the wave and recirculates poloidally (radially and vertically), thus permanently pushing new fluid
to the surface where it aerates and releases the wine’s aromas [2,3]. Precisely the same kind of orbital
shaking is used in bioreactors for the cultivation of biological cells [4]. There, the presence of the
mean flow prevents sedimentation and ensures efficient gas exchange, avoiding the damagingly high
shear rates that immersed stirrers would cause.

Because of its importance in engineering applications, experimental and numerical efforts have
been made to optimize the mixing efficiency and power consumption of orbital shakers [5–7]. Most
of the studies focus on the strongly nonlinear regime (forcing frequency close to the fundamental
resonance frequency of the container) and in complex container geometries such as Erlenmeyer flasks
with baffles. Far from the resonance, the forced rotating wave is well described by inviscid linear
potential theory and simply corresponds to a superposition of two normal linear sloshing modes with
π/2 phase shift [1,3,8,9]. Near resonance, the wave becomes large and displays complex nonlinear
phenomena such as wave breaking and hysteresis [3]. Note that a rotating wave can also be triggered
near resonance in a linearly shaken container through a symmetry breaking mechanism [10–12].
Experimental advances using particle image velocimetry (PIV) measurements in the frame of the
container have recently opened the way to quantitative mixing diagnostics in this system (turbulent
intensity, and local energy dissipation rate) [13,14].

In recent years, numerical and experimental efforts have been devoted to understanding the orbital
sloshing flow in a simple cylindrical container on a more fundamental level [3,15]. In spite of these
efforts, no general picture is available yet for the mechanism that generates the mean flow induced
by orbital shaking and its dependence on the flow parameters (aspect ratio of the container, fluid
viscosity, and forcing amplitude).

Mean flows driven by the nonlinear interaction of surface waves is a classical problem of fluid
mechanics that received much attention mainly because of its oceanographical interest (see, for
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example, Refs. [16–19] for historical work on long propagative gravity waves, or Refs. [20,21]
for more recent studies on parametrically excited capillary-gravity waves). Here, we focus on the
weakly nonlinear limit, where the amplitude of the waves, harmonics, and mean flows can be ranked
in decreasing orders of magnitude. When discussing mean flows, it is important to distinguish the
Eulerian mean flow from the Lagrangian mean flow. The Eulerian mean flow corresponds to the
time-averaged value of the velocity field and is commonly called the streaming, ustr (or steady
streaming when ustr is stationary). The Lagrangian mean flow, u = ustr + uSto, corresponds to the
flow that induces the mean transport of mass. It has two contributions, the streaming ustr and an
additional purely kinematic contribution, the Stokes drift uSto. In this article, the term mean flow
denotes mean transport of mass u, so it is important to address both ustr and uSto.

In incompressible fluids, streaming is essentially the reaction of the flow to the time-averaged
nonlinear advection u · ∇u, where u denotes the linear wave flow [17,22]. In the case of inviscid
potential gravity waves, this basic principle becomes rather subtle, because such waves do not carry
vorticity and as such cannot generate a streaming flow in the bulk. Only in the viscous boundary
layers over the container walls and below the liquid surface can a nonzero forcing of a streaming
flow take place, and theoretical modeling of nonlinear interactions therein becomes highly nontrivial
in three-dimensional contexts [23]. An estimate for the steady streaming magnitude can be obtained
as follows. The oscillatory (Stokes) boundary layers have a typical thickness δ = (ν/�)1/2, with
� the wave frequency and ν the kinematic viscosity. When the amplitude (or phase) of the wave
varies along that boundary, mass conservation requires that there must exist a small oscillating flow
normal to the boundary. This flow, called boundary layer pumping, is of order uδ/L, where L is
the length scale over which the wave magnitude u varies. Since the tangential and normal velocities
in the boundary layer are not out of phase in general, their average product is nonzero, which
induces an effective Reynolds stress of order u2δ/L that forces a nonzero mean flow in the bulk. The
structure of this streaming flow depends on the details of the boundary conditions, but its magnitude
ustr can be inferred, at least in the weak steady streaming limit (i.e., for small streaming Reynolds
number ustrL/ν � 1), from a balance between the Reynolds stress and the viscous stress νustr/δ

at the boundaries, yielding ustr ∼ u2/�L. Interestingly, this amplitude is independent of viscosity,
although viscosity is a necessary ingredient for the formation of the boundary layers from which the
streaming originates. We recall that this estimate only applies in the weak streaming limit, for which
the wave properties remain unaffected by the weak mean flow. In the strong streaming regime, the
streaming flow can alter the waves, and inertial effects must be considered to solve for the mean
flow dynamics [19].

The second contribution to the mean mass transport, the Stokes drift, has a purely kinematic
origin that can be understood as follows [24]. Fluid particles in oscillatory flows move along nearly
circular trajectories and experience, along these paths, slight variations in the wave magnitude. This
causes them to displace slightly more in one direction and leads to a small mean drift after each
wave period. A noticeable property of the Stokes drift is that it allows mean mass transport even in
the absence of an Eulerian mean flow (when ustr = 0). An estimate for the Stokes drift magnitude
uSto can be simply obtained by multiplying the gyration radius of the particles, u/�, with the spatial
gradient of the wave amplitude, u/L, which brings us the estimate uSto ∼ u2/�L. The amplitude of
the Stokes drift therefore has the same order of magnitude as that of the streaming.

