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We investigate experimentally the early stage of the generation of waves by a turbulent
wind at the surface of a viscous liquid. The spatio-temporal structure of the surface
deformation is analyzed by the optical method Free Surface Synthetic Schlieren,
which allows for time-resolved measurements with a micrometric accuracy. Because
of the high viscosity of the liquid, the flow induced by the turbulent wind in the
liquid remains laminar, with weak surface drift velocity. Two regimes of deforma-
tion of the liquid-air interface are identified. In the first regime, at low wind speed,
the surface is dominated by rapidly propagating disorganized wrinkles, elongated in
the streamwise direction, which correspond to the surface response to the pressure
fluctuations advected by the turbulent airflow. The amplitude of these deformations
increases approximately linearly with wind velocity and are essentially independent
of the fetch (distance along the channel). Above a threshold in wind speed, we observe
the growth of well defined gravity-capillary waves with crests nearly perpendicular to
the wind direction. In this second regime, the wave amplitude increases with wind
speed but far more quickly than in the first regime. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4936395]

I. INTRODUCTION

Understanding the generation of surface waves under the action of wind is an old problem which
is of primary interest for wave forecasting and to evaluate air-sea exchanges of heat, mass, and mo-
mentum on Earth1,2 or on natural satellites.3,4 It is also important in engineering applications involving
liquid and gas transport in pipes.5 Despite the considerable literature on the subject, the physical
mechanism for the onset of the first ripples at low wind velocity is still not fully understood. Russell,6

as quoted by Kelvin,7 nicely described the first regime where a very slight wind first destroys the
perfect mirror reflection of the water surface, followed by a second regime for slightly larger wind
where waves are observed. The first attempt to explain the wind-wave formation was proposed by
Helmholtz and Kelvin,7,8 and the Kelvin-Helmholtz instability is now a paradigm for instabilities in
fluid mechanics. However, Kelvin was aware of the discrepancy between the predicted critical wind
of 6.6 m s−1 and the commonly observed minimal wind of the order of 1 m s−1 for the first visible
ripples on a calm sea.9 He ascribed this discrepancy to viscous effects, which were not taken into
account in the model. Since then, numerous attempts to better predict the onset of wind waves were
proposed, still with limited success.

Among the large body of literature on the subject, pioneering theoretical contributions are those
of Phillips10 and Miles.11 In an enlightening paper, Phillips10 analyzed how pressure fluctuations in
the turbulent air boundary layer could deform an otherwise inviscid fluid at rest. He suggested that the
pressure perturbations whose size and phase velocity match that of the waves are selectively amplified
by a resonance mechanism and obtained a linear growth in time of the squared wave amplitude. The
same year, Miles11 proposed another mechanism based on the shear flow instability of the mean air
velocity profile, ignoring viscosity, surface tension, drift of the liquid and turbulent fluctuations. From
a temporal stability analysis, he showed that the boundary layer in the air is unstable if the curvature
of the velocity profile is negative at the critical height at which air moves at the phase velocity of
the waves, resulting in an exponential growth in time of the wave amplitude. An effort to classify the
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various instability mechanisms in parallel two-phase flow, including Miles’, is proposed in the review
by Boomkamp and Miesen.12

Since then, many attempts have been made to test these predictions13–17 or to improve these
models,18–22 with no definitive conclusion at the moment. While several experiments were devoted
to determine the temporal growth of the wave after a rapid initiation of the wind,23–25 other tested the
amplification by wind of mechanically generated waves26–30 or the wave formation by a laminar air
flow.30–32 Since the boundary layers in both fluids are generally turbulent in the case of the air-water
interface,33–36 some authors simplified the problem by considering more viscous liquids.27,31,37–39

With an airflow above a liquid more viscous than water, the wave onset is larger and, paradoxically,
in better agreement with the inviscid Kelvin-Helmholtz prediction.31,38,40

Rapid progresses in numerical simulations have made it possible now to address the coupled
turbulent flows of air and water and their effect on the interface, and to access the pressure and stress
fields hardly measurable in experiments.41 On the experimental side, recent improvements in optical
methods have opened the possibility to access experimentally the spatio-temporal structures of the
waves with unprecedented resolution.42,43

In the present work, we take advantage of this technical improvement to analyze the early stage
of wave formation at the surface of a viscous liquid. Surface deformations are measured with a
vertical resolution better than one micrometer using Free-surface Synthetic Schlieren (FS-SS),42 a
time-resolved optical method based on the refraction of a pattern located below the fluid interface.
Working with a viscous liquid has two advantages: first, the flow in the liquid remains laminar and
essentially unidirectional with a limited surface drift; second, the perturbations of the interface that
are not amplified by an instability mechanism are rapidly damped, so the surface deformations at low
wind velocity are expected to be the local response in space and time to the instantaneous pressure
fluctuations in the air. Our results clearly exhibit two wave regimes: (i) at low wind velocity, small
disordered surface deformations that we call “wrinkles” first appear, elongated in the streamwise
direction, with amplitude growing slowly with the wind velocity but with no significant evolution with
fetch (the distance upon which the air blows on the liquid); (ii) above a well defined wind velocity,
a regular pattern of gravity-capillary waves appears, with crests normal to the wind direction and
amplitude rapidly increasing with wind velocity and fetch.