Summarizing, we can expect that the magnitude of the Lagrangian mean flow u that controls the
mean transport of mass behaves as

u ∼ u2

�L
. (1)

Because of the identical scaling of the two contributions ustr and uSto, it is difficult in general to
anticipate which of streaming or Strokes drift contributes more to this Lagrangian mean flow [25].

Predicting the structure of the Lagrangian mean flow in the orbital sloshing configuration is a
difficult task, not only because of the nontrivial viscous boundary layers that generate the streaming,
but also because of the complex dynamics near the contact line. The above scaling argument (1)
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can, however, be readily applied to predict its amplitude, at least in the weakly nonlinear regime.
In a cylinder of radius R, orbitally shaken along a path with circular radius A, and for forcing
frequency � small compared to the natural frequency ω1 of the first sloshing mode of the cylinder,
the nondimensional wave amplitude can be estimated using potential theory as [3,8,9]

u

�R
∼ ε

(ω1/�)2 − 1
, (2)

where ε = A/R � 1 is the nondimensional forcing amplitude. According to Eq. (1), this wave is
therefore expected to generate a Lagrangian mean flow u = ustr + uSto of magnitude

u

�R
∼ ε2

[(ω1/�)2 − 1]2
. (3)

This indicates that the mean flow magnitude increases very rapidly with �, at least as u ∼ �5 far
from the resonance, and that it does not depend on viscosity. This scaling is compatible with the
calculation of Hutton [1], who considered only the Stokes drift associated to the potential flow
solution. However, the Stokes drift solution of Hutton corresponds to a purely azimuthal mean
flow, lacking the poloidal recirculations observed experimentally, so it cannot provide a complete
description of the complex mean flow patterns induced by orbital sloshing.

In this paper, we present a systematic series of experiments to determine the structure and the
scaling of the wave flow and the Lagrangian mean flow in the weakly nonlinear regime. The mean
flow is determined using stroboscopic PIV, i.e., PIV synchronized with the forcing, which naturally
filters out the wave motion. We carefully discuss some key aspects of stroboscopic PIV: being a
particle based method, it measures the Lagrangian mean flow and therefore cannot discriminate the
Stokes drift from the streaming contribution. Moreover, mean flows measured by stroboscopic PIV
are affected by a systematic bias due to the arbitrary phase of the acquisition; we show how this
bias can be removed by making use of the axisymmetry of the mean flow. By varying the forcing
amplitude ε and frequency �/ω1, we show that the amplitude of the global rotation near the center
is well described by Eq. (3) with weak influence of viscosity, and that its structure is compatible
with a dominant Stokes drift contribution. On the other hand, we find that the spatial structure of
the poloidal vortices mostly active near the contact line shows strong variations with viscosity and
forcing frequency. This suggests a strong streaming response to the oscillating boundary layer near
the contact line, a feature that is neglected in all the available theories on streaming induced by
surface waves.

II. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setup is sketched in Fig. 1. A glass cylinder of inner radius R = 51.2 mm is
filled at height H = 111 mm with silicon oil of kinematic viscosity either ν = 50 or 500 mm2 s−1

and surface tension γ = 21 × 10−3 N m−1. The cylinder is located on a transparent plate attached
to an eccentric motor that shakes the entire system at angular frequency � along a circle of radius
A. The motion of the plate is constrained by two linear guide rails in the x and y directions,
ensuring a pure circular translation with no rotation component. We choose the origin of time such
that an arbitrary point of the container follows the path rc(t) = rc(0) + A(cos �t ex + sin �t ey).
In the comoving frame attached to the cylinder, this induces an effective gravitational acceleration
g′(t) = −gez + A�2(cos �t ex + sin �t ey).

The shaking amplitude A is varied between 0.3 and 10 mm with precision 0.1 mm and the shaking
frequency � can be set between 0 and 270 revolutions per minute (rpm) with precision 0.1 rpm.
However, measurements for � < 90 rpm were found to be hindered by weak fluid motions, of
the order of 0.2 mm s−1, due to residual thermal convection in the cylinder, so measurements are
restricted to � > 90 rpm in the following. The surface elevation of the rotating wave is of the order
of 1 mm for � = 90 rpm and reaches 15 mm near the resonance. The capillary length (and hence
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FIG. 1. Experimental setup. The cylinder of radius R = 51.2 mm is filled up to a height H = 111 mm by
silicon oil of kinematic viscosity ν. The entire system is oscillated at a constant frequency � along a circular
trajectory of radius A, maintaining a fixed orientation with respect to an inertial frame of reference. The particle
image velocimetry measurements are performed using a laser sheet (dashed green lines) and a camera fixed in
the laboratory frame. (a) Horizontal measurements in the plane z0/R = −0.23, for the wave flow and the mean
flow, and (b) vertical measurements, for the mean flow only.