II. EXPERIMENTAL SETUP

A. Liquid tank and wind tunnel

The experimental setup is sketched in Fig. 1. It is composed of a fully transparent Plexiglas rect-
angular tank of length L = 1.5 m, width W = 296 mm, and depth h = 35 mm, fitted to the bottom of
a horizontal channel of rectangular cross section. The channel width is identical to that of the tank,

FIG. 1. Experimental setup. The wave tank and the wind tunnel are connected to the upstream air flow via a flexible coupling
to minimize transmission of vibrations induced by the centrifugal fan. The surface deformations are measured by Free-Surface
Synthetic Schlieren, by imaging from above a pattern of random dots located below the liquid tank.
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and its height is H = 105 mm, with two horizontal floors of length 26 cm before and after the tank.
The tank is filled with a water-glycerol mixture, such that the surface of the liquid precisely coincides
with the bottom of the wind tunnel.

Air is injected upstream by a centrifugal fan through a honeycomb and a convergent (ratio 2.4
in the vertical direction). To minimize transmission of vibrations induced by the fan, the wind-tunnel
is mounted on a heavy granite table and connected to the upstream channel via a flexible coupling.
Residual vibrations induce surface deformations less than 1 µm. The wind velocity Ua, measured at
the center of the outlet of the wind tunnel with a hot-wire anemometer, can be adjusted in the range
1–10 m s−1. We define x in the streamwise direction (fetch), y in the spanwise direction, and z in the
vertical direction. The origin (0,0,0) is located at the free surface at fetch 0, at mid-distance between
the lateral walls.

The tank is filled with a mixture of 80% glycerol and 20% water, of density ρ = 1.20 × 103 kg m−3

at 25 ◦C (the room temperature being regulated to this temperature). Kinematic viscosity, measured
with a low shear rheometer, is ν = η/ρ = 30 × 10−6 m2 s−1 at this temperature. The water-glycerol
mixture is extremely sensitive to surface contamination, which may induce strong surface tension
gradients and alter both the mean flow in the liquid and the generation of waves.14 To overcome this
problem, we let the wind blow for a few minutes, and we remove the contaminated part of the surface
liquid by collecting it at the end of the tank. The procedure is repeated frequently, and in normal
operating conditions, the surface of the liquid remains clean over most of the liquid bath, with less
than 30 cm of polluted surface remaining at the end of the tank. Surface tension of the clean mixture,
measured with a Wilhelmy plate tensiometer, is γ = 60 ± 5 mN m−1, and the capillary wavelength is
λc = 2π


γ/ρg ≃ 14.2 mm. The dispersion relation for free surface waves propagating in an inviscid

liquid at rest is

ω2 =

(
gk +

γ

ρ
k3

)
tanh(kh), (1)

where ω and k are the angular frequency and wave number. Finite depth effects can be neglected
in the present experiment: the depth correction factor, tanh(kh), is larger than 0.98 for wavelength
smaller than 90 mm. In spite of the large viscosity used in our experiments, viscous correction to the
inviscid dispersion relation can be also neglected here:44,45 the phase velocity matches the inviscid
prediction to better than 10−3 for the waves observed at onset (λ ≃ 30–40 mm). On the other hand,
this large viscosity induces a strong attenuation of the waves. For the wave tank geometry and the
typical wavelengths considered here, friction with the bottom and side walls is negligible, and the
attenuation length for free waves is governed by the dissipation in the bulk,46 Lv = cg/(2νk2), with
cg(k) the group velocity. For λ ≃ 30 mm, the attenuation length is Lv ≃ 60 mm, indicating that a free
disturbance at this wavelength cannot propagate over a distance much larger than a few wavelengths.
As a consequence, although the tank is of limited size, reflections on the walls or at the end of the
tank can be neglected in our experiment.

B. Wind profile

The velocity profile in the air U(z), measured using hot-wire anemometry, is shown in Fig. 2 for
a wind velocity Ua = 3.9 m s−1 at fetch x = 20, 500, and 1000 mm. The hot-wire (Dantec Dynamics
55P01) is 5 µm in diameter with an active length of 1.25 mm and is mounted on a sliding arm to allow
vertical motion with a 0.1 mm accuracy. The velocity profiles show the development of the boundary
layer along the channel: the thickness δ0.99 defined as the distance from the surface at which the mean
velocity is 0.99Ua, increases nearly linearly, from 12.6 mm at x = 0 to 32 mm at x = 1.0 m (slope of
order of 2%). The fact that δ0.99(x) approaches the channel half-height H/2 ≃ 52 mm at the end of
the channel indicates that the flow becomes fully developed there.

The evolution of the friction velocity u∗(x) along the channel can be obtained by fitting the ve-
locity profiles for z < δ0.99(x) with the classical logarithmic law,13,47

U(x, z)
u∗(x) =

1
κ

ln
(

z
δv(x)

)
+ C, (2)
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FIG. 2. Mean velocity profiles U (z) in the air for Ua = 3.9 m s−1 at fetch x = 20, 500, and 1000 mm and y = 0. The dotted
line shows the streamwise development of the 99% boundary-layer thickness, δ0.99(x)≃ 12.6 mm+0.02x. The curves for
z < δ0.99(x) show the fit with logarithmic law (2).

with κ ≃ 0.4 the Kármán constant, C = 5, and δv(x) = νa/u∗(x) the thickness of the viscous sublayer.
We find u∗ to slightly decrease with fetch: for Ua = 3.9 m s−1, u∗ decreases from 0.22 m s−1 at x ≃ 0
down to 0.17 m s−1 at x = 1 m. Accordingly, δv(x) slightly increases with fetch, from 0.07 to 0.09 mm.

The procedure is repeated for different wind velocities at a fixed fetch, x0 = 500 mm. Measure-
ments are restricted to Ua < 6 m s−1, when the surface deformations remain weak (less than 10 µm),
because the hot-wire could not be positioned too close to the liquid. We find that in this range, u∗ is
almost proportional to Ua, u∗(x0) ≃ 0.05Ua (see inset in Fig. 3). The corresponding half-height chan-
nel Reynolds number at this fetch, Reτ = Hu∗/2νa, varies in the range 160–1000, and the thickness
of the viscous sublayer δv decreases from 0.3 to 0.05 mm when Ua increases from 1 to 6 m s−1. Since
the flow in the viscous sublayer is essentially laminar up to z ≃ 10δv, which is comfortably larger
than any surface deformation over this range of velocity, we can consider the air flow to be close to a
canonical turbulent boundary over a no-slip flat wall, at least for a wind velocity up to 6 m s−1. This

FIG. 3. Mean velocity profiles in the liquid measured by PIV at fetch x = 400 mm for various wind velocities Ua. The
profiles are averaged in time and in the streamwise direction over ∆x = 100 mm. The continuous line for the largest value
of Ua shows quadratic profile (3). Inset: friction velocity u∗, deduced from the mean profile in the airflow at x0= 500 mm
(squares) and deduced from the shear stress at the liquid surface (Eq. (4)) (circles), as a function of the wind velocity Ua.
The continuous line is a fit by u∗= 0.05Ua.
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does not hold for larger wind velocity, for which the roughness induced by the waves decreases the
value of C in Eq. (2).48,49

C. Flow in the liquid tank

The shear stress induced by the wind at the interface drives a drift flow in the liquid. Since the
tank is closed, this drift is compensated by a back-flow at the bottom of the tank, and a stationary
state is reached after a few minutes. We have measured the mean velocity profile in the tank using
Particle Image Velocity (PIV) in vertical planes (x, z) (Fig. 3). Except at small fetch (on a distance of
the order of the liquid height) and over the last 30 cm of the tank (where surface contamination cannot
be avoided), the velocity profiles are found nearly homogeneous in x and y . The velocity profiles are
well described by the parabolic law, solution of the stationary Stokes problem

u(x, z) = Us(x)
(
1 +

z
h

) (
1 + 3

z
h

)
, (3)

for −h ≤ z ≤ 0, where Us(x) = u(x, z = 0) is the surface velocity. For Ua = 4 m s−1, the surface ve-
locity is of order of 1 cm s−1, which leads to a Reynolds number Re = Ush/ν ≃ 10. This drift velocity
is in agreement with measurements at small Reynolds number37 but is much smaller than the 2%-3%
of wind velocity typically found in classical air-water experiments.13,15,27,30 The small surface veloc-
ity here is expected to have negligible effect on dispersion relation (1): Lilly (see appendix of Hidy
and Plate33) shows that the correction to the phase velocity for this parabolic profile is Us(1 − 2/kh),
which is 10% of the phase velocity for the most unstable wavelength (λ ≃ 30–40 mm).

Because of the development of the boundary layer and the resulting decreasing friction velocity,
the surface velocity Us decreases slightly along the tank. For Ua = 4 m s−1, Us(x) decreases from 1.5
to 1.1 cm s−1. Measuring Us(x) provides another way to determine u∗(x): using the continuity of the
stress at the interface, one has σ(x) = ρau∗2(x) = η∂u/∂z(z = 0), yielding

u∗ =


4ηUs

ρah
. (4)

The friction velocity u∗measured by PIV in the liquid with this method is in excellent agreement with
the one measured in air with the hot-wire at x0 = 500 mm (inset of Fig. 3). For simplicity, the ratio of
u∗/Ua is taken in the following as constant and equal to 0.05 for all fetches. By comparison, the ratio
of u∗/Ua is generally found of order of 3% in air-water experiments,23,50,51 with weak dependence on
the wind velocity.23