the typical size of the meniscus) is λc = √
γ /ρg � 1.5 mm. The good wetting of the oil on the glass

wall ensures that the contact line follows the wave motion with minimum pinning effect.
The system is characterized by five nondimensional numbers,

h = H

R
= 2.17, ε = A

R
∈ [0.006,0.20], Bo = ρgR2

γ
= 1100

Re = �R2

ν
∈ [50,1500], Fr = A�2

g
∈ [0.0027,0.8], (4)

corresponding to the aspect ratio of the cylinder, h; the normalized forcing amplitude ε, the Bond
number Bo, the Reynolds number Re, and the Froude number Fr. The Reynolds number defined
here compares the cylinder radius R to the boundary layer thickness δ = (ν/�)1/2. Its large value
indicates that the wave motion can be considered as essentially inviscid. Note that the Reynolds
number based on the expected mean flow amplitude (3), Res ∼ ε2Re, is small for much of our
experiment, but it can exceed O(1) for the lower fluid viscosity as the resonance is approached,
from which we can anticipate that the mean flow is not necessarily stable (see Sec. IV D). Finally,
the large value of the Bond number, which compares the cylinder radius to the capillary length λc,
indicates that the capillary effects can be neglected in the dispersion relation; this, however, does not
imply that the complex dynamics near the contact line can be neglected in the mean flow generation.

To perform PIV measurements, we seed the fluid with silver-coated neutrally buoyant particles,
and illuminate it by a pulsed laser sheet, either vertical or horizontal (see Fig. 1). To minimize
refraction through the curved wall, the cylinder is immersed in a cubic container, filled with the
same silicon oil. For horizontal measurements [Fig. 1(a)], the flow is imaged from below, and the
laser sheet is located at a height z0 = −12 mm below the surface at rest to avoid intersection of
the laser sheet with the tilted free surface. Images are mirrored in the following to appear in the
right coordinate system (x,y). For vertical measurements [Fig. 1(b)], the laser sheet is emitted from
below, and the flow is imaged from the side, in the plane (y,z), at times �tn = π/2 + 2nπ for which
the cylinder axis crosses the laser sheet.
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Velocity fields are computed from PIV using two different schemes for the wave flow and for the
mean flow:

(i) The wave flow is measured using conventional PIV, i.e., with a time delay between images
that is small compared to the forcing period. This method is essentially insensitive to the mean flow
and provides to a good approximation the Eulerian wave flow.

(ii) The mean flow is measured using stroboscopic PIV, i.e., with image acquisition synchronized
with the forcing, in order to filter out the wave motion. This method, similar to that used recently
by Perinet et al. [20] in Faraday wave experiments, essentially measures the total Lagrangian mean
flow (see Sec. IV).

Since the PIV setup (laser and camera) is in the laboratory frame, measurements of the vertical
structure of the wave flow cannot be performed, so only measurements in a horizontal plane are
achieved. On the other hand, for the mean flow, measurements can be performed both in the
horizontal plane (mean rotation) and in the vertical plane (mean poloidal recirculation), because
the synchronization of image acquisition with the cylinder motion naturally cancels the contribution
due to the cylinder velocity.

Care was taken to ensure the damping of transients before PIV acquisition. Preliminary
experiments have shown that the convergence of the wave flow to a stationary regime is achieved
very rapidly, after fewer than ten forcing periods for ν = 50 mm2 s −1. On the other hand, the
convergence of the mean flow is achieved on a much slower time scale, after typically 1000 forcing
periods (10 min). In the following, we wait at least 10 min between each measurement.

III. ROTATING WAVE FLOW

A. Inviscid potential solution

We briefly recall here the main results of the potential theory, obtained by summing two linear
sloshing modes with π/2 phase shift [3,8]. Noting z = 0 at the fluid surface and z = −H at the
bottom, the velocity potential in the reference frame of the cylinder reads

φ(r,θ,z,t)

�R2
= 2ε sin(θ − �t)

∞∑
n=1

αnJ1(knr/R) cosh[kn(z + H )/R], (5)

with

αn = 1(
k2
n − 1

)
[(ωn/�)2 − 1]J1(kn) cosh(knH/R)

. (6)

In the spatial structure of this potential, we recognize the potential of free gravity waves, with
azimuthal wave number m = 1 and finer structures in the radial direction as n increases. The
numbers kn are the nth zeros of the derivative of J1, the Bessel function of the first kind and first
order (k1 � 1.841,k2 � 5.331, . . .). The natural frequencies of these gravity waves are given by

ω2
n = gkn

R
tanh

(
knH

R

)
. (7)

The velocity field in the reference frame of the cylinder, u = ∇φ, is

ur

�R
= 2ε sin(θ − �t)

∞∑
n=1

αnknJ
′
1(knr/R) cosh[kn(z + H )/R],

uθ

�R
= 2ε cos(θ − �t)

∞∑
n=1

αnkn

J1(knr/R)

knr/R
cosh[kn(z + H )/R],

uz

�R
= 2ε sin(θ − �t)

∞∑
n=1

αnknJ1(knr/R) sinh[kn(z + H )/R]. (8)
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Obviously, the linear potential theory only holds for � far from the natural frequencies ωn, since
otherwise αn → ∞ and viscous or nonlinear effects must be considered to regularize the theory. For
low forcing frequencies � � ω1, far enough under the first resonance, the wave is dominated by the
first mode n = 1. We see that in this regime the wave amplitude scales as Eq. (2), as discussed in
the Introduction. In the following we use (ε,�/ω1) as control parameters; the normalized frequency
�/ω1 is trivially related to Fr, h, and ε, but is of more practical use. In our setup, the frequency of
the first resonance is ω1 = 180 rpm and we can cover the interval �/ω1 ∈ [0.5,1.5].