Note that the shear stress at the liquid surface and at the lateral and upper walls must be balanced
by a small longitudinal pressure gradient ∆p/L in the air along the channel. This pressure gradient
introduces a complication in the setup: the liquid surface becomes slightly tilted, with the inlet liquid
height below the outlet height (this is analogous to the “wind tide” effect observed on lakes37). Assum-
ing equal stress σ on the liquid surface and on the solid walls, this pressure gradient writes ∆p/L ≃
2σ(1/W + 1/H), with W and H the channel width and height. For a wind velocity Ua = 4 m s−1, the
pressure drop along the tank is ∆p ≃ 2 Pa, which results in a hydrostatic height difference between
the two ends of the tank of∆p/ρg ≃ 0.2 mm, in good agreement with our measurement. We observed
that the resulting backward facing step at x = 0 significantly increases the turbulent fluctuations and
enhances the wave amplitude at small fetch by typically a factor of 2. It is therefore critical to maintain
the liquid level at x = 0 by carefully tilting the channel. We achieve a leveling of the liquid at x = 0
better than 20 µm by using the tangential reflexion of a laser sheet intersecting the upstream plate
and the liquid surface.

D. Surface deformation measurement

We measure the surface deformation of the liquid using the FS-SS method.42 This optical method
is based on the analysis of the refracted image of a pattern visualized through the interface. A random
dot pattern located below the liquid tank is imaged by a fast camera located above the channel, with a
field of view of 390 × 280 mm. A reference image is taken when the liquid surface is flat (zero wind),
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FIG. 4. Instantaneous surface height ζ(x, y) measured by FS-SS centered at intermediate fetch x = 570 mm, at increas-
ing wind velocities. (a) Ua = 3.2 m s−1, showing small-amplitude disorganized wrinkles elongated in the streamwise
direction (ζrms= 0.0032 mm). (b) Ua = 5.9 m s−1, showing a combination of streamwise wrinkles and spanwise waves
(ζrms= 0.009 mm). (c) Ua = 7.0 m s−1, showing well-defined spanwise waves of mean wavelength λ = 35 mm (ζrms=

0.12 mm). (d) Ua = 7.8 m s−1, showing large-amplitude waves of mean wavelength λ = 44 mm with increasing disorder
(ζrms= 0.6 mm). Note the change of scale in the color map.

and the apparent displacement field δr between this reference image and the distorted image in the
presence of waves is computed using an image correlation algorithm. Integration of this displacement
field gives the height field ζ(x, y, t) (see examples in Fig. 4).

Measurements are performed at three fetches, corresponding to the first three quarters of the tank
with a small overlap: x ∈ [10,400] mm; x ∈ [370,760] mm; x ∈ [700,1090] mm. No measurements
are performed in the last quarter of the channel because of possible surface contamination. The dis-
tance between the random dot pattern and the liquid surface sets the sensitivity of the measurement
and is chosen according to the typical wave amplitude. We choose a distance of 29 cm for waves of
weak amplitude (of order of 1–10 µm) and 6 cm for waves of large amplitude (up to 1 mm). For wave
amplitude larger than a few millimeters, the FF-SS method no longer applies: crossing of light rays
appear below waves of large curvature (caustics), which prevents the measurement of the apparent
displacement field. The horizontal resolution is 3 mm, and the vertical resolution of order of 1% of
the wave amplitude. Acquisitions of 2 s at 200 Hz are performed for time-resolved wave reconstruc-
tion, and 100 s at 10 Hz to ensure good statistical convergence of the root mean square of the wave
amplitude.

III. RESULTS

A. Amplitude versus velocity

Figure 4 shows four snapshots of the surface deformation at increasing wind velocity, between
Ua = 3.2 and 7.8 m s−1, at intermediate fetch x ∈ [370,760]mm. At small Ua, the wave pattern shows
rapidly moving disorganized wrinkles of weak amplitude, of order 10 µm, elongated in the stream-
wise direction (Fig. 4(a)). As the wind velocity is increased, noisy spanwise crests, normal to the
wind direction, gradually appear in addition to the streamwise wrinkles (Fig. 4(b)). The amplitude of
these spanwise crests rapidly increases with velocity and becomes much larger than the amplitude of
the streamwise wrinkles for wind velocity in the range 6–7 m s−1. At Ua = 7.0 m s−1 (Fig. 4(c)), the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  83.202.130.179 On: Thu, 10 Dec 2015 20:45:53



122103-7 Paquier, Moisy, and Rabaud Phys. Fluids 27, 122103 (2015)

surface field is dominated by a regular wave pattern of typical amplitude 0.2 mm, with a well defined
wavelength in the streamwise direction. The wave crests are not strictly normal to the wind, but rather
show a dislocation near the center line. This may be due to a slight convergence of the turbulent air
flow close to the free surface towards the walls, which is unavoidable for a turbulent channel flow
in a rectangular geometry (secondary flow of Prandtl’s second kind47). As the wind speed is further
increased, the disorder of the wave pattern increases (Fig. 4(d)), with more dislocations and larger
typical wavelength and amplitude. All these patterns are quite similar to those reported by Lin et al.41

from direct numerical simulation of temporally growing waves with periodic boundary conditions.
The evolution from the disorganized longitudinal wrinkles to the well-defined transverse waves

as the wind velocity is increased is evident from the root mean square of the deformation amplitude,

ζrms = ⟨ζ2(x, y, t)⟩1/2,

where the brackets are both temporal average and spatial average over the field of view. This quantity,
plotted as a function of the wind velocity in Fig. 5 for two values of the fetch x, clearly exhibits the
two regimes: at small air velocity, when the surface deformation is dominated by the longitudinal
wrinkles, the wave height slowly increases with the wind velocity, but beyond a threshold of order
of 6 m s−1 , the increase becomes much sharper and fetch dependent: the wave amplitude grows by a
factor of 100 for Ua increasing between 6 and 8 m s−1. A similar transition in the wave amplitude is
also reported in air-water experiments by Kahma and Donelan14 and Caulliez et al.34 At the largest
velocity, Ua ≃ 8 m s−1, the sharp increase of the wave amplitude apparently starts to saturate. This
wind velocity represents an upper limit for the FS-SS measurements because of the caustics induced
by the strong wave curvature.

In the wrinkle regime (Ua < 6 m s−1), the wave height is almost independent of the fetch and
is approximately proportional to the wind velocity: ζrms ≃ αUa, with α = 10−6 s. This independence
of x suggests that the wrinkles can be simply viewed as an imprint on the free surface of the turbu-
lent fluctuations in the airflow. Relating quantitatively the height fluctuations to the pressure fluctua-
tions is however a difficult task. A simple estimate, assuming an instantaneous hydrostatic response
of the liquid interface (i.e., neglecting viscous and capillary effects) would yield ζrms ≃ prms/ρg.
The pressure fluctuation at the wall in a fully developed turbulent channel is well described by the
empirical law52,53 prms = f (Reτ)ρau∗2, with f (Reτ) = (2.60 ln(Reτ) − 11.25)1/2. In the range Ua ≃
1–6 m s−1, one has Reτ ≃ 160–1000, which (neglecting the logarithmic variation over this range and
taking u∗ ≃ 0.05Ua) yields prms ≃ 0.006ρaU2

a, and hence ζrms ≃ 0.3–20 µm. Although the order of
magnitude is consistent with Fig. 5, the predicted scaling (ζrms ∝ U2

a) is not compatible with the data,

FIG. 5. Root mean square of the surface height ζrms as a function of wind velocity Ua. The data are averaged over the
measurement windows centered at two values of the fetch x. The vertical arrows show the velocities corresponding to the
four snapshots in Fig. 4. The continuous line shows the linear fit ζrms=αUa, with α = 10−6 s.
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FIG. 6. Wave amplitude ζrms (averaged over the spanwise coordinate y and time) as a function of the fetch x for various
wind speeds Ua. In the wrinkle regime (Ua < 6.3 m s−1) ζrms(x) is almost constant, whereas it increases with fetch in the
wave regime.

suggesting that the viscous time response of the liquid must be accounted for to describe the observed
trend ζrms ∝ Ua.

B. Spatial growth rate

Contrarily to the wrinkles, which are almost independent of the fetch x, the amplitude of the
transverse waves strongly increases with x, as shown in Fig. 6. The rms amplitude ζrms(x) is computed
here using an average over y and time only. The spatial growth is approximately exponential at small
fetch (x < 400 mm), as expected for a convective supercritical instability in an open flow.54 At larger
fetch nonlinear effects come into play, resulting in a weaker growth of the wave amplitude.

The spatial growth rate β can be estimated in the initial exponential growth regime (x < 400 mm)
by fitting the squared amplitude as ζ2

rms(x) ∝ exp(βx). The growth rate β, plotted in Fig. 7 as a func-
tion of the wind velocity, allows to accurately define the onset of the wave growth: one has β ≃ 0 for
Ua < 6.3 m s−1, and a linear increase at larger Ua, which can be fitted by

β ≃ b(Ua −Uc), (5)

FIG. 7. Spatial growth rate β, measured at small fetch (x < 400 mm), as a function of wind speed. The continuous line
corresponds to the linear fit (5).
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with Uc ≃ 6.3 ± 0.1 m s−1 and b ≃ 11.6 ± 0.8 s m−2. Interestingly, in the small range of fetch where
β is computed, the waves are nearly monochromatic, with λ ≃ 35 mm (see Sec. III C). This indicates
that the growth rate measured here, although computed from the total wave amplitude, corresponds
essentially to the growth rate of the most unstable wavelength.