Viscous effects are absent in this potential model, but we expect that, in the limit of large Re
and far enough from resonance, the inviscid linear solution (8) provides a reasonable description of
the wave flow far from the boundaries. Near the wall and under the free surface, boundary layers
of thickness δ = √

ν/� develop in order to meet no-slip and free-surface boundary conditions. We
expect that viscous damping therein reduces the wave amplitude and introduces a phase shift with
respect to the forcing, as observed in the linear sloshing problem [26].

B. Experimental measurements

To measure the wave component of the flow, we use conventional particle image velocimetry: at
each period n of the forcing, two images separated by a small time lag δt are acquired, at times �t±n =
π/2 + 2πn ± �δt/2. The time lag δt = t+n − t−n is chosen such that the typical particle displacement
is a fraction of the window size used in the PIV computation. For each period n the velocity field is
computed from these two images, and the resulting set of velocity fields is averaged over 100 periods.
Since the measurements are performed in the laboratory frame, the measured velocity field includes
the velocity of the cylinder, uc(tn) = drc/dt(tn) = A�[− sin(�tn)ex + cos(�tn)ey] = −A�ex [see
Fig. 2(a)]. We simply deduce the wave velocity field in the cylinder frame by subtracting uc from
the measured velocity fields.

Figures 2(c) and 2(d) show the wave fields for the two fluid viscosities ν = 50 and 500 mm2 s−1,
obtained for a forcing frequency �/ω1 = 0.67 and amplitude A = 2.9 mm (ε = 0.057). The
corresponding Reynolds numbers are Re = 660 and 66, respectively. These wave fields are in good
qualitative agreement with the potential solution, shown in Fig. 2(b), except for two features: First,
boundary layers are clearly visible at the cylinder wall, of typical thickness 4 and 12 mm, respectively,
which corresponds to �2.5

√
ν/�. Second, we observe a significant phase delay between the wave

velocity and the cylinder velocity (which is along −ex at this phase), of order � � 30o for the larger
viscosity case. Such phase delay was also reported by Ducci and Weheliye [14], for different fluid
viscosity and aspect ratio.

The amplitude and the phase delay of the wave field have been systematically measured for a
forcing frequency �/ω1 in the range 0.5–1.5, at a fixed forcing amplitude ε = 0.057. Figure 3(a)
compares the wave amplitude, defined as the norm of the horizontal velocity at the center, |u⊥|(r =
0) = √

u2
r + u2

θ , to the potential theory,

|u⊥|(r = 0,z = z0)

�R
= ε

∞∑
n=1

αnkn cosh[kn(z0 + H )/R], (9)

obtained by taking J1(x) � x/2 for x → 0 in Eq. (8). A good agreement is found at moderate
forcing frequency, in the narrow range �/ω1 ∈ [0.6,0.8]. For lower frequency, the determination of
the wave velocity is limited by the subtraction of the cylinder velocity |uc|/�R = ε, which becomes
larger than the wave velocity. At larger frequency, the measured wave amplitude is smaller than the
potential prediction, which diverges at �/ω1 = 1. For the larger viscosity, the divergence is clearly
smoothed, with a maximum wave amplitude shifted at �/ω1 � 1.1. For the smaller viscosity, there
is a range of frequency around the resonance, �/ω1 ∈ [1.05,1.25], in which the wave amplitude
is too strong and cannot be measured by PIV (the free surface intersects the laser sheet). Outside
this range we observe an asymmetric resonance curve, which can be attributed to a hysteresis of the
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FIG. 2. (a) Orbital motion of the cylinder; the velocity fields in (b)–(d) are taken at phase ϕ0 = π/2, for
which the cylinder velocity uc is along −ex . (b) Potential flow solution. (c), (d) Experimental wave field in
the frame of the cylinder, measured at a distance z0/R = −0.23 below the surface, for forcing frequency
�/ω1 = 0.67, forcing amplitude ε = A/R = 0.057, and fluid viscosity (c) ν = 50 and (d) ν = 500 mm2 s−1.
The color map represents the norm of the horizontal velocity.

wave above the resonance (only measurements for increasing forcing frequency are shown), in good
agreement with the results of Reclari et al. [3].

The phase delay � between the forcing and the wave velocity, defined as the angle between the
fluid velocity at the center of the cylinder and −ex , is plotted in Fig. 3(b) as a function of the forcing
frequency. According to the potential theory, the wave is in phase with the forcing for � < ω1

(� = 0), and out of phase for � > ω1 (� = 180o). Here again, we observe a good agreement with
the theory far from the resonance, and a viscous smoothing of the phase jump near �/ω1 � 1.