We note that the velocity threshold Uc ≃ 6.3 m s−1 turns out to be close to the (inviscid) Kelvin-
Helmholtz prediction. This agreement, first noted by Francis38 for a viscous fluid, is however coin-
cidental since the threshold depends on viscosity.37

An interesting question is whether the wrinkles at low wind velocity can be considered as the
seed noise for the exponential growth of the waves at larger velocity. Figure 6 indicates that this is
apparently not the case: for Ua > 6.3 m s−1, the initial wave amplitude ζrms extrapolated at x = 0
increases with Ua much more rapidly than the amplitude of the wrinkles; ζrms(x = 0) grows from 8 to
30 µm for Ua increasing from 6.3 to 7.7 m s−1 only. This suggests that the wrinkles are not necessary
for the growth of the waves. Instead, the seed noise for the waves probably results from the surface
disturbance induced by the sudden change in the boundary condition from no-slip to free-slip at
x = 0. Accordingly, the rms amplitude can be described as the sum of the wrinkle amplitude (linearly
increasing with Ua) and the wave amplitude (exponentially increasing with Ua),

ζrms ≃ αUa + ζn(Ua) exp [b (Ua −Uc) x] , (6)

with ζn(Ua) the amplitude of the noise at zero fetch.
To provide comparison with other experiments and theoretical results, it is interesting to express

Eq. (5) in terms of a temporal growth rate. In the frame moving with the group velocity, this temporal
growth rate writes βt = cg β, with cg ≃ 0.16 m s−1 for the most unstable wavelength λ ≃ 35 mm. In
terms of the friction velocity u∗ ≃ 0.05Ua, Eq. (5) writes

βt ≃ (36 ± 8)(u∗ − 0.31)
(in s−1). Not surprisingly, these values are smaller than the ones reported in air-water experi-
ments,29,55–58 by a factor of order of 3, suggesting that the wave growth is weakened by the viscosity
of the liquid.

C. Spatial structures

To characterize the spatial structure of the wrinkles and waves, we introduce the two-point
correlation

C(r) = ⟨ζ(x, t)ζ(x + r, t)⟩
⟨ζ(x, t)2⟩ ,

FIG. 8. Spatial correlation function in the streamwise direction, C(rx), at four wind velocities for x ∈ [370,760] mm.
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where ⟨·⟩ is a spatial and temporal average. The correlation in the streamwise direction (r = rxex)
is plotted in Fig. 8 for the four wind velocities corresponding to the snapshots in Fig. 4. The mono-
tonic decay of C(rx) at small wind velocity is a signature of the disordered deformation pattern in
the wrinkle regime, whereas the oscillations at larger velocity characterize the onset of waves. In-
terestingly, these oscillations are clearly visible even at Ua = 5.9 m s−1, confirming that the trans-
verse waves are already present in the deformation field significantly before the critical velocity
Uc ≃ 6.3 m s−1 (see Fig. 4(b)). This indicates that the transition between the wrinkles and the waves
is not sharp: both structures can be found with different relative amplitude over a significant range of
wind velocity.

The smooth transition between wrinkles and waves can be further characterized by computing
the correlation length Λi in the direction ei (i = x, y), which we define as 6 times the first value of
ri satisfying C(ri) = 1/2. This definition is chosen so that Λi coincides with the wavelength for a
monochromatic wave propagating in the direction ei. Although no wavelength can be defined for the
disorganized wrinkles, Λx and Λy provide estimates for the characteristic distance between wrinkles
in the streamwise and spanwise directions.

The correlation lengths Λx and Λy are shown in Fig. 9 as functions of the wind velocity. At
very low wind (∼1 m s−1), both lengths are of the same order, Λx ≃ Λy ≃ 250 mm. Between 1.5 and
5 m s−1, the surface deformations are mostly in the streamwise direction (Λx/Λy ≃ 3), whereas at
larger velocity, they are essentially in the spanwise direction (Λx/Λy ≃ 0.15). Note that pure mono-
chromatic waves in the x direction would yield C(ry) = 1 and hence Λy = ∞; the saturation of Λy

close to the channel width (W = 296 mm) observed at largeUa is a signature of the dislocation existing
near the center line y = 0 and visible in Figs. 4(c) and 4(d).

It is worth noting that the increase of Λy and the decrease of Λx start at a wind velocity Ua ≃
5 m s−1 which is significantly lower than the critical velocity Uc ≃ 6.3 m s−1, confirming that trans-
verse waves are present well before their amplification threshold. This coexistence of wrinkles and
waves at Ua < Uc suggests the following picture: below the onset, waves are locally excited by the
wrinkles, but they are exponentially damped (β < 0). The surface field can therefore be described as
the sum of a large number of spatially decaying transverse waves, locally excited by the randomly
distributed wrinkles generated by the pressure fluctuations in the boundary layer. Since the ampli-
tude of the wrinkles is essentially independent of x, the resulting mixture of wrinkles and decaying
transverse waves is also independent of x, leading to the apparent growth rate β = 0 of Fig. 7. In
other words, the expected negative growth rate below the onset is hidden by the spatial average over

FIG. 9. Streamwise and spanwise correlation lengthsΛx (square) andΛy (filled triangle), averaged over x ∈ [700,1090] mm,
as a function of the wind velocityUa. The vertical dashed line atUa = 6.3 m s−1 indicates the onset of the wave growth. The
continuous line is a fit Λy ≃ 550δv, with δv =νa/u

∗ the thickness of the viscous sublayer.
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randomly distributed decaying waves and cannot be inferred from the observed constant deformation
amplitude for Ua < Uc.

If the elongated wrinkles at low velocity are traces of the pressure fluctuations in the boundary
layers, we expect a relationship between their characteristic dimensions. The geometrical and statis-
tical properties of the pressure fluctuations in a turbulent channel cannot be obtained experimentally
but are available from numerical simulations. We refer here to data from the work of Jimenez and
Hoyas53 at Reτ up to 2000. The intensity of the pressure fluctuations increases logarithmically from
the center of the channel down to z ≃ 30δv, and then remains essentially constant in the viscous
sublayer down to z = 0 (see Fig. 8(b) in Ref. 53). In the thin region where the pressure fluctuations
are maximum, 0 < z < 30δv, the characteristic dimensions of the pressure structures in the (x, y)
planes normal to the wall are nearly equal, ℓx ≃ ℓy ≃ 160δv, and are hence decreasing with increasing
wind velocity. These features are indeed compatible with the correlation lengths in Fig. 9: at very
low velocity, the wrinkles are nearly isotropic, Λx ≃ Λy ≃ 250 mm. As Ua increases up to 3 m s−1,
the spanwise correlation length decreases as Λy ≃ 550δv, similarly to the width ℓy of the pressure
fluctuations. This decrease is however not observed for the streamwise correlation length Λx, which
may result from the viscous time response of the surface behind a moving pressure perturbation.

D. Spatiotemporal dynamics

In order to confirm the relation between the surface wrinkles and the pressure fluctuations travel-
ing in the boundary layer, we now turn to a spatio-temporal description of the surface deformation. We
show in Fig. 10 spatio-temporal diagrams (left) and two-point two-time correlation (right) at increas-
ing wind velocity. The spatio-temporal diagrams are constructed by plotting the surface deformation
ζ(x, y, t) in the plane (x, t) along the center line y = 0. The oblique lines in these diagrams indicate the
characteristic velocity of the deformation patterns. The spatio-temporal correlation in the streamwise
direction is defined as

C(rx, τ) = ⟨ζ(x + rxex, t + τ)ζ(x, t)⟩
⟨ζ(x, t)2⟩ , (7)

where ⟨·⟩ is a spatial and temporal average. For statistically stationary and homogeneous deforma-
tions, one has C(−rx,−τ) = C(rx, τ), so only the positive time domain is shown.

At small wind velocity (Ua = 3.2 m s−1), the surface deformation shows rapidly propagating
disorganized structures, with life time of order of their transit time [Fig. 10(a)]. Their characteristic
velocity is distributed over a large range, resulting in a broad correlation in Fig. 10(b).

In the mixed wrinkle-wave regime (Ua = 5.9 m s−1), slow wave packets with well defined veloc-
ity appear, embedded in a sea of rapid disorganized fluctuations [Fig. 10(c)]. These slow wave packets
confirm the picture of transverse waves locally excited by the wrinkles but rapidly damped because
of their negative growth rate. The wavelength and the phase velocity of these evanescent waves can
be inferred from the corresponding spatio-temporal correlation [Fig. 10(d)].

At larger wind velocity (Ua = 7.0 m s−1), the surface deformation becomes dominated by spatial-
ly growing transverse waves (β > 0), resulting in well defined oblique lines in the spatio-temporal
diagram [Fig. 10(e)] and a marked spatial and temporal periodicity in the correlation [Fig. 10(f)].
These transverse waves, however, are never strictly monochromatic: wave packets are still visible,
delimited by boundaries propagating at the group velocity. For this wind velocity and fetch, the local
wavelength is λ = 37 mm, for which the predicted phase and group velocities are c = 0.26 m s−1 and
cg = 0.16 m s−1, in good agreement with the observed slopes (black and white dashed lines, respec-
tively) in Fig. 10(f).

Finally, at even larger wind velocity (Ua = 7.9 m s−1), the phase velocity and wavelength increase
slightly and becomes again broadly distributed. Accordingly, the spatial and temporal periodicity
weakens in Fig. 10(h).