Finally, the linear scaling with respect to the forcing amplitude ε in Eq. (2) is checked by varying
ε in the range 0.006–0.20 at fixed forcing frequency �. Results are plotted in Fig. 3(c) for the most
viscous fluid. We find a good agreement between experiments and the potential prediction (9) at
moderate frequency, �/ω1 = 0.67 and 0.78, over the whole range of ε. At larger frequency, however,
the wave amplitude is below the potential theory, and the linear increase with ε starts to saturate for
the largest values of ε.
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FIG. 3. (a) Norm of the wave velocity measured at r = 0, z0/R = −0.23, as a function of the forcing
frequency �/ω1 at a fixed forcing amplitude ε = 0.057, for the two fluid viscosities. In the range �/ω1 ∈
[1.05,1.25] for ν = 50 mm2 s−1 the wave amplitude is too strong for PIV measurement and is subject to
hysteresis. (b) Phase delay � between the forcing and the wave field at r = 0. (c) Norm of the wave velocity as
a function of the forcing amplitude ε at three values of the forcing frequency, for ν = 500 mm2 s−1. Solid lines
show the potential theory prediction (9).

IV. MEAN MASS TRANSPORT

A. Interpreting stroboscopic PIV measurements

We now turn to the Lagrangian mean flow u generated by the orbital sloshing wave in the range
of parameters (ε,�/ω1) for which the potential theory provides a reasonable description of the wave
flow. This Lagrangian mean flow contains both the Eulerian steady streaming contribution ustr and
the Stokes drift contribution uSto, which cannot be discriminated by stroboscopic PIV measurements.
It is instructive to see why.

Let u + ustr be the total Eulerian velocity field, composed of the time-periodic wave flow u(x,t) of
order ε and the steady streaming flow ustr(x) of order ε2. We consider a particle that follows the path
X(t) and is imaged at positions X(tn),X(tn+1) at times tn,tn+1 separated by one period T = 2π/�

(see Fig. 4). The mean Lagrangian velocity of the particle, as measured by stroboscopic PIV (SPIV),
then corresponds to

uSPIV = X(tn+1) − X(tn)

T
= 1

T

∫ tn+1

tn

[u(X(t),t) + ustr(X(t))] dt. (10)
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particle strobed at ϕ0

particle strobed at ϕ0+ π

mean flow

X

FIG. 4. In the weakly nonlinear regime, the particle trajectory (thick black line) is the sum of a strong
oscillating flow u, of order ε, and a weak mean flow u (dashed green line), of order ε2; the mean flow
contribution is exaggerated here for clarity. When imaged at a given phase of the wave (here ϕ0 in red and
ϕ0 + π in blue), stroboscopic PIV introduces a systematic bias of order ε3 in the determination of the mean
flow. The true mean trajectory X(t) can be reconstructed by averaging the particle displacements over the two
phases.

We introduce a first-order estimate of the trajectory:

X(t) ≈ X + η(X,t) + O(ε2), η(X,t) =
∫ t

tn

u(X,t ′) dt ′. (11)

Here X is the average particle position over that period and the field η is the particle excursion of
order ε, around this mean position. We use this estimate of X(t) to reexpress the integrand of Eq. (10)
using a Taylor expansion around the mean position X. Using the periodicity of u(X,t) and η(X,t)
we find that

uSPIV = ustr(X) + 1

T

∫ tn+1

tn

η · ∇u|X dt︸ ︷︷ ︸
uSto(X)

+O(ε3). (12)

The leading-order contribution is therefore the sum of the streaming velocity ustr and the Stokes drift
contribution uSto, which cannot be separated in stroboscopic PIV measurements.

B. Theoretical predictions for uSto and ustr

The Stokes drift uSto far from the boundaries can be computed to a good approximation from the
inviscid wave solution [1]. Denoting u = v exp(i�t) + c.c., we have η = v exp(i�t)/(i�) + c.c.,
and the Stokes drift can be simply expressed as

uSto = 2

�
Im(v · ∇v∗), (13)

where Im stands for imaginary part and the stars indicate complex conjugate. Using this formula, it
is easy to see that only the azimuthal component of the drift,

uSto,θ = 2

�
Im

(
vr

∂v∗
θ

∂r
+ vθ

r

∂v∗
θ

∂θ
+ vz

∂v∗
θ

∂z
+ vθv

∗
r

r

)
,

084801-9



BOUVARD, HERREMAN, AND MOISY

is nonzero and equal to

uSto,θ = ε2

{[+∞∑
n=1

αn

k2
n

2
[J1(· · · ) + J3(· · · )] cosh(· · · )

][+∞∑
n=1

αnknJ2(· · · ) cosh(· · · )

]

+
[+∞∑

n=1

αnk
2
n[J0(· · · ) + J2(· · · )] sinh(· · · )

][+∞∑
n=1

αnknJ1(· · · ) sinh(· · · )

]}
,

(14)

where the omitted arguments of the Bessel and hyperbolic functions are knr/R and kn(z + H )/R,
respectively. This purely azimuthal inviscid Stokes drift indicates that the poloidal recirculations
found in the experiment can only be due to the steady streaming flow or to viscous corrections of
the Stokes drift.

The steady streaming flow ustr is difficult to calculate and requires a dedicated analysis that is
out of the scope of the present article. It is, however, useful to get an idea about the structure of
this calculation. Streaming is the reaction of the flow to time-averaged nonlinear stresses u · ∇u, but
since inviscid potential waves cannot induce mean vorticity [∇ × (u · ∇u) = ∇ × (∇|u|2/2) = 0
for inviscid potential waves] it is necessary to consider nonlinear interactions in the viscous boundary
layers to find the origin of the streaming.