For monochromatic waves propagating in the x direction, one has C(rx, τ) = cos(krx − ωt), so
the correlation is 1 along characteristic lines parallel to rx/t = c, where c = ω/k is the phase velocity.
For a (non-monochromatic) propagating pattern, the correlation is weaker but remains maximum
along a line rx/t given by the characteristic velocity of the pattern. We therefore define the convection
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FIG. 10. (a), (c), (e), and (g) Spatio-temporal diagrams ζ(x, t) taken along the line y = 0. Same velocities and scales as in
Fig. 4. ((b), (d), (f), and (h)) Longitudinal spatio-temporal correlation C(rx,τ) [Eq. (7)]. Colormap is [−1,1] from blue to
red. The black dashed line shows the convection velocity Vconv (8). In (f), the two white dashed lines show the group velocity
cg = 0.16 m s−1 corresponding to the observed wavelength λ = 37 mm, which delimit the wave packets.

velocity as

Vconv =
Λx

τ
, (8)

where Λx and τ are defined as the first value such that C(Λx/6,0) = 1/2 and C(0, τ/6) = 1/2. Here
again, the factor 6 is chosen such that Λx and τ correspond to the wavelength and period for
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FIG. 11. Convection velocity Vconv=Λx/τ, averaged over x ∈ [700,1090] mm, as a function of the wind velocity Ua. The
vertical dashed line at Uc = 6.3 m s−1 indicates the onset of wave growth, β = 0. The continuous line shows Vcorr= 0.6Ua.
The dashed horizontal line shows the local phase velocity c = 0.27 m s−1 corresponding to the local wavelength λ = 44 mm.

monochromatic waves; in this case, Vconv is simply the phase velocity. This convection velocity is
shown as black dashed lines in the spatio-temporal correlation in Fig. 10 and is plotted in Fig. 11
as a function of the wind velocity Ua. At very small velocity (Ua < 2 m s−1), Vconv first increases,
following approximately Vconv ≃ 0.6Ua. This value is remarkably similar to the convection velocity
of the pressure fluctuations found in turbulent boundary layers.59 This is consistent with the fact that,
in this small range of Ua, the decrease of the characteristic width of the wrinkles Λy follows the
expected decrease of the size of the pressure fluctuations in the boundary layer (Fig. 9). Such convec-
tion velocity Vconv ≃ 0.6Ua can be recovered as follows: in a turbulent boundary layer, the pressure
fluctuations are maximum at zm/δv ≃ 20–50 (see, e.g., Jimenez and Hoyas53) and, according to the
logarithmic law (2), the mean velocity at this height is u(zm) ≃ (13 ± 1)u∗. Using u∗ ≃ 0.05Ua in the
present experiment, this yields u(zm) ≃ (0.65 ± 0.05)Ua. This suggests that the surface response to
the traveling pressure fluctuations is essentially local and instantaneous up to Ua ≃ 2 m s−1.

For Ua > 2 m s−1, the convection velocity departs from the linear growth 0.6Ua and saturates
at Vconv ≃ 1.2 m s−1. This saturation probably results from the viscous damping, which prevents an
instantaneous response of the surface deformation to too rapidly propagating pressure disturbances.
As the wind velocity is further increased, the convection velocity decreases down to c ≃ 0.27 m s−1,
which coincides with the expected phase velocity of free waves of the observed wavelength. This
gradual decrease does not correspond to a slowing of the wrinkles, but rather to an average over the
rapid wrinkles propagating at velocities of the order of 1.2 m s−1, which dominate the surface at low
Ua, and the slow transverse waves at velocity of the order of 0.27 m s−1, which dominate the surface at
high Ua. Finally, for Ua > 7 m s−1, the convection velocity increases again, which is consistent with
the increase of the wavelength in Fig. 9. These increases do not necessarily occur for shorter fetches,
implying that the wave properties change with fetch at high wind velocity. Such non linear effect
presents strong similarities with the wavenumber and frequency downshift observed for wind-waves
on sea60 and will be investigated in future work.

IV. CONCLUSION

In this paper, we explored the spatio-temporal properties of the first surface deformations induced
by a turbulent wind on a viscous fluid. New insight into the wave generation mechanism is gained
from spatio-temporal correlations computed from high resolution time-resolved measurements of the
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surface deformation field. At low wind velocity, rapidly propagating disordered wrinkles of very small
amplitude are observed, resulting from the response of the surface to the traveling pressure fluctua-
tions in the turbulent boundary layer. Above a critical wind velocity Uc, we observe the growth of well
defined propagating waves, with growth rates compatible with a convective supercritical instability.
Interestingly, an intermediate regime with spatially damped waves locally excited by the wrinkles is
observed below Uc, resulting in a smooth evolution of the characteristic lengths and velocity as the
wind speed is increased. Above the onset Uc, the seed noise for the growth of the waves is apparently
not governed by the wrinkles, but rather by the perturbations at the inlet boundary condition at zero
fetch.

Using a liquid of large viscosity yields considerable simplification of the general problem of
wave generation by wind. Although some of the present results may be relevant to the more complex
air-water configuration, other are certainly specific to the large viscosity of the liquid. In particular, the
wrinkles observed at very low wind velocity (Ua < 2 m s−1) are compatible with a local and instanta-
neous response of the surface to the pressure fluctuations traveling in the boundary layer. This simple
property is not expected to hold for liquids of lower viscosity such as water, for which the surface
deformation at a given point results from the superposition of the disturbances emitted previously
from all the surface. New experiments with varying viscosity are necessary to gain better insight into
the intricate relation between the turbulent pressure field and the surface response below the onset of
the wave growth and to characterize the spatial evolution of the waves above onset.
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