In the orbital shaking problem, there are four different boundary regions in which the viscous
boundary layers strongly differ: (a) near the rigid walls, (b) near the free surface, (c) in corners
of the rigid walls, and (d) near the contact line. In practice, only the layers in regions (a) and (b)
are analytically tractable using multiscale expansions, and regions (c) and (d) are almost never
considered. In the most advanced theoretical models on streaming induced by oscillatory boundary
layers under waves (see, e.g., Refs. [20,23,27]), nonlinear interactions in regions (a) and (b) are
calculated using matched asymptotics. This gives rise to a set of boundary conditions that serve
as input to solve numerically the Craik-Leibovich equation [19] in the bulk of flow. In the weak
streaming limit inertia can be neglected and this equation reduces to a simple Stokes problem. In the
strong streaming limit, however, all nonlinear terms, even the nonlinear interaction that involves the
Stokes drift, must be accounted for.

A major difficulty in computing the streaming flow in the orbital sloshing configuration is the
complexity of the flow in region (d) near the contact line, where the wave amplitude is the largest. The
natural choice of a stress-free condition at the surface with no pinning of the contact line at the wall
is extremely difficult to achieve experimentally: even slight surface contamination may dramatically
change the boundary conditions and hence the resulting streaming flow [20,27]. Although the use of
silicon oil in the present experiment is expected to minimize surface contamination effects, a pure
stress-free condition can certainly not be guaranteed.

C. Phase bias in stroboscopic PIV measurements

The mean flow measured by stroboscopic PIV is shown in Fig. 5, in the horizontal plane (at a
distance z0/R = −0.23 below the free surface) and in the vertical plane. The mean flow is mainly
azimuthal, but with a slightly off-centered minimum velocity. The recirculation in the vertical plane,
mostly active in the upper half of the cylinder, is composed of a nearly axisymmetric toroidal
vortex, ascending near the cylinder wall and descending along the axis, together with a strong
nonaxisymmetric surface current. For these parameters (�/ω1 = 0.67, ε = 0.057), the azimuthal
velocity is �2 × 10−3 �R, and the radial and vertical velocities are �6 × 10−4 �R: as expected this
mean flow is much smaller than the wave flow, which is of order of 5 × 10−2 �R here (see Fig. 3).

The axisymmetry breaking in the mean flow originates from a bias in the stroboscopic PIV method,
which we illustrate in Fig. 4: The particle displacement during one oscillation period contains, for
a nonhomogeneous wave flow, a contribution which depends on the arbitrary acquisition phase
ϕ0. This highlights a real subtlety in stroboscopic PIV: although the previous manipulations (12)
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FIG. 5. Mean flow measured by stroboscopic PIV at phase ϕ0 = π/2, (a), (c) in the horizontal plane at
z0/R = −0.23 below the free surface, and (b), (d) in the vertical plane. Forcing frequency �/ω1 = 0.67,
amplitude ε = 0.057, and viscosity ν = 500 mm2 s−1. The upper line (a), (b) shows the raw velocity fields, and
the lower line (c), (d) shows the symmetrized velocity fields using Eq. (16) to account for the wave contribution.

show that uSPIV provides a measure of the Lagrangian mean flow, we do not precisely know
where that mean flow vector should attach—in X, Xn, Xn+1, or somewhere in between. Although
the mean particle position X is the most defendable choice, image correlation naturally locates
the vector uSPIV at the phase-dependent particle positions, say at Xn. Constructing the PIV field
from these pointwise measurements therefore introduces a systematic bias, which can be expressed
mathematically through the following Taylor expansion:

uSPIV(Xn) = uSPIV(X + η(X,tn) + O(ε2))

= uSPIV(X) + η(X,tn) · ∇uSPIV|X + O(ε2). (15)

Attaching the mean flow vector to the instantaneous position Xn rather than to the mean position
X pollutes the mean flow measurement with a systematic bias η · ∇uSPIV that relates to the particle
displacement η(X,tn) and to the spatial gradient of the mean flow field in that direction. With uSPIV

of order ε2, the bias η · ∇uSPIV is of order ε3. In principle, it is possible to reconstruct the field
uSPIV(X) by averaging stroboscopic measurements at many different phases. This costly procedure
is, however, technically impossible in our experiment because the PIV setup is in the laboratory
frame and only the two phases when the cylinder axis crosses the laser sheet can be measured.
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FIG. 6. Amplitude of the modes m = 0 (◦) and m = 1 (�) of the azimuthal mean flow at radius r0 = R/2
and height z0 = −0.23R, as measured by stroboscopic PIV, as a function of the forcing frequency �/ω1 at a
fixed forcing amplitude ε = 0.057, for viscosity ν = 500 mm2 s−1. The lines show the best fits with the laws
ε2/[(ω1/�)2 − 1]2 and ε3/[(ω1/�)2 − 1]3, respectively.

Even though we cannot filter the bias a whole, we can still filter out the largest contribution to it,
which is dominated by the azimuthal wave number m = 1. Given one biased SPIV field uSPIV(r,θ,z)
obtained at any arbitrary phase, we can calculate

u(r,θ,z) = 1
2 (uSPIV(r,θ,z) + uSPIV(r,θ + π,z)). (16)

In the horizontal plane, we simply rotate the measured field over π , and in the vertical plane we apply
a mirror symmetry with respect to the axis r = 0. This procedure cancels all odd m contributions
to the flow field, but leaves all even m contributions invariant, reducing the bias to order ε4. The
validity of this procedure is illustrated in Fig. 6. We have decomposed the azimuthal component of
the raw SPIV field, measured along the radius r0 = R/2 at height z0 = −0.23R, as

uSPIV,θ (θ ; r0,z0) = U
(0)
θ + U

(1)
θ cos(θ − θ0)

(with θ0 an arbitrary phase). The two modal contributions, U
(0)
θ and U

(1)
θ , plotted as a function

of the forcing frequency �/ω1 at fixed forcing amplitude ε, indeed show the expected scaling,
ε2/[(ω1/�)2 − 1]2 and ε3/[(ω1/�)2 − 1]3. Applying Eq. (16) therefore conserves the leading
axisymmetric U

(0)
θ contribution and removes the U

(1)
θ correction.

The reconstructed mean flow fields, symmetrized using Eq. (16), are shown in Figs. 5(c) and 5(d).
The poloidal recirculation flow in the vertical plane now appears as two vortices, an upper one with
ascending flow along the axis (previously hidden by the wave contribution), and a lower one with
descending flow along the axis, separated by a stagnation point at z/R � −0.65. Note the intense
oblique jets that sprout from the contact line region. This picture shows that the radial component in
the horizontal plane strongly depends on the height of the measurement plane. For the plane chosen
here, z0/R = −0.23, we have ur � 0 near the center and ur < 0 at the periphery, but other situations
may be encountered for other values of z (in particular ur > 0 at the free surface).

D. Dependence of the mean flow pattern with governing parameters

We have systematically measured the mean flow for the two fluid viscosities, for a forcing
amplitude ε = 0.057. Here measurements are performed over a restricted range of forcing
frequencies, �/ω1 ∈ [0.5,0.8], for which the wave flow is well described by the linear scaling (2)
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FIG. 7. Stream function of the mean flow in the vertical plane, for ε = 0.057, for the two fluid viscosities,
ν = 500 and 50 mm2 s−1 (ω1R

2/ν = 100 and 1000, respectively), showing the poloidal recirculation vortices
active near the contact line.

(see Fig. 3). The mean flow for higher frequencies could not be measured using stroboscopic PIV,
because of the particles swept out of the measurement plane after one oscillation period.

The results are summarized in Fig. 7, showing the axisymmetric (Stokes) stream function in the
vertical plane, and in Fig. 8, showing the radial profiles of the radial and azimuthal components
normalized by the maximum azimuthal component at z0/R = −0.23. For both viscosities, the
azimuthal velocity profiles are remarkably independent of the forcing frequency. The mean flow is
nearly in solid-body rotation near the center, rotating in the direction of the orbital shaking: u � ω0reθ
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FIG. 8. Radial and azimuthal velocity profiles of the mean flow normalized by the maximum azimuthal
velocity, measured at z0/R = −0.23 for ε = 0.057: (a) ν = 50 mm2 s−1 and (b) ν = 500 mm2 s−1.
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FIG. 9. Mean angular velocity ω0 at r = 0, z0/R = −0.23, (a) as a function of the forcing frequency �/ω1

at a fixed forcing amplitude ε = 0.057, for the two fluid viscosities, and (b) as a function of the forcing amplitude
ε at three values of the forcing frequency, for ν = 500 mm2 s−1. Solid lines show the weakly nonlinear scaling
law (17).

for r/R < 0.3, with ω0 > 0 the mean angular velocity. At larger radius, the mean azimuthal velocity
decreases and the three velocity components become of the same order, marking the presence of a
strong poloidal recirculation vortex near the contact line, where the wave amplitude is larger. This
seems to be a very robust feature, at least for the fluid with lowest viscosity. A secondary poloidal
recirculation vortex of weaker amplitude, located either below or at smaller radius than the primary
vortex, is also present. The location and the rotation of these vortices are found to depend both on the
viscosity and forcing frequency. As a result, the mean surface velocity near the wall may be either
outward (mostly in the viscous case or at moderate forcing frequency) or inward, with the formation
of a stagnation circle at the surface in some cases.

Given that the structure of the wave flow does not change much in the studied range of
parameters, it is unlikely that the weak streaming limit can explain the observed strong variation
of the poloidal mean flow structure. Indeed, the (streaming) Reynolds number based on the mean
flow, Res = uR/ν, is in the range 0.03–1 for ν = 500 mm2 s−1, and 0.3–10 for ν = 50 mm2 s−1,
indicating that the criterion Res � 1 for the weak streaming limit is reasonably satisfied for the
more viscous fluid, but not for the less viscous fluid. Accordingly, the variability of the complex
patterns of poloidal streaming flow in Fig. 7 may originate from nonlinearities in the streaming
flow.

The strong dependence of the poloidal flow with the governing parameters makes quantitative
comparison with the literature difficult. We can note that the present results are in qualitative
agreement with some previous experimental [13] and numerical [15] studies, although obtained for
different aspect ratio and ranges of parameters. Weheliye et al. [13] observed, in a flat cylinder
of aspect ratio H/R = 0.6 filled with water forced at �/ω1 = 0.56, a single poloidal vortex with
ascending velocity along the axis, compatible with the observed trend for increasing Reynolds
number. In a cylinder of aspect ratio H/R = 2 and a weak forcing frequency of �/ω1 = 0.21,
Kim and Kizito [15] observed a similar toroidal vortex with ascending fluid along the axis at
small viscosity (ν < 3 mm2 s−1), and the formation of an additional counter-rotating poloidal
vortex near the wall at larger viscosity (ν > 10 mm2 s−1), which again is compatible with our
observations.

We now turn to the scaling of the mean flow amplitude as a function of the forcing frequency and
amplitude. We characterize the mean flow by its dominant azimuthal contribution near the center: we
compute the angular velocity, ω0 = limr→0 uθ (r)/r , at depth z0/R = −0.23. The angular velocity,
normalized by the forcing frequency �, is plotted as a function of �/ω1 in Fig. 9(a), and as a
function of the forcing amplitude ε in Fig. 9(b). We first note that the range of variation of ω0 is
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considerable: it varies over almost two orders of magnitude in the small range of forcing frequency
explored here. Here again, measurement ranges are limited by the sweeping of the particles out of
the measurement plane after one period for large values of ε and �, and by residual thermal motion
for small values of ε and �. In practice, the largest measurable angular velocity using stroboscopic
PIV is ω0 � 10−2�; i.e., the fluid performs one complete rotation after 100 forcing periods.

The amplitude of the mean angular velocity is finally compared with the weakly nonlinear scaling
law (3), written in the form

ω0

�
= K

ε2

[(ω1/�)2 − 1]2
, (17)

with K a tunable nondimensional constant. In spite of its simplicity, this scaling provides a remarkable
description of the data. Viscosity is found to slightly enhance the mean flow, an effect which cannot
be accounted for by Eq. (17): best fits with respect to �/ω1 at fixed ε, shown in Fig. 9(a), yield
K � 1.1 ± 0.1 for ν = 50 mm2 s−1 and K � 1.5 ± 0.1 for ν = 500 mm2 s−1. The ε2 scaling is also
tested in the case ν = 500 mm2 s−1, in Fig. 9(b), using the same value of K as in Fig. 9(a). A good
overall agreement is obtained at moderate forcing frequency, whereas a mean flow slightly smaller
than predicted is obtained as the resonance is approached, which is consistent with the weaker wave
amplitude observed in Fig. 3.

It is interesting to compare the fitted values of K with the one we would get with the Stokes
drift alone predicted for the potential wave solution (i.e., with no Eulerian steady streaming). From
Eq. (14), and retaining only the first term n = 1, we have

KSto � k4
1

2
(
k2

1 − 1
)2

J 2
1 (k1)

sinh2(k1(H + z0)/R))

cosh2(k1H/R)
� 1.25, (18)

which is remarkably close to the experimental data, suggesting that the mean zonal circulation is
predominantly due to the Stokes drift. This might also explain why this mean azimuthal flow is
more robust than the poloidal recirculation: the Stokes drift being a kinematic effect associated to
the wave, it will be essentially not affected by the instabilities of the streaming flow.

V. CONCLUSION

In this paper we characterized the wave flow and the Lagrangian mean flow in an orbitally shaken
cylinder in the weakly nonlinear regime. The wave flow, measured by conventional PIV, shows a
spatial structure in the bulk and a scaling in amplitude close to the potential prediction for forcing
frequency far from the resonance, �/ω1 < 0.8, except for a significant phase delay which increases
with viscosity. The Lagrangian mean flow, measured by stroboscopic PIV, is composed of a robust
global rotation near the center, and poloidal recirculation vortices mostly active near the contact
line. Far from resonance, the amplitude of the central rotation is well described by a simple weakly
nonlinear scaling law, quadratic in forcing amplitude, with a weak dependence on viscosity. This
central rotation can be primarily attributed to the Stokes drift, whereas the poloidal recirculation
flow is subject to a series of bifurcations, with changes in the number of vortices depending on the
control parameters of the flow, suggesting unstable streaming flow.

Only scarce comparisons can be performed with literature at the moment, and a full description
of the steady streaming flow, even in the weakly nonlinear regime, is not available yet. Such a
model would require one to build the viscous sloshing modes of the container and to compute from
them the momentum transfer from the boundary layer region to the bulk. This is a difficult task for
three-dimensional flows with free boundaries [20,23], even in the weak streaming limit, uR/ν � 1.
Considering the complexity and variation of the steady streaming flows observed here, we anticipate
that the weak streaming limit likely cannot capture all the observed patterns, and that a nonlinear
Craik-Leibovich model [19] is required.
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Computing the streaming flow in the orbital sloshing flow is a formidable task, because it
requires a proper description of the wave flow near the contact line. This specificity has been ignored
in Refs. [20,23], but here our observations suggest that this contact line region, where the wave
amplitude is the largest, might well be crucial in understanding the spatial structure of the poloidal
recirculation. Another difficulty may arise from possible surface contamination effects [18,27,28]
that can be difficult to control in experiments. In Faraday wave experiments performed in water,
Perinet et al. [20] found strong differences between the observed mean flow patterns and the
theoretical predictions, which they attributed to surface contamination. Although the use of silicon
oil in the present experiments is expected to minimize surface contamination and pinning effects, it
is known that a pure free-slip boundary condition at the surface is extremely difficult to achieve, and
that departure from this ideal situation may strongly influence the resulting steady streaming flow.
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